$\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathbf{F}_{5}\right)_{3}\left(\mathbf{P P h}_{\mathbf{2}} \mathbf{H}\right)\right]:$ A Precursor for the Synthesis of Gold(III) Phosphide Complexes**

M. Carmen Blanco, Eduardo J. Fernández, Peter G. Jones, Antonio
Laguna,* José M. López-de-Luzuriaga, and M. Elena Olmos

Although a rich and fascinating chemistry of phosphido-bridged transition metal complexes has recently been developed for metals of Groups 9 and $10,{ }^{[1]}$ the corresponding gold chemistry has experienced little progress since Puddephatt and Thompson prepared [$\left.\mathrm{AuPPh}_{2}\right]_{n}$ in $1976 ;{ }^{[2]}$ only a few Au^{1} species containing $\mathrm{PR}_{2} \mathrm{H}^{[3]}$ or PR_{2}^{-}ligands ${ }^{[2-4]}$ are known. The chemistry of $\mathrm{Au}^{\text {III }}$ is even more poorly represented, and only the dinuclear complex $\left[\mathrm{Au}_{2} \mathrm{Me}_{4}\left(\mu-\mathrm{PPh}_{2}\right)_{2}\right]$ has been reported. ${ }^{[2]}$ Attempts to prepare $\mathrm{Au}^{\text {III }}$ complexes with $\mathrm{PPh}_{2} \mathrm{H}$ have led only to reduction of the $\mathrm{Au}^{\text {III }}$ centers. ${ }^{[3 a]}$
We have succeeded in synthesizing a diphenylphosphanylgold(III) complex by exploiting the stabilizing effect of pentafluorophenyl groups. The starting material $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(\right.$ tht $\left.)\right]$ (tht $=$ tetrahydrothiophene) was treated with $\mathrm{PPh}_{2} \mathrm{H}$, giving $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{PPh}_{2} \mathrm{H}\right)\right]$ (1, Scheme 1). This is the first $\mathrm{Au}^{\text {III }}$ derivative containing a secondary phosphane.
Further reaction of $\mathbf{1}$ with suitable coinage metal species should furnish hitherto unknown phosphido-bridged $\mathrm{Au}^{\text {III }}-\mathrm{M}$ species. As $\mathbf{1}$ can only be isolated in low yields as an oily material, freshly prepared solutions of $\mathbf{1}$ were used directly for further reactions. The reaction of $\operatorname{PPN}\left[\mathrm{Au}(\mathrm{acac})_{2}\right]^{[5]}(\mathrm{PPN}=$ $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$, acac $\left.=\mathrm{CH}\left(\mathrm{COCH}_{3}\right)_{2}\right)$ with such a solution (1:2) afforded the first mixed $\mathrm{Au}^{\text {III }}-\mathrm{M}$ phosphido-bridged complex, $\operatorname{PPN}\left[\left\{\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mu-\mathrm{PPh}_{2}\right)\right\}_{2} \mathrm{Au}\right]$ (2), which can be easily isolated as a solid in high yield. It behaves as a 1:1 electrolyte in acetone; its ${ }^{1} \mathrm{H}$ NMR spectrum displays only signals from the aromatic protons.
We wished to synthesize a set of isostructural complexes containing $\mathrm{Au}^{\mathrm{I}}, \mathrm{Ag}^{\mathrm{I}}$, or Cu^{I} centers, whose crystal structures

[*] Prof. Dr. A. Laguna

Departamento de Química Inorgánica-ICMA
Universidad de Zaragoza-CSIC
E-50009 Zaragoza (Spain)
Fax: (+34) 976-761187
E-mail: alaguna@posta.unizar.es
M. C. Blanco, Dr. E. J. Fernández, Dr. J. M. López-de-Luzuriaga, Dr. M. E. Olmos
Departamento de Química, Universidad de La Rioja
Obispo Bustamante 3, E-26001 Logroño (Spain)
Prof. Dr. P. G. Jones
Institut für Anorganische und Analytische Chemie der Technischen Universität
Postfach 3329, D-38023 Braunschweig (Germany)
[**] This work was supported by the DGICYT. (PB94-0079), the University of La Rioja (API-98/B09), and the Fonds der Chemischen Industrie.

Scheme 1. Synthesis of phosphane and phosphide derivatives.

3

would allow a comparison of the covalent radii of these three metals, a subject of recent discussion. ${ }^{[6]}$ Reaction of $\mathbf{1}$ with AgClO_{4} or $\left[\mathrm{Cu}(\mathrm{NCMe})_{4}\right] \mathrm{TfO}\left(\mathrm{TfO}=\mathrm{CF}_{3} \mathrm{SO}_{3}\right)$ in the presence of $\operatorname{PPN}(\mathrm{acac})$ led to $\operatorname{PPN}\left[\left\{\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mu-\mathrm{PPh}_{2}\right)\right\}_{2} \mathrm{M}\right](\mathrm{M}=\mathrm{Ag}$ (3), Cu (4)). Both are air- and moisture-stable solids whose physical and spectroscopic data are in accordance with the proposed formulation.

Crystals of $\mathbf{2}$ and $\mathbf{3}$ suitable for X-ray diffraction studies were obtained from solutions in dichloromethane layered with hexane; unfortunately, we have not been able to obtain good crystals of 4 . Complexes 2 and $3^{[7]}$ are isotypic and thus allow a comparison of metal-ligand bond lengths (Figure 1). ${ }^{[6]]}$ The M^{I} atom lies on an inversion center, so its

Figure 1. Structure of the inversion-symmetric anion of $\mathbf{2}$ in the crystal (the radii are arbitrary). Only the asymmetric unit is numbered. Complex $\mathbf{3}$ is isostructural; the central gold atom is replaced by silver.
environment is exactly linear. The bond lengths and angles are almost identical in both structures (Table 1) except for the $\mathrm{M}^{\mathrm{I}}-\mathrm{P}$ distance, which is shorter by $0.07 \AA$ in the gold complex. This confirms the results obtained by Schmidbaur et al., who compared the bond lengths in complexes

Table 1. Bond lengths [\AA] and angles [${ }^{\circ}$] for $\mathbf{2}$ and $\mathbf{3}$.

	$\mathbf{2}(\mathrm{M}=\mathrm{Au})$	$\mathbf{3}(\mathrm{M}=\mathrm{Ag})$
$\mathrm{Au} 1-\mathrm{C} 31$	$2.052(5)$	$2.052(5)$
$\mathrm{Au} 1-\mathrm{C} 21$	$2.058(6)$	$2.068(5)$
$\mathrm{Au} 1-\mathrm{C} 11$	$2.073(6)$	$2.078(5)$
$\mathrm{Au} 1-\mathrm{P}$	$2.365(2)$	$2.365(2)$
M-P	$2.319(2)$	$2.386(1)$
P-C41	$1.814(6)$	$1.804(5)$
P-C51	$1.818(7)$	$1.813(5)$
C31-Au1-C21	$176.4(2)$	$176.6(2)$
C31-Au1-C11	$87.6(2)$	$88.1(2)$
C21-Au1-C11	$89.5(2)$	$89.3(2)$
C31-Au1-P	$92.0(2)$	$91.9(1)$
C21-Au1-P	$90.9(2)$	$90.6(1)$
C11-Au1-P	$177.7(2)$	$178.0(1)$
P-M-P'	180.0	180.0
C41-P-C51	$101.4(3)$	$101.3(2)$
C41-P-Au1	$110.6(2)$	$110.9(2)$
C51-P-Au1	$110.7(2)$	$110.8(2)$
C41-P-Au1	$110.6(2)$	$110.9(2)$
C41-P-M	$111.9(2)$	$113.7(2)$
C51-P-M	$109.1(2)$	$108.2(2)$
M-P-Au1	$112.54(7)$	$111.48(5)$

$\left[\left(\mathrm{Mes}_{3} \mathrm{P}\right)_{2} \mathrm{M}\right] \mathrm{BF}_{4}(\mathrm{M}=\mathrm{Au}, \mathrm{Ag})$. $^{[6]]}$ The $\mathrm{Au}^{\mathrm{I}}-\mathrm{P}$ bond distance in 2 is similar to those observed in $\operatorname{PPN}\left[\mathrm{Mn}(\mathrm{CO})_{4}\{(\mu-\right.$ $\left.\left.\left.\mathrm{PPh}_{2}\right) \mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right\}_{2}\right]\left(2.313(2)\right.$ and $2.322(1) \AA$) , ${ }^{[4 b]}$ but slightly shorter than those in $\left[\left\{\mathrm{Mn}(\mathrm{CO})_{4}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Au}\right\}_{2}\right](2.332(3)-$ $2.341(3) \AA \AA^{[4 b]}$ The $\mathrm{Au}^{\text {III }}$ centers display the expected planar coordination, and the $\mathrm{Au}^{\mathrm{III}}-\mathrm{C}$ bond lengths of 2.052(5)$2.078(5) \AA$ are similar to those in other tris(pentafluorophenyl)gold(III) derivatives. ${ }^{[8]}$ The $\mathrm{Au}^{\text {III }}-\mathrm{P}$ bond length of $2.365(2) \AA$ is closely similar to that in $\mathrm{NBu}_{4}-$ $\left[\left\{\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{Ph}_{2} \mathrm{PCHPPh}_{2}\right)\right\}_{2} \mathrm{Au}\right](2.367(2) \AA)^{[8 \mathrm{a}]}$

Experimental Section

1: To a solution of $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(\mathrm{tht})\right](0.236 \mathrm{~g}, 0.3 \mathrm{mmol})$ in diethyl ether was added $\mathrm{PPh}_{2} \mathrm{H}(0.5 \mathrm{~mL}, 0.3 \mathrm{mmol})$. After 30 min the solvent was concentrated in vacuo, and cold hexane was added to afford $\mathbf{1}$ as a white solid ($0.098 \mathrm{~g}, 37 \%$). ${ }^{31} \mathrm{P}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, 83 \% \mathrm{H}_{3} \mathrm{PO}_{4}$): $\delta=-8.4$ $\left(\mathrm{s}, \mathrm{PPh}_{2} \mathrm{H}\right) ;{ }^{1} \mathrm{H}$ NMR: $\delta=7.57-7.43(\mathrm{~m}, 10 \mathrm{H} ; \mathrm{Ph}), \approx 6.8\left(\mathrm{~d},{ }^{1} J(\mathrm{H}, \mathrm{P}) \approx\right.$ $\left.440 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{PPh}_{2} \mathrm{H}\right)$.
2: To a freshly prepared solution of $\mathbf{1}(0.2 \mathrm{mmol})$ in dichloromethane was added PPN[Au(acac $\left.)_{2}\right](0.093 \mathrm{~g}, 0.1 \mathrm{mmol})$. After the reaction mixture was stirred for 1 h at room temperature, part of the solvent was evaporated, and hexane (20 mL) was added to afford $\mathbf{2}$ as a white solid $(0.225 \mathrm{~g}, 90 \%) .{ }^{31} \mathrm{P}$ NMR: $\delta=30.9\left(\mathrm{~s}, \mathrm{PPh}_{2}\right), 21.1(\mathrm{~s}, \mathrm{PPN}) ;{ }^{1} \mathrm{H}$ NMR: $\delta=7.60-7.17(\mathrm{~m}, \mathrm{Ph})$.
3: $\mathrm{AgClO}_{4}(0.021 \mathrm{~g}, 0.1 \mathrm{mmol})$ and $\operatorname{PPN}(\mathrm{acac})(0.127 \mathrm{~g}, 0.2 \mathrm{mmol})$ were added to a solution of $\mathbf{1}(0.2 \mathrm{mmol})$ in diethyl ether. After 1 h a white precipitate $\left(\mathrm{PPNClO}_{4}\right)$ was removed by filtration, the solution was concentrated, and hexane was added to precipitate 3 as a white solid $(0.159 \mathrm{~g}, 66 \%) .{ }^{31} \mathrm{P}$ NMR: $\delta=21.1(\mathrm{~s}, \mathrm{PPN}), 4.5\left(\mathrm{dd},{ }^{1} J\left(\mathrm{P},{ }^{109} \mathrm{Ag}\right)=512.5\right.$, $\left.{ }^{1} J\left(\mathrm{P},{ }^{107} \mathrm{Ag}\right)=446.3 \mathrm{~Hz} ; \mathrm{PPh}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR: $\delta=7.63-7.14(\mathrm{~m}, \mathrm{Ph})$.
4: $\left[\mathrm{Cu}(\mathrm{NCMe})_{4}\right] \mathrm{TfO}(0.038 \mathrm{~g}, 0.1 \mathrm{mmol})$ and $\operatorname{PPN}(\mathrm{acac})(0.127 \mathrm{~g}$, $0.2 \mathrm{mmol})$ were added to a solution of $\mathbf{1}(0.2 \mathrm{mmol})$ in dichloromethane. After 1 h the solvent was evaporated, and diethyl ether was added to
precipitate PPNClO_{4}, which was removed by filtration. The solution was concentrated, and hexane was added to afford 4 as a pale yellow solid $(0.121 \mathrm{~g}, 51 \%) \cdot{ }^{31} \mathrm{P}$ NMR: $\delta=21.1(\mathrm{~s}, \mathrm{PPN}),-7.0\left(\mathrm{~s}, \mathrm{PPh}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR: $\delta=$ 7.61-7.09 (m, Ph).

Received: June 18, 1998 [Z12007 IE]
German version: Angew. Chem. 1998, 110, 3199-3201
Keywords: copper • gold • P ligands • silver
[1] a) G. A. Acum, M. J. Mays, P. R. Raithby, H. R. Powel, G. A. Solan, Chem. Commun. 1997, $3427-3434$; b) K. Wang, T. J. Emge, A. S. Goldman, Inorg. Chim. Acta 1997, 255, 395-398; c) E. Alonso, J. Forniés, C. Fortuño, A. Martín, G. M. Rosair, A. J. Welch, Inorg. Chem. 1997, 36, 4426-4431.
[2] R. J. Puddephatt, P. J. Thompson, J. Organomet. Chem. 1976, 117, 395 403.
[3] a) R. G. Pritchard, D. B. Dyson, R. V. Parish, C. A. McAuliffe, B. Beagley, J. Chem. Soc. Chem. Commun. 1987, 371-372; b) D. B. Dyson, R. V. Parish, C. A. McAuliffe, R. G. Pritchard, R. Fields, B. Beagley, J. Chem. Soc. Dalton Trans. 1989, 907-914; c) H. Schmidbaur, A. A. M. Aly, Z. Naturforsch. B 1979, 34, 23-26; d) H. Schmidbaur, G. Weidenhiller, A. A. M. Aly, O. Steigelmann, G. Müller, Z. Naturforsch. B 1989, 44, 1503-1508.
[4] a) J. Vicente, M. T. Chicote, P. G. Jones, Inorg. Chem. 1993, 32, 4960 4964; b) G. A. Carriedo, V. Riera, M. L. Rodríguez, P. G. Jones, J. Lautner, J. Chem. Soc. Dalton Trans. 1989, 639-643; c) F. S. Livotto, M. D. Vargas, D. Braga, F. Grepioni, J. Chem. Soc. Dalton Trans. 1992, 577-584.
[5] a) E. J. Fernández, M. C. Gimeno, P. G. Jones, A. Laguna, M. Laguna, J. M. López-de-Luzuriaga, J. Chem. Soc. Dalton Trans. 19923365 3370; b) J. Vicente, M. T. Chicote, I. Saura-Llamas, M. C. Lagunas, J. Chem. Soc. Chem. Commun. 1992 915-916.
[6] a) A. Bayler, A. Schier, G. A. Bowmaker, H. Schmidbaur, J. Am. Chem. Soc. 1996, 118, 7006-7007; b) G. A. Bowmaker, H. Schmidbaur, S. Krüger, N. Rösch, Inorg. Chem. 1997, 36, 1754-1757.
[7] Structure analysis of 2: $\mathrm{C}_{96} \mathrm{H}_{50} \mathrm{Au}_{3} \mathrm{~F}_{30} \mathrm{NP}_{4}$, rectangular block $0.25 \times$ $0.22 \times 0.20 \mathrm{~mm}^{3}$, monoclinic, $C 2 / c, a=28.174(3), b=11.0751(9), c=$ $30.202(3) \AA, \quad \beta=113.757(8)^{\circ}, \quad V=8625.5(14) \AA^{3}, \quad Z=4, \quad \lambda\left(\mathrm{Mo}_{\text {К } \alpha}\right)=$ $0.71073 \AA, \mu=5.28 \mathrm{~mm}^{-1}, \rho_{\text {calcd }}=1.927 \mathrm{Mg} \mathrm{m}^{-3}, T=-100^{\circ} \mathrm{C}$. Of 9917 reflections collected to $2 \theta=50^{\circ}, 7559$ were unique and used for all calculations. Absorption corrections were carried out by ψ scans with transmissions of $0.72-0.98$. The structure was solved with Patterson methods, and refined anisotropically on F^{2} (program SHELXL-93, G. M. Sheldrick, Universität Göttingen) with 580 restraints to U components of light atoms and local ring symmetry. Hydrogen atoms were included with a riding model. Final values: $w R 2=0.051, R 1=$ 0.036 for 606 parameters; $S=0.79, \Delta \rho 0.89 \mathrm{e}^{\AA^{-3}}$. Structure analysis of 3: $\mathrm{C}_{96} \mathrm{H}_{50} \mathrm{AgAu}_{2} \mathrm{~F}_{30} \mathrm{NP}_{4}$, prism $0.5 \times 0.4 \times 0.4 \mathrm{~mm}^{3}$, monoclinic, $\mathrm{C} 2 / \mathrm{c}$, $a=28.145(3), \quad b=11.064(1), \quad c=30.316(4) \AA, \quad \beta=114.08(8)^{\circ}, \quad V=$ $8619(2) \AA^{3}, Z=4, \mu=3.81 \mathrm{~mm}^{-1}, \rho_{\text {calcd }}=1.860 \mathrm{Mg} \mathrm{m}^{-3}, T=-100^{\circ} \mathrm{C}$. Of 10198 reflections collected to $2 \theta=50^{\circ}, 7514$ were unique; transmissions of $0.57-0.76$. Final values: $w R 2=0.055, R 1=0.033 ; S=0.85$, $\Delta \rho 1.00 \mathrm{e}^{-3}$. The structure was solved and refined as for $\mathbf{2}$. Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-101732 (2) and CCDC-101733 (3). Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+44)1223-336-033; e-mail: deposit@ccdc.cam.ac.uk).
[8] a) E. J. Fernández, M. C. Gimeno, P. G. Jones, A. Laguna, M. Laguna, J. M. López-de-Luzuriaga, Organometallics 1995, 14, 2918-2922; b) B. Alvarez, E. J. Fernández, M. C. Gimeno, P. G. Jones, A. Laguna, M. Laguna, J. M. López-de-Luzuriaga, J. Organomet. Chem. 1996, 525, 109-113; c) E. J. Fernández, M. C. Gimeno, P. G. Jones, A. Laguna, J. M. López-de-Luzuriaga, E. Olmos, Chem. Ber. 1997, 130, 1513-1517.

