Synthesis and Reactivity of Trinuclear Gold(III) Dithiolate Complexes. X-ray Structure of $\left[\mathrm{Au}\left(\mathbf{C}_{6} \mathrm{~F}_{5}\right)\left(\mathbf{S}_{2} \mathbf{C}_{6} \mathbf{H}_{4}\right)\right]_{3}$ and $\left[\mathrm{Au}\left(\mathbf{C}_{6} \mathbf{F}_{5}\right)\left(\mathbf{S}_{\mathbf{2}} \mathbf{C}_{6} \mathbf{H}_{4}\right)\left(\mathbf{S C}_{6} \mathbf{H}_{4} \mathbf{S P P h}_{3}\right)\right]$

Elena Cerrada, ${ }^{\dagger}$ Eduardo J. Fernández, ${ }^{\ddagger}$ Peter G. Jones, ${ }^{\S}$ Antonio Laguna, ${ }^{\dagger}$ Mariano Laguna, ${ }^{, \dagger}$ and Raquel Terroba ${ }^{\ddagger}$
Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain, Departamento de Quimica, Universidad de la Rioja, 26001 Logroño, Spain, and Institut für Anorganische und Analytische Chemie der Technischen Universität, Postfach 3329,
38023 Braunschweig, Germany

Received June 9, 1995 ${ }^{\text { }}$

Abstract

$\mathrm{Q}_{2}\left[\mathrm{Zn}(\mathrm{S}-\mathrm{S})_{2}\right]$ or $\left[\mathrm{SnMe}_{2}(\mathrm{~S}-\mathrm{S})\right]\left(\mathrm{Q}=\mathrm{NBu}_{4}\right.$ or PPN, $\mathrm{S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{~S}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{3}$, or $\mathrm{C}_{3} \mathrm{~S}_{5}$ (dmit)) reacts with trans-[$\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{Cl}_{2}($ tht $\left.)\right]$ affording trinuclear species $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{S}-\mathrm{S})\right]_{3}(1-3)$. When $\left[\mathrm{AuX}_{3}(\right.$ tht $\left.)\right](\mathrm{X}=\mathrm{Cl}$ or Br$)$ are used instead, $[\mathrm{AuBr}(\mathrm{S}-\mathrm{S})]_{n}(\mathbf{4 - 6})$ and $[\mathrm{AuCl}(\mathrm{dmit})]_{n}(\mathbf{7})$ are obtained. Complex 1 further reacts with PPh_{3} to give $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)\left(\mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{SPPh}_{3}\right)\right]$. Complexes 1-3 react with neutral (pyridine) or anionic (Cl, Br, or SCN) ligands affording $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{S}-\mathrm{S})(\mathrm{py})\right](\mathbf{9 a - c})$ or $\mathrm{Q}\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{S}-\mathrm{S}) \mathrm{X}\right](\mathbf{1 0 a}-\mathbf{c}-\mathbf{1 2 a} \mathbf{- c})$ complexes. The structures of $\mathbf{1}$ and 8 have been established by X-ray crystallography. Complex 1 shows a six-membered $\mathrm{Au}_{3} \mathrm{~S}_{3}$ ring which adopts a chair configuration and shows a gold-gold distance of $3.515 \AA$. Complex 8 is a mononuclear square-planar gold(III) complex with a new $\mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{SPPh}_{3}$ thiolate ligand, the $\mathrm{P}-\mathrm{S}$ bond length being $2.058(5) \AA$.

Introduction

The synthesis of gold complexes containing $\mathrm{Au}-\mathrm{S}$ bonds has attracted considerable attention in recent years because of their potential applications in various areas such as medicine, ${ }^{1}$ mainly as antiarthritic drugs, deposition of gold films in electronic devices, and the glass industry ${ }^{2}$ or as gold thiol interfaces. ${ }^{3}$ Recent discoveries showing that aurothiolates have some inhibitory effects on HIV-1 (the etiologic agent of AIDS), ${ }^{4}$ cytotoxicity, and anticancer activity ${ }^{5}$ have encouraged the research activity in these areas.
$\mathrm{Au}-\mathrm{S}$ complexes are known in oxidation states I, II, or III and in complexes formally containing gold(IV), ${ }^{6}$ which probably contain gold(III) with partially oxidized ligands. Most are mononuclear, but there are noteworthy exceptions such as the dinuclear gold(II) complexes, ${ }^{7}$ the recently reported $\left[\mathrm{S}\left(\mathrm{AuPR}_{3}\right)_{3}\right]\left(\mathrm{PR}_{3}=\mathrm{PPh}_{3}, \mathrm{PPh}_{2^{-}}\right.$ $\left.\mathrm{Me}, \mathrm{PMe}_{3}\right)^{8}\left[\mathrm{~S}\left(\mathrm{AuPR}_{3}\right)_{4}\right]\left(\mathrm{PR}_{3}=\mathrm{PPh}_{3}\right)^{9}\left[\mathrm{Au}_{4}(\mathrm{~S}-\mathrm{S})_{2}-\right.$ $\left.\left(\mathrm{PEt}_{3}\right)_{2}\right]$ (S-S $=1,2-\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ or $3,4-\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{3}$), ${ }^{10,11}\left[\mathrm{Au}_{3}-\right.$

[^0]$\left.(\mathrm{S}-\mathrm{S})\left(\mathrm{PR}_{3}\right)_{3}\right]^{+}{ }^{12}\left[\mathrm{Au}_{4}\left(\mu-\left(\mathrm{C}_{3} \mathrm{~S}_{5}\right)_{2}(\mu \text {-dppm })_{2}\right],{ }^{13}\right.$ or the benzenehexathiol derivative "golden wheel" [\{CSAu(P$\left.\left.\mathrm{Ph}_{3}\right)\right\} 6$. ${ }^{14}$ Only a few examples of dinuclear gold(III) complexes have been reported such as $\left[\mathrm{Au}_{2}\left(\mathrm{CH}_{2}-\right.\right.$ $\left.\left.\mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2}\left(\mathrm{~S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}\right]^{15}$ and $\left[\mathrm{Au}_{2} \mathrm{Me}_{2}(\mathrm{SR})_{2}\right]\left(\mathrm{R}=\mathrm{Ph},{ }^{16 \mathrm{a}}\right.$ COCH_{3}, $\left.{ }^{16 \mathrm{~b}} \mathrm{Et}^{16 \mathrm{c}}\right)$.
In this paper we report the synthesis of the trinuclear gold(III) derivatives $[\mathrm{AuX}(\mathrm{S}-\mathrm{S})]_{3}$ ($\mathrm{S}-\mathrm{S}=1,2$-benzenedithiolate ($\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$), 3,4-toluenedithiolate ($\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{3}$), and 2-thioxo-1,3-dithiole-4,5-dithiolate ($\mathrm{C}_{3} \mathrm{~S}_{5}$, dmit); X $=\mathrm{Br}, \mathrm{Cl}$, or $\mathrm{C}_{6} \mathrm{~F}_{5}$) by dithiolate ligand transfer from $\mathrm{Q}_{2}-$ $\left[\mathrm{Zn}(\mathrm{S}-\mathrm{S})_{2}\right]$ and $\left[\mathrm{SnMe}_{2}(\mathrm{~S}-\mathrm{S})\right]$. The reaction of the trinuclear derivatives with various neutral or organic ligands breaks the thiolate bridge, affording $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right.$ -(S-S)L $]\left(\mathrm{L}=\mathrm{PPh}_{3}\right.$ or py$)$ or $\mathrm{Q}\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{S}-\mathrm{S}) \mathrm{X}\right](\mathrm{X}=\mathrm{Cl}$, $\mathrm{Br}, \mathrm{SCN} ; \mathrm{Q}=\mathrm{NBu}_{4}$ or PPN). The reaction of PPh_{3} with $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)\right]_{3}$ leads to the expected addition product, but a side reaction involves an unprecedented thiolate-phosphine coupling, affording $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right.$ $\left.\left(\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)\left(\mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{SPPh}_{3}\right)\right]$ as a byproduct. The molecular structures of $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)\right]_{3}$ and $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right.$ $\left.\left(\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)\left(\mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{SPPh}_{3}\right)\right]$ have been established by single-

[^1]

Figure 1. Molecule of compound 1 in the crystal with view direction (approximately) along the crystallographic 3-fold axis. Ellipsoids correspond to 50% probability levels. Hydrogen radii are arbitrary. The asymmetric unit and the equivalent atom S^{\prime} are labeled.
crystal analysis, showing a six-membered $\mathrm{Au}_{3} \mathrm{~S}_{3}$ ring in the former and the above-mentioned combination of dithiolate and triphenylphosphine in the latter.

Results and Discussion

Recently ${ }^{17}$ we have shown that dithiolate complexes $\left[\mathrm{SnMe}_{2}(\mathrm{~S}-\mathrm{S})\right]$ or $\mathrm{Q}_{2}\left[\mathrm{Zn}(\mathrm{S}-\mathrm{S})_{2}\right][\mathrm{S}-\mathrm{S}=1,2$-benzenedithiolate ($\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$), 3,4-toluenedithiolate ($\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{3}$), and 2-thioxo-1,3-dithiole-4,5-dithiolate (dmit); $\mathrm{Q}=\mathrm{NEt}_{4}$ or $\left.\mathrm{PPh}_{3}=\mathrm{N}=\mathrm{PPh}_{3}(\mathrm{PPN})\right]$ transfer dithiolate groups to gold centers, on reaction with gold(III) complexes cis-[Au$\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{Cl}_{2} \mathrm{~L}$] ($\mathrm{L}=$ phosphine or arsine ligand) (eq 1).

$$
\begin{align*}
& \underset{{ }_{1}{ }_{2} \mathrm{Q}_{2}\left[\mathrm{Zn}(\mathrm{~S}-\mathrm{S})_{2}\right]}{\left[\mathrm{SnMe}_{2}(\mathrm{~S}-\mathrm{S})\right]}+\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{Cl}_{2} \mathrm{~L}\right] \rightarrow \\
& \begin{aligned}
& {\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{S}-\mathrm{S}) \mathrm{L}\right] }+\mathrm{SnMe}_{2} \mathrm{Cl}_{2} \\
&+1 / 2 \mathrm{Q}_{2}\left[\mathrm{ZnCl}_{4}\right]
\end{aligned} \tag{1}
\end{align*}
$$

The analogous reaction starting from cis- or trans$\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{Cl}_{2}\right.$ (tht)] (tht = tetrahydrothiophene), in acetone or dichloromethane, and $\mathrm{S}-\mathrm{S}=1,2-\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ affords a brown complex 1, and from the mother liquors $\mathrm{SnMe}_{2^{-}}$ Cl_{2} or (PPN$)_{2}\left[\mathrm{ZnCl}_{4}\right]$ can be recovered. The reaction thus proceeds in a similar way to the previous one ${ }^{17}$ (eq 1), but the spectroscopic properties of complex 1 indicate that there are important differences (eq 2). Thus ${ }^{1} \mathrm{H}$ NMR shows only signals assignable to the dithiolate ligand and no tetrahydrothiophene resonances, in accordance with the stoichiometry [$\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$] deduced by elemental analysis. ${ }^{19} \mathrm{~F}$ NMR of complex 1 shows five signals of equal intensity, which can be assigned to one type of $\mathrm{C}_{6} \mathrm{~F}_{5}$ with hindered rotation around the ipso-carbon atom.

A polymeric formulation for complex 1 is further evidenced by mass spectrometry ($\mathrm{FAB}+$); it shows peaks at $m / z 1512(80 \%)$, which can be assigned to [$\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)$ $\left.\left(\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)\right]_{3}{ }^{+}$, and species lacking 1,2 , or $3 \mathrm{C}_{6} \mathrm{~F}_{5}$ groups of the parent ion ($75 \%, 40 \%, 35 \%$, respectively).

Final proof of the structure of complex 1 was furnished by X-ray diffraction (Figures 1 and 2). Atomic coordinates are given in Table 2 and selected bond lengths and angles in Table 3.

Figure 2. Molecule of compound 1 in the crystal (side view, arbitrary radii, H and F atoms omitted for clarity).

Table 1. Details of X-ray Structure Analyses for Compounds 1 and 8

	compd	
	1	$8 \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
formula	$\mathrm{C}_{36} \mathrm{H}_{12} \mathrm{Au}_{3} \mathrm{~F}_{15} \mathrm{~S}_{6}$	$\mathrm{C}_{38} \mathrm{H}_{27} \mathrm{AuCl}_{4} \mathrm{~F}_{5} \mathrm{PS}_{4}$
M_{r}	1512.72	1076.57
cryst habit	dark red tablet	pink platelet
cryst size (mm)	$0.60 \times 0.27 \times 0.12$	$0.25 \times 0.15 \times 0.02$
space group	$P \overline{3}$	$P \overline{1}$
temp (${ }^{\circ} \mathrm{C}$)	-130	-100
cell constants		
$a(\mathrm{~A})$	16.005(2)	12.677(3)
b (\AA)	$16.005(2)$	13.288(3)
$c(\AA)$	$9.384(2)$	13.534(3)
α (deg)	90	72.02 (2)
β (deg)	90	82.19(2)
$V^{\gamma}{ }^{(\mathrm{deg})}$	120	67.72(2)
$V\left(\AA^{3}\right)$	2081.8(6)	2006.1(8)
Z	2	2
$D_{\mathrm{x}}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	2.413	1.782
$F(000)$	1392	1052
$\mu\left(\mathrm{mm}^{-1}\right)$	10.9	4.23
transm factors	0.44-0.98	0.38-0.73
$2 \theta_{\text {max }}$ (deg)no. of reflens		
measd	5848	7087
indpdt	3190	6727
$R_{\text {int }}$	0.052	0.117
$\mathrm{wR}\left(F_{2}\right.$, all reflens)	0.098	0.114
$R(F, F>4 \sigma(F))$	0.039	0.066
no. of params	181	228
no. of restraints	160	107
S	1.05	0.76
$\max \Delta / \sigma$	0.001	<0.001
$\max \Delta \rho\left(\mathrm{e} \AA^{-3}\right)$	1.9	1.4

The molecule displays crystallographic 3-fold symmetry. The immediate environment of each gold atom consists of one carbon atom and three sulfur atoms in a slightly distorted square-planar arrangement (root-mean-square deviation of five atoms $0.04 \AA$). One sulfur atom ($\mathbf{S}(1)$) of each benzenedithiolate ligand bridges a pair of gold atoms and is thus three-coordinate, whereas the other ($\mathrm{S}(2)$) only coordinates to one gold. The central six-membered $\mathrm{Au}_{3} \mathrm{~S}_{3}$ ring adopts a chair configuration (Figure 2) analogous to that reported in $\left[\mathrm{Au}\left(\mathrm{CH}_{3}\right)_{2}\right.$ $\left.\mathrm{NH}_{2}\right]_{3} ;{ }^{18}$ all three $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups lie on one side of the ring and all three dithiolate rings on the other side. The gold-gold distance is $3.515 \AA$, very similar to the 3.563 and $3.545 \AA$ in $\left[\mathrm{Au}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}\right]_{3}{ }^{18}$ and longer than in dinuclear gold(III) derivative $\left[\mathrm{Au}_{2}\left(\mu-\mathrm{CH}_{2}\right)\left(\mu-\mathrm{CH}_{2} \mathrm{PPh}_{2}-\right.\right.$

[^2]Table 2. Atomic Coordinates ($\times \mathbf{1 0}^{4}$) and Equivalent Isotropic Displacement Parameters
($\mathrm{A}^{2} \times 10^{3}$) for Compound 1

	x	y	z	$U(\mathrm{eq})^{a}$
Au	$4720.7(2)$	$6955.6(2)$	$2811.9(3)$	$17.5(1)$
$\mathrm{S}(1)$	$3629.3(11)$	$5634.5(12)$	$4202(2)$	$18.7(3)$
$\mathrm{S}(2)$	$5113.8(13)$	$5961.1(13)$	$1587(2)$	$25.1(4)$
$\mathrm{C}(11)$	$3973(5)$	$4764(5)$	$3783(7)$	$20.1(13)$
$\mathrm{C}(12)$	$4627(5)$	$4929(5)$	$2659(8)$	$23.0(14)$
$\mathrm{C}(13)$	$4870(5)$	$4225(5)$	$2384(8)$	$25.4(14)$
$\mathrm{C}(14)$	$4494(6)$	$3406(5)$	$3208(8)$	$33(2)$
$\mathrm{C}(15)$	$3854(6)$	$3250(5)$	$4315(8)$	$31(2)$
$\mathrm{C}(16)$	$3600(5)$	$3936(5)$	$4605(7)$	$23.8(14)$
$\mathrm{C}(21)$	$5671(5)$	$8007(5)$	$1483(7)$	$24.7(14)$
$\mathrm{C}(22)$	$6604(5)$	$8655(5)$	$1890(8)$	$26.6(15)$
$\mathrm{C}(23)$	$7275(5)$	$9326(6)$	$989(9)$	$34(2)$
$\mathrm{C}(24)$	$7024(6)$	$9357(6)$	$-416(8)$	$38(2)$
$\mathrm{C}(25)$	$6105(6)$	$8719(5)$	$-857(8)$	$32(2)$
$\mathrm{C}(26)$	$5442(5)$	$8065(5)$	$89(8)$	$27.3(15)$
$\mathrm{F}(1)$	$6903(3)$	$8604(3)$	$3228(5)$	$34.2(10)$
$\mathrm{F}(2)$	$8179(3)$	$9937(4)$	$1420(6)$	$52.1(14)$
$\mathrm{F}(3)$	$7670(4)$	$9976(4)$	$-1334(6)$	$57(2)$
$\mathrm{F}(4)$	$5846(4)$	$8732(3)$	$-2213(5)$	$44.0(13)$
$\mathrm{F}(5)$	$4543(3)$	$7448(3)$	$-398(5)$	$34.1(10)$

${ }^{a} U(\mathrm{eq})$ is defined as one-third of the trace of the orthogonalized $\mathbf{U}_{i j}$ tensor.

Table 3. Selected Bond Lengths (\AA) and Angles (deg) for Compound 1^{a}

$\mathrm{Au}-\mathrm{C}(21)$	$2.035(7)$	$\mathrm{Au}-\mathrm{S}(2)$	$2.292(2)$
$\mathrm{Au}-\mathrm{S}(1)$	$2.352(2)$	$\mathrm{Au}-\mathrm{S}\left(1^{\prime}\right)$	$2.395(2)$
$\mathrm{S}(1)-\mathrm{C}(11)$	$1.779(7)$	$\mathrm{S}(2)-\mathrm{C}(12)$	$1.750(7)$
$\mathrm{C}(21)-\mathrm{Au}-\mathrm{S}(2)$	$85.2(2)$	$\mathrm{C}(21)-\mathrm{Au}-\mathrm{S}(1)$	$174.6(2)$
$\mathrm{S}(2)-\mathrm{Au}-\mathrm{S}(1)$	$89.55(6)$	$\mathrm{C}(21)-\mathrm{Au}-\mathrm{S}\left(1^{\prime}\right)$	$95.7(2)$
$\mathrm{S}(2)-\mathrm{Au}-\mathrm{S}\left(1^{\prime}\right)$	$176.73(6)$	$\mathrm{S}(1)-\mathrm{Au}-\mathrm{S}\left(1^{\prime}\right)$	$89.70(8)$
$\mathrm{C}(11)-\mathrm{S}(1)-\mathrm{Au}$	$101.5(2)$	$\mathrm{C}(11)-\mathrm{S}(1)-\mathrm{Au} u^{\prime \prime}$	$108.1(2)$
$\mathrm{Au}-\mathrm{S}(1)-\mathrm{Au} u^{\prime \prime}$	$95.53(6)$	$\mathrm{C}(12)-\mathrm{S}(2)-\mathrm{Au}$	$102.7(2)$

${ }^{a}$ Symmetry transformations used to generate equivalent atoms: (') $-y+1, x-y+1, z ;\left({ }^{\prime \prime}\right)-x+y,-x+1, z$.
$\left.\left.\mathrm{CH}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]^{19}$ at $3.113 \AA$. Although metal-metal interactions with gold(III)-gold(I) distances of $3.470 \AA^{20}$ (av) have been postulated, we believe that in our complex the mentioned $A u \cdots A u$ distance is imposed by the six-membered ring.
The three $\mathrm{Au}-\mathrm{S}$ bond lengths differ significantly. As expected, those to the bridging $S(A u-S(1)$ and $A u-$ $\mathrm{S}\left(1^{\prime}\right)$) are longer (2.352(2) and $2.395(2) \AA$) than $\mathrm{Au}-\mathrm{S}(2)$ $(2.292(2) \AA)$. It is surprising that $\mathrm{Au}-\mathrm{S}\left(1^{\prime}\right)($ trans to S$)$ is longer than $\mathrm{Au}-\mathrm{S}(1)$ (trans to C) in view of the appreciable expected trans influence of carbon ligands at gold; however, a comparison of $\mathrm{Au}-\mathrm{S}$ bond lengths in $\left[\mathrm{Au}\left(\mathrm{dmit}^{2}\right)_{2}\right]^{-21,22}$ and $\left[\mathrm{Au}(\mathrm{dmit})\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]^{-23}$ shows no significant differences. The shorter distance $\mathrm{Au}-\mathrm{S}(2)$ is very similar to those observed in other dithiolate gold(III) complexes with two-coordinate sulfur, such as [Au$\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(1,2-\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)\right]^{17}(2.314(1)$ and $2.299(1) \AA)$ and $\left[\mathrm{Au}\left(1,2-\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}\right](2.305 \AA),{ }^{6}$ and shorter than in related gold(I) derivatives, e.g. [$\left.\mathrm{Au}_{2}\left(1,2-\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (2.325(3) and $2.316(3) \AA$) ${ }^{10,11}$ The $\mathrm{Au}-\mathrm{C}$ bond of 2.035 \AA is similar to those in $\left[\mathrm{Au}\left(1,2-\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)\right]^{17}$ $(2.061(4) \AA \AA)$ or $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\mathrm{~S}_{2} \mathrm{CN}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}\right\}\right]^{24}(2.047(6)$ and $2.049(6) \AA$. .

[^3]The formation of 1 can be represented as shown in process 2.

$$
\begin{array}{r}
3\left[\mathrm{SnMe}_{2}\left(\mathrm{~S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)\right]+3 \text { trans }-\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{Cl}_{2}(\text { tht })\right] \xrightarrow{- \text { tht }} \\
{\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{S}-\mathrm{S})\right]_{3}+3 \mathrm{SnMe}_{2} \mathrm{Cl}_{2}(2 \mathrm{a})} \\
1
\end{array}
$$

When reaction 2 is carried out with the toluene analog $3,4-\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{3}$, a brown complex 2 is formed, for which analysis and mass spectra indicate the same type of trinuclear derivative $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{3}\right)\right]_{3}$; however ${ }^{1} \mathrm{H}$ NMR (two singlets for the Me groups) and ${ }^{19} \mathrm{~F}$ NMR (two types of nonrotating $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups) show that probably it is a mixture of isomers, because the dithiolate ligand is not symmetrical. The mass spectrum shows the trinuclear parent peak at $\mathrm{m} / \mathrm{z} 1554$ (55\%) and the loss of 1,2 , or $3 \mathrm{C}_{6} \mathrm{~F}_{5}$ groups at $\mathrm{m} / \mathrm{z} 1387(55 \%), 1220$ (20%), and 1066 (20%), respectively.

Reaction 2 proceeds in a similar way with 2 -thioxo-1,3-dithiole-4,5-dithiolate (dmit) as ligand, affording a dark purple product $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{dmit})\right]_{n}(3)$ that has an uninformative mass spectrum, with no peaks assignable to $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{dmit})\right]_{n}{ }^{+}$. Its ${ }^{19} \mathrm{~F}$ NMR shows one type of $\mathrm{C}_{6} \mathrm{~F}_{5}$ group, for which only three signals are present because both ortho-F and meta-F are equivalent. Although the reactivity of complex 3 (see below) is very similar to that shown by complexes 1 and 2 , we do not have conclusive data to propose a trinuclear structure for complex 3.

Process 2 can be extended to the synthesis of halogold derivatives starting from $\left[\mathrm{AuX}_{3}(\mathrm{th} t)\right](\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$, but in these cases the reaction is not a general procedure; only with the dmit ligand does the reaction work as intended with the tin and zinc derivatives and $\mathrm{X}=$ Cl or Br . In contrast, when $1,2-\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ or $3,4-\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$ CH_{3} are used, only the bromide derivatives can be isolated by the reaction of the tin complex (eqs 3 and 4)

$$
\begin{gathered}
{\left[\mathrm{SnMe}_{2}(\mathrm{~S}-\mathrm{S})\right]+\left[\mathrm{AuBr}_{3}(\mathrm{tht})\right] \rightarrow} \\
{[\mathrm{AuBr}(\mathrm{~S}-\mathrm{S})]_{3}} \\
\mathrm{~S}-\mathrm{S}=1,2-\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}(\mathbf{4}), \\
3,4-\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{3}(\mathbf{5})
\end{gathered}+\mathrm{SnMe}_{2} \mathrm{Br}_{2}
$$

[SnMe_{2} (dmit)]
$\left(\mathrm{NEt}_{4}\right)_{2}\left[\mathrm{Zn}(\mathrm{dmit})_{2}\right]+\left[\mathrm{AuX}_{3}(\right.$ tht $\left.)\right] \xrightarrow{- \text { tht }}$

$$
\begin{align*}
& (1 / n)[\mathrm{AuX}(\mathrm{dmit})]_{n} \tag{4}\\
& +\mathrm{SnMe}_{2} \mathrm{X}_{2} \\
& \mathrm{X}=\mathrm{Br}(\mathbf{6}) ; \mathrm{Cl}(\mathbf{7})
\end{align*}
$$

${ }^{1} \mathrm{H}$ NMR of complexes 4 and 5 shows only dithiolate resonances, in accordance with their formulation. We have only analytical data for complexes 6 and 7, because their insolubility precludes spectroscopic techniques. Only the mass spectrum of 4 shows the trinuclear parent peak ($\mathrm{m} / \mathrm{z} 1512,15 \%$); complexes $5-7$ give a very poor ionization pattern with the lack of signals of the trinuclear species. We presume that complexes 4 and

[^4]

Figure 3. Molecule of compound 8 in the crystal. Ellipsoids correspond to 50% probability levels. Hydrogen and carbon radii are arbitrary.
(probably) 5 present trinuclear structures similar to 1, but in the case of the dmit derivatives, 6 and 7, only polynuclear structures can be proposed.

Complexes $1-3$ react under very mild conditions (diethyl ether, room temperature, reaction times of the order of minutes) with neutral ligands such as PPh_{3} (gold/ligand ratio 1:1) to give the previously known complexes $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{S}-\mathrm{S})\left(\mathrm{PPh}_{3}\right)\right] .{ }^{17}$ When complex 2 is involved, the resulting product shows one ${ }^{31} \mathrm{P}$ NMR signal, one ${ }^{1} \mathrm{H}$ NMR resonance for the methyl group, and three resonances in the ${ }^{19} \mathrm{~F}$ NMR spectra, as reported for $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{3}\right)\left(\mathrm{PPh}_{3}\right)\right]^{17}$ in accordance with a formulation of 2 as a mixture of isomers. When S-S $=\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ is used, a small quantity of a pink complex 8 precipitates and can be easily recovered. Analytical data and the mass spectrum are in accordance with the composition " $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}\right.$ $\left.\left(\mathrm{PPh}_{3}\right)\right]^{\prime \prime}\left(\mathrm{m} / \mathrm{z}=906\left[\mathrm{M}^{+}\right], 32 \%\right)$. The apparent presence of two dithiolate ligands and a pentafluorophenyl group would indicate five negative charges; however, the base peak $\left(\mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{SPPh}_{3}\right)(m / z=403)$ in the spectrum suggested that this modified ligand might be present in the complex.

The molecular structure of complex 8 was resolved by an X-ray study of its bis(dichloromethane) solvate (Figure 3), confirming its formulation as [$\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)$ $\left(\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)\left(\mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{SPPh}_{3}\right)$]. Atomic coordinates are given in Table 4 and selected bond lengths and angles in Table 5. The complex is mononuclear and exhibits square-planar geometry (mean deviation of five atoms $0.04 \AA$); one benzenedithiolate acts as a chelating anion, and a new thiolate ligand is observed, formed by an unprecedented coupling of triphenylphosphine and one S terminus of dithiolate. It is noteworthy that the [Au$\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)\right]$ fragment in this complex is very similar to the recently reported $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)\right] .{ }^{17} \mathrm{The}$ $\mathrm{Au}-\mathrm{S}$ (dithiolate) bond lengths are $\mathrm{Au}-\mathrm{S}(1)=2.314(4)$ and $\mathrm{Au}-\mathrm{S}(2)=2.299(4) \AA$, the longer being trans to the $\mathrm{C}_{6} \mathrm{~F}_{5}$, but $\mathrm{Au}-\mathrm{S}(3)$, the bond to the new ligand, is longer again at $2.338(4) \AA$. The $P-S(4)$ bond length of 2.058 (5) \AA is consistent with its formulation as a formally

[^5]Table 4. Atomic Coordinates ($\times 10^{4}$) and Equivalent Isotropic Displacement Parameters (\AA^{2} $\times \mathbf{1 0}^{\mathbf{3}}$) for Compound 8

	x	y	z	$U(\mathrm{eq})^{\text {a }}$
Au	8874.2(6)	3305.6(7)	2629.0(6)	24.8(2)
P	4399(3)	5919(3)	2934(3)	25.6(10)
S(1)	8901(3)	4310(3)	3745 (3)	26.9(10)
$\mathrm{S}(2)$	10257(3)	1723(4)	3573(3)	34.8(12)
S(3)	7554(4)	4829(4)	1495(3)	33.7 (12)
S(4)	5989(3)	5377(3)	3539(3)	30.4(10)
C(11)	9863(7)	3244(7)	4710(6)	27(4)
$\mathrm{C}(12)$	10458(8)	2162(8)	4605(6)	$32(4)$
C(13)	11210(7)	1355(6)	5367(7)	37(4)
C(14)	11366(7)	1629(7)	6234(6)	41(4)
C(15)	10771(7)	2711(8)	6339(5)	$35(4)$
C(16)	10019(7)	3519(6)	$5577(7)$	$23(4)$
C(21)	8869(11)	2350(12)	1679(10)	$37(5)$
C(22)	8200(10)	1704(10)	1900(10)	28(4)
C(23)	8167(11)	1052(11)	1275(10)	34(4)
C(24)	8745(11)	1126(13)	350(11)	41(4)
C(25)	9464(12)	1724(12)	119(12)	45(5)
C(26)	9500(11)	2308(12)	811(10)	$32(4)$
F(1)	7551(7)	1627(7)	2782(6)	45(2)
F (2)	7470(7)	452(7)	1515(6)	$50(3)$
F(3)	8708(7)	550(7)	-268(6)	$55(3)$
F(4)	10061(7)	1780(7)	-779(6)	$55(3)$
F(5)	10157(7)	2989(7)	468(6)	$47(3)$
C(31)	7258(7)	6093(5)	1859(7)	15(3)
C(32)	6567(7)	6352(6)	2702(6)	23(4)
C(33)	6291(6)	7407(7)	2865(5)	$31(4)$
C(34)	6707(7)	8202(6)	2183(7)	25(4)
C(35)	7398(7)	7943(6)	1340(6)	33(4)
C(36)	7673(6)	6888(7)	1177(5)	34(4)
C(41)	4357(7)	6404(7)	1540(5)	$24(4)$
C(42)	4050(7)	5838(6)	984(7)	30(4)
C(43)	4026(7)	6218(7)	-95(7)	47(5)
C(44)	4309(8)	7164(8)	-617(5)	41(4)
C(45)	4616(7)	7729(6)	-61(7)	40(4)
C(46)	4640(7)	7349(7)	1017(7)	26(4)
C(51)	3352(7)	7030(7)	3396(7)	30(4)
C(52)	3480(6)	7169(7)	4344(7)	28(4)
C(53)	2622(8)	$7984(8)$	4731(6)	40(4)
C(54)	1636(7)	8660(7)	4169(7)	47(5)
C(55)	1508(6)	8522(7)	3221(7)	42(5)
C(56)	2366(8)	7707(8)	2834(6)	34(4)
C(61)	4058(8)	4661(6)	3454(6)	$24(4)$
C(62)	3074(7)	4658(6)	4048(7)	30(4)
C(63)	2857(6)	3658(8)	4456(6)	$32(4)$
C(64)	3623 (8)	2659(6)	4268(7)	$34(4)$
C(65)	4607(7)	2662(6)	3673(7)	38(4)
C(66)	4824(6)	3662 (8)	3266(6)	40(5)
C(98)	3242(22)	508(22)	2804(20)	146(11)
$\mathrm{Cl}(1)$	3594(6)	296(6)	1561(7)	154(3)
$\mathrm{Cl}(2)$	4322(6)	-1(6)	3592(7)	156(3)
C(99)	8697(15)	5485(15)	8550(14)	77(6)
$\mathrm{Cl}(3)$	7296(4)	6491(4)	8549(4)	75(2)
$\mathrm{Cl}(4)$	8817(4)	4426(4)	8086(4)	72(2)

${ }^{a} U(\mathrm{eq})$ is defined as one-third of the trace of the orthogonalized $\mathbf{U}_{i j}$ tensor.
single bond (cf. standard $\mathrm{P}=\mathrm{S}$ bond length of ca. 1.95 \AA), although there are few examples of $P-S$ single bonds at four-coordinate phosphorus (2.0737(9) \AA in a recently measured $\mathrm{NC}_{2} \mathrm{PS}$ system ${ }^{25}$).

The yield of complex 8 can be increased using a higher gold $/ \mathrm{PPh}_{3}$ ratio; the best result (11%) is obtained with the ratio 1:1.5. Neither other phosphines as $\mathrm{PPh}_{2} \mathrm{Me}$ or PPhMe_{2} nor AsPh_{3} give coupling thiolate-ligand complexes; only the known ${ }^{17}\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{L}\right](\mathrm{L}=$ $\mathrm{PPh}_{2} \mathrm{Me}, \mathrm{PPhMe}_{2}, \mathrm{AsPh}_{3}$) are obtained. Complex 8 is only formed when the reaction takes place in diethyl ether, probably because of its insolubility in this solvent. When the reaction is done in dichloromethane, the ${ }^{31} \mathrm{P}$ NMR shows that $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)\right]$ is the only gold product containing PPh_{3}. Complex 8 is not an
intermediate in the formation of $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)\right.$ $\left(\mathrm{PPh}_{3}\right)$] because when a solution is stirred in diethyl ether or dichloromethane, the starting complex is recovered without change. We do not have the evidence of the formation mechanism of complex 8 , but a way could be the attack of PPh_{3} on one nonbridging S atom and the reduction of one gold center giving rise with one extra triphenylphosphine to $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)\right]$, which can be detected by ${ }^{31} \mathrm{P}$ and ${ }^{19} \mathrm{~F}$ NMR in the reaction solvent, and complex 8. The third Au appears as [Au$\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)$]. A possible reaction is presented in eq 5.

$$
\begin{gather*}
{\left[\mathrm{Au}\left(\mathrm{~S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]_{3}+3 \mathrm{PPh}_{3} \rightarrow\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)\right]+} \\
{\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)\right]+} \\
{\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)\left(\mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{SPPh}_{3}\right)\right](5)} \tag{5}
\end{gather*}
$$

The reaction of polynuclear complexes 1-3 with pyridine, a ligand with limited affinity for gold(III), breaks the dithiolate bridge, affording mononuclear complexes 9a-c (eq 6).

$$
\begin{array}{r}
{\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{S}-\mathrm{S})\right]_{3}+\mathrm{py} \rightarrow \begin{array}{c}
3\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{S}-\mathrm{S})(\mathrm{py})\right] \\
\mathrm{S}-\mathrm{S}=1,2-\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}(\mathbf{9 a}), \\
3,4-\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{3}(\mathbf{9 b}), \\
\operatorname{dmit}(\mathbf{9 c})
\end{array}} \tag{6}
\end{array}
$$

The analytical data and spectroscopic properties of complexes $9 \mathbf{a - c}$ are in accordance with their formulation. ${ }^{1} \mathrm{H}$ NMR shows pyridine protons in a $1: 1$ ratio, and ${ }^{19} \mathrm{~F}$ NMR show in all cases three signals indicating one type of $\mathrm{C}_{6} \mathrm{~F}_{5}$ group with free rotation around the C -ipso atom. The mass spectra show the parent peak as follows: $9 \mathbf{a}(\mathrm{~m} / \mathrm{z} 583,50 \%)$ and $\mathbf{9 b}(\mathrm{m} / \mathrm{z} 597,45 \%)$.

The reaction with pyridine to give complexes $\mathbf{9 a - c}$ demonstrates the ease of breaking the sulfur bridges. This makes the complexes 1-3 an excellent starting point to extend gold(III) dithiolate chemistry. As an example we have carried out reactions with various halides and pseudohalogenides affording anionic complexes 10-12 (eq 7).

$$
\begin{align*}
& {\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{S}-\mathrm{S})\right]_{3}+3 \mathrm{XQ} } \rightarrow \\
& \mathrm{Q}\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{S}-\mathrm{S}) \mathrm{X}\right] \\
& \mathrm{X}=\mathrm{Br}, \mathrm{Q}=\mathrm{NBu}_{4}(\mathbf{1 0 a}-\mathbf{c}) \tag{7}\\
& \mathrm{X}=\mathrm{Cl}, \mathrm{Q}=\operatorname{PPN}(\mathbf{1 1 a - c}) \\
& \mathrm{X}=\mathrm{SCN}, \mathrm{Q}=\operatorname{PPN}(\mathbf{1 2 a}-\mathbf{c})
\end{align*}
$$

Complexes 10a,b, 11a,b, and 12a,b are violet, and 10c, 11c, and 12c are yellow-green solids. They show conductivities of $95-110 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ characteristic of 1:1 electrolytes, in agreement with their formulation. The ${ }^{1} \mathrm{H}$ NMR spectra show the ligand and cation resonances in the expected ratio. ${ }^{19} \mathrm{~F}$ NMR again shows three resonances assignable to one $\mathrm{C}_{6} \mathrm{~F}_{5}$ group, as expected for the monuclear complexes. The toluenedithiolate complexes 10b, 11b, and 12b only show one absorption assignable to the Me group, as is usual in mononuclear complexes, although the two isomers should be present. Their mass spectra (FAB-) show peaks assignable to the parent anions as follows (m / z): 10a (583, 100\%), 10b (598, 50%), 10c ($640,15 \%$), 11a ($539,55 \%$), 11b $(533,5 \%), 12$ a ($562,55 \%$), 12b (576 ,

Table 5. Selected Bond Lengths (\AA) and Angles (deg) for Compound 8

$\mathrm{Au}-\mathrm{C}(21)$	$2.07(2)$	$\mathrm{Au}-\mathrm{S}(2)$	$2.299(4)$
$\mathrm{Au}-\mathrm{S}(1)$	$2.314(4)$	$\mathrm{Au}-\mathrm{S}(3)$	$2.338(4)$
$\mathrm{P}-\mathrm{C}(51)$	$1.786(7)$	$\mathrm{P}-\mathrm{C}(61)$	$1.793(7)$
$\mathrm{P}-\mathrm{C}(41)$	$1.797(7)$	$\mathrm{P}-\mathrm{S}(4)$	$2.058(5)$
$\mathrm{S}(1)-\mathrm{C}(11)$	$1.784(7)$	$\mathrm{S}(2)-\mathrm{C}(12)$	$1.753(7)$
$\mathrm{S}(3)-\mathrm{C}(31)$	$1.784(7)$	$\mathrm{S}(4)-\mathrm{C}(32)$	$1.757(7)$
$\mathrm{C}(21)-\mathrm{Au}-\mathrm{S}(2)$	$87.5(4)$	$\mathrm{C}(21)-\mathrm{Au}-\mathrm{S}(1)$	$177.8(4)$
$\mathrm{S}(2)-\mathrm{Au}-\mathrm{S}(1)$	$90.5(2)$	$\mathrm{C}(21)-\mathrm{Au}-\mathrm{S}(3)$	$86.4(4)$
$\mathrm{S}(2)-\mathrm{Au}-\mathrm{S}(3)$	$173.0(2)$	$\mathrm{S}(1)-\mathrm{Au}-\mathrm{S}(3)$	$95.6(2)$
$\mathrm{C}(51)-\mathrm{P}-\mathrm{C}(61)$	$108.6(5)$	$\mathrm{C}(51)-\mathrm{P}-\mathrm{C}(41)$	$106.5(5)$
$\mathrm{C}(61)-\mathrm{P}-\mathrm{C}(41)$	$112.5(5)$	$\mathrm{C}(51)-\mathrm{P}-\mathrm{S}(4)$	$113.7(4)$
$\mathrm{C}(61)-\mathrm{P}-\mathrm{S}(4)$	$100.7(4)$	$\mathrm{C}(41)-\mathrm{P}-\mathrm{S}(4)$	$114.8(3)$
$\mathrm{C}(11)-\mathrm{S}(1)-\mathrm{Au}$	$102.0(3)$	$\mathrm{C}(12)-\mathrm{S}(2)-\mathrm{Au}$	$102.7(4)$
$\mathrm{C}(31)-\mathrm{S}(3)-\mathrm{Au}$	$109.6(3)$	$\mathrm{C}(32)-\mathrm{S}(4)-\mathrm{P}$	$102.1(3)$

$100 \%), 12 \mathrm{c}(618,15 \%)$. 11c does not show the parent anion, but $[\mathrm{M}-\mathrm{Cl}]^{-}$is present at $\mathrm{m} / \mathrm{z}=560(10 \%)$.

Experimental Section

The starting materials $\left[\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}(\mathrm{~S}-\mathrm{S})\right],{ }^{17}(\mathrm{PPN})_{2}\left[\mathrm{Zn}(\mathrm{S}-\mathrm{S})_{2}\right] .{ }^{17}$ $\left(\mathrm{NEt}_{4}\right)_{2}\left[\mathrm{Zn}(\mathrm{dmit})_{2}\right],{ }^{26}\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{Cl}_{2}(\mathrm{tht})\right]{ }^{27}$ and $\left[\mathrm{AuX} \mathrm{X}_{3}(\mathrm{tht})\right]^{28}$ were prepared as described previously. All other reagents were commercially available.

The $\mathrm{C}, \mathrm{H}, \mathrm{N}$, and S analyses were carried out on a PerkinElmer 2400 microanalyzer. Conductivities were measured in approximately $5 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$ acetone solutions, with a Jenway 4010 conductimeter. The infrared spectra were recorded ($4000-200 \mathrm{~cm}^{-1}$) on a Perkin-Elmer 599 spectrophotometer, using Nujol mulls between polyethylene sheets. The NMR spectra were recorded on Varian UNITY 300 and Bruker ARX 300 spectrometers, in CDCl_{3}, except for complexes 11 and 12 in HDA. Chemical shifts are cited relative to $\mathrm{SiMe}_{4}\left({ }^{1} \mathrm{H}\right)$, $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ (external ${ }^{31} \mathrm{P}$), and $\mathrm{CFCl}_{3}\left({ }^{(19} \mathrm{F}\right.$). Mass spectra were recorded on a VG Autospec, with the FAB technique using 3-nitrobenzyl alcohol as the matrix.

Syntheses. $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{S}-\mathrm{S})\right]_{3}\left[\mathrm{~S}-\mathrm{S}=1,2-\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}(1), \mathbf{3 , 4}-\right.$ $\mathbf{S}_{2} \mathbf{C}_{6} \mathbf{H}_{3} \mathbf{C H}_{3}$ (2)]. Method a. To a dichloromethane ($30 \mathrm{~cm}^{3}$) solution of $\left[\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\left(1,2-\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)\right](0.029 \mathrm{~g}, 0.1 \mathrm{mmol})$ or $[\mathrm{Sn}$ -$\left.\left(\mathrm{CH}_{3}\right)_{2}\left(3,4-\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{3}\right)\right](0.030 \mathrm{~g}, 0.1 \mathrm{mmol})$ was added [Au$\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{Cl}_{2}$ (tht)] ($0.052 \mathrm{~g}, 0.1 \mathrm{mmol}$), and the resulting solution was stirred for 1 h . Evaporation of the solvent to $5 \mathrm{~cm}^{3}$ and addition of hexane ($20 \mathrm{~cm}^{3}$) resulted in the precipitation of brown complexes. Yield (\%): 84 (1), 86 (2). Method b. To a dichloromethane ($30 \mathrm{~cm}^{3}$) solution of (PPN) ${ }_{2}\left[\mathrm{Zn}\left(1,2-\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}\right]$ $(0.076 \mathrm{~g}, 0.05 \mathrm{mmol})$ or $(\mathrm{PPN})_{2}\left[\mathrm{Zn}\left(3,4-\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{3}\right)_{2}\right](0.077 \mathrm{~g}$, $0.05 \mathrm{mmol})$ was added $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{Cl}_{2}(\right.$ tht $\left.)\right](0.052 \mathrm{~g}, 0.1 \mathrm{mmol})$. After being stirred for 3 h , the solution was concentrated to 5 cm^{3}. Addition of diethyl ether $\left(15 \mathrm{~cm}^{3}\right)$ gave a white precipitate $(\mathrm{PPN})_{2}\left[\mathrm{ZnCl}_{4}\right]$. The solution was filtered through 1 cm of diatomaceous earth and the solvent removed to $5 \mathrm{~cm}^{3}$. Addition of hexane $\left(20 \mathrm{~cm}^{3}\right)$ led to the precipitation of brown solids. Yield (\%): $84(\mathbf{1}), 86(2)$. Data for 1 are as follows. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{12} \mathrm{Au}_{3} \mathrm{~F}_{15} \mathrm{~S}_{6}$: C, 28.6; H, $0.8 ; \mathrm{S}, 12.7$. Found: C, 28.4; $\mathrm{H}, 0.85 ; \mathrm{S}, 12.3 . \Lambda_{\mathrm{M}}: 5 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta=7.42$ and $7.04\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$. ${ }^{19} \mathrm{~F}$ NMR: $\delta=-111.4\left(\mathrm{~m}, 1 \mathrm{~F}, \mathrm{~F}_{o}\right)$, $-120.65\left(\mathrm{~m}, 1 \mathrm{~F}, \mathrm{~F}_{o}\right),-155.5\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{F}_{\mathrm{p}} \mathrm{F}_{\mathrm{m}}}=23.6 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F}_{p}\right)$, $-158.15\left(\mathrm{~m}, 1 \mathrm{~F}, \mathrm{~F}_{m}\right),-158.7\left(\mathrm{~m}, 1 \mathrm{~F}, \mathrm{~F}_{m}\right)$. Data for 2 are as follows. Anal. Calcd for $\mathrm{C}_{39} \mathrm{H}_{18} \mathrm{Au}_{3} \mathrm{~F}_{15} \mathrm{~S}_{6}$: C, $30.15 ; \mathrm{H}, 1.2$; S, 12.35. Found: C, $30.35 ; \mathrm{H}, 1.25 ; \mathrm{S}, 12.3$. Λ_{M} : $22 \Omega^{-1} \mathrm{~cm}^{2}$ $\mathrm{mol}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta=7.20$ and $6.82\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{3}\right), 2.28$ (s, $3 \mathrm{H}, \mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{3}$). ${ }^{19} \mathrm{~F}$ NMR: $\delta=-111.7\left(\mathrm{~m}, 1 \mathrm{~F}, \mathrm{~F}_{0}\right),-120.5$ $\left(\mathrm{m}, 1 \mathrm{~F}, \mathrm{~F}_{o}\right),-122.1\left(\mathrm{~m}, \mathrm{~F}_{o}\right),-156.2\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{F}_{\mathrm{p}} \mathrm{F}_{\mathrm{m}}}=20.0 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{p}}\right.$), $-157.1\left(\mathrm{t},{ }^{3} J_{\mathrm{F}_{\mathrm{F}} \mathrm{F}_{\mathrm{m}}}=19.3 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F}_{p}\right),-159.15\left(\mathrm{~m}, 1 \mathrm{~F}, \mathrm{~F}_{m}\right)$, $-159.5\left(\mathrm{~m}, 1 \mathrm{~F}, \mathrm{~F}_{\mathrm{m}}\right),-159.7\left(\mathrm{~m}, \mathrm{~F}_{\mathrm{m}}\right)$.

[^6]$\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{dmit})\right]_{\mathbf{n}}$ (3). Method a. To an acetone ($30 \mathrm{~cm}^{3}$) solution of $\left[\mathrm{Sn}(\mathrm{dmit})\left(\mathrm{CH}_{3}\right)_{2}\right](0.034 \mathrm{~g}, 0.1 \mathrm{mmol})$ was added $[\mathrm{Au}-$ $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{Cl}_{2}$ (tht)] ($0.052 \mathrm{~g}, 0.1 \mathrm{mmol}$), and the resulting solution was stirred for 4 h . Evaporation of the solvent to $5 \mathrm{~cm}^{3}$ and addition of hexane $\left(20 \mathrm{~cm}^{3}\right)$ resulted in the precipitation of the dark purple complex 3. Yield: 65%. Method b. To an acetone ($30 \mathrm{~cm}^{3}$) solution of $\left(\mathrm{NEt}_{4}\right)_{2}\left[\mathrm{Zn}(\text { dmit })_{2}\right](0.071 \mathrm{~g}, 0.1$ mmol) under dinitrogen was added $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{Cl}_{2}(\right.$ tht $\left.)\right]$ (0.104 $\mathrm{g}, 0.2 \mathrm{mmol}$). After being stirred for 3 h , the solution was concentrated to $1 \mathrm{~cm}^{3}$. Addition of diethyl ether $\left(15 \mathrm{~cm}^{3}\right)$ left a white solid (PPN$)_{2}\left[\mathrm{ZnCl}_{4}\right]$; the solution was filtered through 1 cm of diatomaceous earth and solvent removed to $5 \mathrm{~cm}^{3}$. Addition of hexane ($20 \mathrm{~cm}^{3}$) led to the precipitation of dark purple solid 3, which was washed with water and dried in vacuo. Yield: 65\%. Anal. Calcd for $\mathrm{C}_{9} \mathrm{AuF}_{5} \mathrm{~S}_{5}$: C, 19.3; S, 29.3. Found: C, 19.45 ; S, 28.6. ${ }^{19} \mathrm{~F}$ NMR: $\delta=-121.0$ (m, $\left.2 \mathrm{~F}, \mathrm{~F}_{o}\right),-154.1\left(\mathrm{t},{ }^{3} J_{\mathrm{F}_{\mathrm{p}} \mathrm{F}_{\mathrm{m}}}=19.8 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F}_{p}\right),-159.7\left(\mathrm{~m}, 2 \mathrm{~F}, \mathrm{~F}_{m}\right)$.
$[\mathrm{AuBr}(\mathrm{S}-\mathrm{S})]_{3}\left[\mathrm{~S}-\mathrm{S}=1,2-\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}(4), 3,4-\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{3}(5)\right]$. Method a. To a dichloromethane ($30 \mathrm{~cm}^{3}$) solution of [$\mathrm{Sn}-$ $\left.\left(\mathrm{CH}_{3}\right)_{2}\left(1,2-\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)\right](0.029 \mathrm{~g}, 0.1 \mathrm{mmol})$ or $\left[\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}(3,4-\right.$ $\left.\left.\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{3}\right)\right](0.030 \mathrm{~g}, 0.1 \mathrm{mmol})$ was added $\left[\mathrm{AuBr}_{3}\right.$ (tht) $)(0.052$ $\mathrm{g}, 0.1 \mathrm{mmol}$), and the resulting solution was stirred for 1 h . Evaporation of the solvent to $5 \mathrm{~cm}^{3}$ and addition of diethyl ether ($20 \mathrm{~cm}^{3}$) resulted in the precipitation of dark brown complexes. Yield (\%): $55(4), 48(5)$. Data for 4 are as follows. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{Au}_{3} \mathrm{Br}_{3} \mathrm{~S}_{6}$: $\mathrm{C}, 17.3 ; \mathrm{H}, 0.95 ; \mathrm{S}, 15.35$. Found: C, 17.5; H, 1.0; S, 16.0. ${ }^{1} \mathrm{H}$ NMR: $\delta=7.70-7.04$ (m, $4 \mathrm{H}, \mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$). Data for 5 are as follows. Anal. Calcd for C_{21} $\mathrm{H}_{18} \mathrm{Au}_{3} \mathrm{Br}_{3} \mathrm{~S}_{6}$: C, 19.5; H, 1.4; S, 14.9. Found: C, 19.8; H, 1.6; $\mathrm{S}, 15.5 .{ }^{1} \mathrm{H}$ NMR: $\delta=7.62,7.34$ and $6.82\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{3}-\right.$ CH_{3}), 2.21(s, $3 \mathrm{H}, \mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{3}$).
$[\mathrm{Au}(\mathbf{X})(d \mathrm{mit})]_{n}[\mathrm{X}=\mathrm{Br}(6), \mathrm{Cl}(\mathbf{7})]$. Method a. To an acetone ($30 \mathrm{~cm}^{3}$) solution of $\left[\mathrm{Sn}(\mathrm{dmit})\left(\mathrm{CH}_{3}\right)_{2}\right](0.034 \mathrm{~g}, 0.1$ $\mathrm{mmol})$ was added $\left[\mathrm{AuCl}_{3}(\mathrm{tht})\right](0.039 \mathrm{~g}, 0.1 \mathrm{mmol})$ or $\left[\mathrm{AuBr}_{3}-\right.$ (tht)] ($0.052 \mathrm{~g}, 0.1 \mathrm{mmol}$). Immediately black solids 6 and 7 precipitated, which were filtered off and dried in vacuo. Yield (\%): $90(6), 74$ (7). Method b. To an acetone solution under dinitrogen of $\left(\mathrm{NEt}_{4}\right)_{2}\left[\mathrm{Zn}(\mathrm{dmit})_{2}\right](0.071 \mathrm{~g}, 0.1 \mathrm{mmol})$ was added $\left[\mathrm{AuCl}_{3}(\right.$ tht $\left.)\right](0.078 \mathrm{~g}, 0.2 \mathrm{mmol})$ or $\left[\mathrm{AuBr}_{3}(\right.$ tht $\left.)\right](0.104 \mathrm{~g}, 0.2$ mmol). Black solids 6 and 7 appeared immediately, which were filtered off, washed with water, and dried in vacuo. Yield (\%): 97 (6), $90(7)$. Anal. Calcd for $\mathrm{C}_{3} \mathrm{AuBrS}_{5}: \mathrm{C}, 7.6 ; \mathrm{S}, 33.8$. Found: C, 7.7; S, 31.55.Anal. Caled for $\mathrm{C}_{3} \mathrm{AuClS}_{5}$: C, 8.4; S, 37.3. Found: C, 9.0; S, 36.45.
$\left[\mathbf{A u}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathbf{S}_{2} \mathrm{C}_{6} \mathbf{H}_{4}\right)\left(\mathbf{S C}_{6} \mathbf{H}_{4} \mathbf{S P P h}_{3}\right)\right](8)$. To a diethyl ether ($30 \mathrm{~cm}^{3}$) solution of $\mathbf{1}(0.015 \mathrm{~g}, 0.05 \mathrm{mmol})$ was added PPh_{3} ($0.059 \mathrm{~g}, 0.225 \mathrm{mmol}$), and the resulting solution was stirred for 1 h . A pink solid appeared, which was filtered off and washed with diethyl ether ($2 \times 5 \mathrm{~cm}^{3}$). Yield: 11%. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{23} \mathrm{AuF}_{5} \mathrm{PS}_{4}$: $\mathrm{C}, 47.7 ; \mathrm{H}, 2.55 ; \mathrm{S}, 14.1$. Found: $\mathrm{C}, 47.9 ; \mathrm{H}, 2.6 ; \mathrm{S}, 14.6 . \Lambda_{\mathrm{M}}: 7 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. ${ }^{31} \mathrm{P}$ NMR: $\delta=$ 44.1 (s). ${ }^{19} \mathrm{~F}$ NMR: $\delta=-120.8$ (m, 2F, Fo), -159.1 ($\mathrm{t},{ }^{3} J_{\mathrm{F}_{\mathrm{p}} \mathrm{F}_{\mathrm{m}}}$ $\left.=19.5 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F}_{p}\right),-162.7\left(\mathrm{~m}, 2 \mathrm{~F}, \mathrm{~F}_{m}\right)$.
[$\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{S}-\mathrm{S}) \mathrm{py}$] [S-S $=\mathbf{1 , 2} \mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}(\mathbf{9 a}), \mathbf{3 , 4}-\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{3}$ (9 b), dmit ($9 \mathbf{c}$)]. To a diethyl ether ($30 \mathrm{~cm}^{3}$) solution of 1 ($0.151 \mathrm{~g}, 0.04 \mathrm{mmol}$) or $2(0.155 \mathrm{~g}, 0.04 \mathrm{mmol})$ or to an acetone ($30 \mathrm{~cm}^{3}$) of $3(0.168 \mathrm{~g}, 0.1 \mathrm{mmol}$) was added excess pyridine. After being stirred for 2 h , the solutions were concentrated to $5 \mathrm{~cm}^{3}$. Addition of hexane $\left(20 \mathrm{~cm}^{3}\right)$ led to the precipitation of pink ($\mathbf{9 a}, 33 \%$; 9b, 60%) or dark brown ($\mathbf{9 c}, 65 \%$) solids. Data for 9 a are as follows. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{9} \mathrm{AuF}_{5} \mathrm{NS}_{2}$: C, 35.0; H, 1.55; N, 2.4; S, 11.0. Found: C, 35.4; H, 1.3; N, 1.9; S, 11.7. $\Lambda_{\mathrm{M}}: 5 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta=8.97(\mathrm{~m}, 1 \mathrm{H}$, py $), 8.70$ (m, 1H, py), $7.96(\mathrm{~m}, 1 \mathrm{H}, \mathrm{py}), 7.65\left(\mathrm{~m}, 3 \mathrm{H}\right.$, py and $\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$), $7.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.98\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right) .{ }^{19} \mathrm{~F}$ NMR: $\delta=$ $-122.3\left(\mathrm{~m}, 2 \mathrm{~F}, \mathrm{~F}_{o}\right),-157.2\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{F}_{\mathrm{p}} \mathrm{F}_{\mathrm{m}}}=19.4 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F}_{p}\right.$), -161.7 (m, 2F, F_{m}). Data for $9 \mathbf{b}$ are as follows. Anal. Calcd for C_{18} $\mathrm{H}_{11} \mathrm{AuF}_{5} \mathrm{NS}_{2}: \mathrm{C}, 36.2 ; \mathrm{H}, 1.85$; N, 2.35; S, 10.75. Found: C, $36.4 ; \mathrm{H}, 1.25 ; \mathrm{N}, 2.35 ; \mathrm{S}, 10.55$. $\Lambda_{\mathrm{M}}: 3 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta=8.95(\mathrm{~m}, 1 \mathrm{H}, \mathrm{py}), 8.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{py}), 7.94(\mathrm{~m}, 1 \mathrm{H}$, py), $7.50(\mathrm{~m}, 2 \mathrm{H}, \mathrm{py}), 7.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{3}\right), 6.80(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{3}$), $2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR: $\delta=-122.3(\mathrm{~m}, 2 \mathrm{~F}$,
$\left.\mathrm{F}_{0}\right),-157.3\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{F}_{0} \mathrm{~F}_{\mathrm{m}}}=19.5 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F}_{p}\right),-161.7\left(\mathrm{~m}, 2 \mathrm{~F}, \mathrm{~F}_{m}\right)$. Data for 9c are as follows. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{5} \mathrm{AuF}_{5} \mathrm{NS}_{5}$: C, 26.3; H, 0.8; N, 2.2; S, 25.1. Found: C, 26.15; H, 0.8 ; N, 2.6; S, 23.85. ${ }^{1} \mathrm{H}$ NMR: $\delta=7.35(\mathrm{~m}, 2 \mathrm{H}), 7.75(\mathrm{t}, 2 \mathrm{H}), 8.7(\mathrm{~m}$, $1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR: $\delta=-121.0\left(\mathrm{~m}, 2 \mathrm{~F}, \mathrm{~F}_{o}\right),-154.1\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{F}_{\mathrm{p}} \mathrm{F}_{\mathrm{m}}}=\right.$ $19 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F}_{p}$), $-159.7\left(\mathrm{~m}, 2 \mathrm{~F}, \mathrm{~F}_{m}\right)$.
$\mathbf{Q}\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathbf{X}(\mathrm{S}-\mathrm{S})\right]\left[\mathrm{Q}=\mathrm{NBu}_{4}, \mathrm{X}=\mathrm{Br}, \mathrm{S}-\mathrm{S}=\mathbf{1 , 2 - \mathrm { S } _ { 2 } \mathrm { C } _ { 6 } \mathrm { H } _ { 4 }}\right.$ (10 a), 3,4- $\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{3}$ (10 b), dmit (10 c); $Q=\mathrm{PPN}, \mathrm{X}=\mathrm{Cl}$, $\mathrm{S}-\mathrm{S}=1,2-\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ (11a), 3,4- $\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{3}$ (11b), dmit (11c); Q = PPN, $X=S C N, S-S=1,2-S_{2} \mathrm{C}_{6} \mathrm{H}_{4}(12 \mathrm{a}), 3,4-\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{3}$ (12b), dmit (12c)]. To an acetone ($30 \mathrm{~cm}^{3}$) solution of $\mathbf{1}(0.151$ $\mathrm{g}, 0.1 \mathrm{mmol}), 2(0.155 \mathrm{~g}, 0.1 \mathrm{mmol})$, or $3(0.168 \mathrm{~g}, 0.1 \mathrm{mmol})$ was added $\mathrm{NBu}_{4} \operatorname{Br}(0.096 \mathrm{~g}, 0.3 \mathrm{mmol}), \mathrm{PPN}(\mathrm{Cl})(0.172 \mathrm{~g}, 0.3$ $\mathrm{mmol})$ or $\operatorname{PPN}(\mathrm{SCN})(0.178 \mathrm{~g}, 0.3 \mathrm{mmol})$. After being stirred for 4 h , the solutions were concentrated to $5 \mathrm{~cm}^{3}$. Addition of hexane ($20 \mathrm{~cm}^{3}$) led to the precipitation of violet ($\mathbf{1 0} \mathbf{- 1 2 a , b}$) or yellow-green ($\mathbf{1 0 - 1 2 c}$) solids. Data for $10 a$ are as follows. Yield: 41%. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{AuBrF}_{5} \mathrm{NS}_{2}: \mathrm{C}, 40.7 ; \mathrm{H}$, 4.9; N, 1.7; S, 7.75. Found: C, 40.9; H, 4.9; N, 1.9; S, 6.85 . $\Lambda_{\mathrm{M}}: 111 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta=7.06$ and $6.76(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right), 3.07,1.50,1.36$ and $0.94\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{NBu}_{4}\right) .{ }^{19} \mathrm{~F}$ NMR: $\delta=-120.7\left(\mathrm{~m}, 2 \mathrm{~F}, \mathrm{~F}_{o}\right),-158.8\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{F}_{\mathrm{p}} \mathrm{F}_{\mathrm{m}}}=19.9 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F}_{p}\right)$, $-162.35\left(\mathrm{~m}, 2 \mathrm{~F}, \mathrm{~F}_{m}\right)$. Data for 10b are as follows. Yield: 68%. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{AuBrF}_{5} \mathrm{NS}_{2}$: $\mathrm{C}, 41.45 ; \mathrm{H}, 5.05 ; \mathrm{N}, 1.65$; S, 7.85. Found: C, 41.6; H, 5.25; N, 1.65; S, 7.0. Λ_{M} : 113 $\Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. ${ }^{1} \mathrm{H}$ NMR: $\delta=6.94$ and $6.65\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{3}-\right.$ CH_{3}), 3.02, 1.45, 1.31 and $0.91\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{NBu}_{4}\right), 2.19(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{3}$). ${ }^{19} \mathrm{~F}$ NMR: $\delta=-120.7\left(\mathrm{~m}, 2 \mathrm{~F}, \mathrm{~F}_{o}\right),-158.85(\mathrm{t}$, ${ }^{3} J_{\mathrm{F}_{\mathrm{p}} \mathrm{F}_{\mathrm{m}}}=19.9 \mathrm{~Hz} 1 \mathrm{~F}, \mathrm{~F}_{p}$), $-162.35\left(\mathrm{~m}, 2 \mathrm{~F}, \mathrm{~F}_{m}\right), 2.19(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{3}$). Data for 10 c are as follows. Yield: 85%. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{AuBrF}_{5} \mathrm{NS}_{5}: \mathrm{C}, 34.0 ; \mathrm{H}, 4.1 ; \mathrm{N}, 1.6 ; \mathrm{S}, 18.2$. Found: C, 34.6; H, 4.4; N, 1.7; S, 16.8. Λ_{M} : $123 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. ${ }^{19} \mathrm{~F}$ NMR: $\delta=-121.4\left(\mathrm{~m}, 2 \mathrm{~F}, \mathrm{~F}_{o}\right),-157.6\left(\mathrm{t},{ }^{3} J_{\mathrm{F}_{\mathrm{p}} \mathrm{F}_{\mathrm{m}}}=19.9 \mathrm{~Hz}\right.$, 1F, F_{p}), $-162.0\left(\mathrm{~m}, 2 \mathrm{~F}, \mathrm{~F}_{m}\right.$). Data for 11a are as follows. Yield: 60%. Anal. Calcd for $\mathrm{C}_{48} \mathrm{H}_{34} \mathrm{AuClF}_{5} \mathrm{NP}_{2} \mathrm{~S}_{2}$: $\mathrm{C}, 53.45$; H, 3.2; N, 1.3; S, 5.95. Found: C, $53.65 ;$ H, 3.2 ; N, 1.2; S, 5.55 . $\Lambda_{\mathrm{M}}: 94 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta=7.63-7.41(\mathrm{~m}, 30 \mathrm{H}$, PPN), 7.06 and $6.76\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right) .{ }^{19} \mathrm{~F}$ NMR: $\delta=-120.3$ $\left(\mathrm{m}, 2 \mathrm{~F}, \mathrm{~F}_{o}\right),-160.1\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{F}_{\mathrm{p}} \mathrm{F}_{\mathrm{m}}}=20.05 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F}_{p}\right),-168.0(\mathrm{~m}$, $2 F, F_{m}$). Data for 11 b are as follows. Yield: 64%. Anal. Calcd for $\mathrm{C}_{49} \mathrm{H}_{36} \mathrm{AuClF}_{5} \mathrm{NP}_{2} \mathrm{~S}_{2}$: $\mathrm{C}, 53.9 ; \mathrm{H}, 3.3 ; \mathrm{N}, 1.3 ; \mathrm{S}, 5.85$. Found: C, $53.15 ; \mathrm{H}, 3.45 ; \mathrm{N}, 0.95 ; \mathrm{S}, 5.65 . \Lambda_{\mathrm{M}}: 99 \Omega^{-1} \mathrm{~cm}^{2}$ $\mathrm{mol}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta=7.62-7.41(\mathrm{~m}, 30 \mathrm{H}, \mathrm{PPN}), 7.10$ and 6.50 $\left(\mathrm{m}, 3 \mathrm{H}, \mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{3}\right), 2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR: $\delta=$ $-120.2\left(\mathrm{~m}, 2 \mathrm{~F}, \mathrm{~F}_{o}\right),-160.2\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{F}_{\mathrm{p}} \mathrm{F}_{\mathrm{m}}}=20.1 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F}_{p}\right),-163.0$ ($\mathrm{m}, 2 \mathrm{~F}, \mathrm{~F}_{\mathrm{m}}$). Data for 11c are as follows. Yield: 70%. Anal. Calcd for $\mathrm{C}_{45} \mathrm{H}_{30} \mathrm{AuClF}_{5} \mathrm{NP}_{2} \mathrm{~S}_{5}: \mathrm{C}, 47,6 ; \mathrm{H}, 2.7 ; \mathrm{N}, 1.2 ; \mathrm{S}, 14.1$. Found: C, 47.6; H, $3.2 ; \mathrm{N}, 1.5 ; \mathrm{S}, 12.3 . \Lambda_{\mathrm{M}}: 120 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. ${ }^{19} \mathrm{~F}$ NMR: $\delta=-120.1\left(\mathrm{~m}, 2 \mathrm{~F}, \mathrm{~F}_{o}\right),-158.1\left(\mathrm{t}, 3 J_{\mathrm{F}_{\mathrm{p}} \mathrm{F}_{\mathrm{m}}}=20 \mathrm{~Hz}\right.$, 1F, F_{p}), -162.05 ($\mathrm{m}, 2 \mathrm{~F}, \mathrm{~F}_{\mathrm{m}}$). Data for 12a are as follows. Yield: 89%. Anal. Calcd for $\mathrm{C}_{49} \mathrm{H}_{34} \mathrm{AuF}_{5} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{~S}_{3}$: $\mathrm{C}, 53.45 ; \mathrm{H}$, 3.1 ; N, 2.25; S, 8.75. Found: C, 53.4 ; H, 3.45; N, 2.1; S, 8.2. $\Lambda_{\mathrm{M}}: 115 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta=7.72-7.30(\mathrm{~m}, 30 \mathrm{H}$, PPN) 7.10 and $6.80\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right) .{ }^{19} \mathrm{~F}$ NMR: $\delta=-\mathbf{1 1 9 . 7}$ $\left(\mathrm{m}, 2 \mathrm{~F}, \mathrm{~F}_{0}\right),-158.5\left(\mathrm{t},{ }^{3} J_{\mathrm{F}_{\mathrm{p}} \mathrm{F}_{\mathrm{m}}}=20.5 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F}_{p}\right),-162.3(\mathrm{~m}$, $2 \mathrm{~F}, \mathrm{~F}_{m}$). Data for 12b are as follows. Yield: 44\%. Anal. Calcd for $\mathrm{C}_{50} \mathrm{H}_{36} \mathrm{AuF}_{5} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{~S}_{3}$: C, $53.85 ; \mathrm{H}, 3.25 ; \mathrm{N}, 2.5 ; \mathrm{S}, 8.65$. Found: C, $53.4 ; \mathrm{H}, 3.4 ; \mathrm{N}, 2.2 ; \mathrm{S}, 8.3$. $\Lambda_{\mathrm{M}}: 107 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. ${ }^{1} \mathrm{H}$ NMR: $\delta=7.65-7.33(\mathrm{~m}, 30 \mathrm{H}, \mathrm{PPN}), 6.94$ and $6.63(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{S}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{3}$). Data for 12c are as follows. Yield: 83%. Anal. Calcd for $\mathrm{C}_{46} \mathrm{H}_{30} \mathrm{AuF}_{5} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{~S}_{6}$: C, 47.75; H, 2.6; N, 2.4; S, 16.6. Found: C, 48.2; H, 2.4; N, 2.35; S, 14.4. Λ_{M} : 113 $\Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1} .{ }^{19} \mathrm{~F}$ NMR: $\delta=-120.7\left(\mathrm{~m}, 2 \mathrm{~F}, \mathrm{~F}_{o}\right),-157.0(\mathrm{t}$, ${ }^{3} J_{\mathrm{F}_{\mathrm{p}} \mathrm{F}_{\mathrm{m}}}=20 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F}_{p}$), $-161.7\left(\mathrm{~m}, 2 \mathrm{~F}, \mathrm{~F}_{m}\right)$.

X-Ray Structure Determinations. Compound 1. Data collection: Data were measured with Mo K α radiation on a Stoe STADI-4 diffractometer fitted with a Siemens LT-2 lowtemperature device. Cell constants were refined from $\pm \omega$ values of ca. 50 reflections in the 2θ range $20-23^{\circ}$. Absorption corrections were based on ψ-scans. Structure solution: heavyatom method. Structure refinement: anisotropic on F^{2} (program SHELXL-93, G. M. Sheldrick, Univ. of Göttingen) using
all reflections; H atoms using riding model. Other details are given in Tables 1-3.
Compound 8. The structure was determined as for compound 1 except for the following. Data collection: Siemens P4 diffractometer, cell constants refined from setting angles, absorption correction using SHELXA (G. M. Sheldrick, unpublished). Structure refinement: C atoms isotropic, phenyl rings idealized. Other details are in Tables 1, 4, and 5.

Acknowledgment. We thank the Direction General de Investigación Científica y Técnica (Grant PB92-1078) for financial support. We also thank the Fonds der

Chemischen Industrie and Ministerio de Educación y Ciencia for a grant (to R.T.).

Supporting Information Available: Descriptions of the crystal structure determinations, including tables of crystal data, data collection, and solution and refinement parameters, hydrogen coordinates, bond distances and angles, and thermal parameters (8 pages). Ordering information is given on any current masthead page.

OM9504415

[^0]: ${ }^{+}$Universidad de Zaragoza-CSIC.
 ₹ Universidad de la Rioja.
 ${ }^{\text {8 }}$ Technische Universität Braunschweig.

 * Abstract published in Advance ACS Abstracts, November 1, 1995.
 (1) (a) Shaw, C. F., III; Isab, A. A.; Hoeschele, J. D.; Starich, M.; Jocke, J.; Schulteis, P.; Xiao, J. J. Am. Chem. Soc. 1994, 116, 2254. (b) Graham, G. C.; Champion, G. D.; Ziegher, J. B. Inflammopharmacology 1991, 1, 99.
 (2) (a) Rapson, W. S.; Groenewald, T. In Gold Usage; Academic Press: London, 1978. (b) Papazian, A. N. Gold Bull. 1982, 15, 81.
 (3) Fenter, P.; Eberhardt, A.; Eisenberger, P. Science 1994, 226, 1216.
 (4) (a) Okada, T.; Patterdon, B. K.; Ye, O. S.; Gurney, M. E. Virology 1993, 192, 631. (b) Blough, H. A.; Richetti, M.; Montagnier, B. H. Chem. Abstr. 1991, 115, 174630p.
 (5) Sadler, P. J. In Metal Complexes in Cancer Chemotherapy; Keppler, K. B., Ed.; VCH: Weinheim, Germany. 1993.
 (6) Rinford, G.; Thorup, N.; Bjornholm, T.; Bechgaard, K. Acta Crystallogr. 1990, C46, 1437.
 (7) Bardají, M.; Jones, P. G.; Laguna, A.; Laguna, M. Organometallics 1995, 14, 1310 and references therein.
 (8) a) Jones, P. G.; Thöne, C. Acta Crystallogr. 1980, 1336, 2777. (b) Angermaier, K.; Schmidbaur, H. Chem Ber. 1994, 127, 2387.

[^1]: (9) Canales, F.; Gimeno, M. C.; Jones, P. G.; Laguna, A. Angew. Chem., Int. Ed. Engl. 1994, 33, 769.
 (10) Davila, R. M.; Elduque, A.; Grant, T.; Staples, R. J.; Fackler, J. P., Jr. Inorg. Chem. 1993, 32, 1749.
 (11) Nakamoto, M.; Schier, A.; Schmidbaur, H. J. Chem. Soc., Dalton Trans. 1993, 1347.
 (12) Gimeno, M. C.; Jones, P. G.; Laguna, A.; Laguna, M.; Terroba, R. Inorg. Chem. 1994, 33, 3932.
 (13) Cerrada, E.; Jones, P. G.; Laguna, A.; Laguna, M. J. Chem. Soc., Dalton Trans. 1994, 1315.
 (14) Yip, H. K.; Schier, A.; Riede, J.; Schmidbaur, H. J. Chem. Soc., Dalton Trans. 1994, 2333.
 (15) Heinrich, D. H.; Fackler, J. P., Jr. Inorg. Chem. 1990, 29, 4402.
 (16) (a) Johnson, A.; Puddephatt, R. J. J. Chem. Soc. Dalton Trans. 1975, 115. (b) Bergfeld, M.; Schmidbaur, H. Chem. Ber. 1969, 102, 2408. (c) Paparizos, Ch. Dissertation, Case Western Reserve University, 1977, pp 1-186; Diss. Abstr. Int. 1978, B38, 4227.
 (17) Cerrada, E.; Fernandez, E. J.; Gimeno, M. C.; Laguna, A.; Laguna, M.; Terroba, R.; Villacampa, M. D. J. Organomet. Chem. 1995, 492, 105.

[^2]: (18) Grässle, U.; Strähle, J. Z. Anorg. Allg. Chem. 1985, 531, 26.
 (19) Bardají, M.; Gimeno, M. C.; Jimenez, J.; Laguna, A.; Laguna, M. J. Organomet. Chem. 1992, 441, 339.

[^3]: (20) Bovio, B.; Calagero, S.; Wagner, F. E.; Burini, A.; Pietroni, B. R. J. Organomet. Chem. 1994, 470, 275.
 (21) Matsubayashi, G.; Yokozawa, A. J. Chem. Soc., Dalton Trans. 1990, 3535.
 (22) Cerrada, E.; Gimeno, M. C.; Jones, P. G.; Laguna, M. Z. Kristallogr. 1994, 209, 827.
 (23) Cerrada, E.; Jones, P. G.; Laguna, A.; Laguna, M. Unpublished results.

[^4]: (24) Usón, R.; Laguna, A.; Laguna, M.; Castrilla, M. L.; Jones, P. G.; Meyer-Bäse, K. J. Organomet. Chem. 1987, 336, 453.

[^5]: (25) Pinchuk, V. A.; Müller, C.; Fischer, A.; Thönnessen, H.; Jones, P. G.; Schmutzler, R.; Markowsky, L. N.; Shermolovich, Y. G.; Pinchuk, A. M. Phosphorus, Sulfur Silicon, submitted for publication.

[^6]: (26) a) Steimecke, G.; Kirmse. R.; Hoyer, E. Z. Chem. 1975, 15, 28. (b) Valade, L.; Legros, J. P.; Bosseau, M.; Cassoux, P.; Barbauskas, M.; Interrante, L. V. J. Chem. Soc., Dalton Trans. 1985, 783.
 (27) Usón, R.; Laguna, A.; Bergareche, B. J. Organomet. Chem. 1980, 184, 411 .
 (28) Allen, E. A.; Wilkinson, W. Spectrochim. Acta 1972, 28A, 2257.

