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In this paper, a generalized Jacobi measure on [&1, 1] is perturbed by exponen-
tials of functions b of bounded mean oscillation. If we consider the Fourier series
in orthogonal polynomials associated to each modification, then certain estimates
(uniform in n # N and b belonging to some neighbourhood of the origin) are
obtained. As a consequence, the partial sum operators depend analytically on the
functional parameter b. The case of the Bessel series is also considered. � 1998
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0. INTRODUCTION

Let + be a positive Borel measure on the real line and assume that
(Pn)n�0 is a sequence of orthonormal polynomials in L2(+), obtained from
the sequence (1, x, x2, ...) by the Gram�Schmidt orthogonalization process.
The system (Pn)n�0 satisfies a three-term recurrence relation of the form

xPn=an+1Pn+1+bnPn+anPn&1 , n=0, 1, 2, ...
(1)

P&1=0, P0=1

with an>0, bn # R. Conversely, any such recurrence relation (with the
initial conditions P&1=0, P0=1) determines a sequence (Pn)n�0 which is
orthonormal with respect to some positive measure + on the real line.

The recurrence relation (1) can be reformulated as xP=JP, where
P=(P0 , P1 , ...) and J is an infinite tridiagonal matrix, i.e., J=(aij) i, j�0
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with aij=0 if |i& j |>1. The matrix J is called the Jacobi matrix of the
polynomial system.

These matrices appear frequently to be attached to physical problems.
For example, the motion of a number of particles interacting on the real
line can be described, in the context of Toda lattices, by nonlinear matrix
differential equations (see [4, 1]). The solutions are a flow of infinite tri-
diagonal matrices, so that the spectral analysis of the system can be trans-
formed into the problem of determining the polynomials associated to a
three-term recurrence relation.

A perturbation of the physical system corresponds to a perturbation of
the three-term recurrence relation. For a study of this type of perturbation
(in the compact case) and further references, see [11, 8].

Following Coifman and Murray [3], another way of considering per-
turbed orthogonal polynomials consists of modifying the corresponding
spectral measure. More precisely, let + be a nonnegative measure on the
real line and let (Pn)n�0 be an orthonormal system in L2(+). Often, but
not necessarily, this is a polynomial system. Consider a perturbed space
L2(u2 d+), where u(x)=eb(x) is a suitable function such that (Pn)n�0�L2(+).
When b is close to zero (in a sense to be determined later), the new
measure u2d+ is in some sense close to +. Now the Gram�Schmidt orthog-
onalization process can be applied to (Pn)n�0 so as to get a perturbed
orthonormal system in L2(u2 d+).

Let Sn(b) stand for the n th partial sum operator of the Fourier expan-
sion relative to the perturbed system in L2(u2d+). We consider the mapping
b � Sn(b) depending on the functional parameter b. This is not a con-
venient setting, since Sn(b) is a bounded operator on L2(e2b d+), which
varies with b. Instead, we take

b � Vn(b)=ebSn(b) e&b (2)

so that each operator Vn(b) acts on L2(+), the L2(+)-boundedness of Vn(b)
is equivalent to the L2(u2d+)-boundedness of Sn(b) and the operator norms
are equal.

The mapping (2) can now be seen in the context of calculus on Banach
spaces where notions like continuity, differentiability, and analyticity are
well defined. We are interested in the uniform analyticity of the sequence
(Vn)n�0 .

In specific examples it is difficult to deal with the operators Sn(b) and
Vn(b), and it is much more convenient to work with the family of operators

Tn(b)=ebSn(0) e&b.
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The formula

V=T(I+(T&T*))&1

of Kerzman and Stein makes it possible. Here, V is a self-adjoint projection
of a Hilbert space H onto a closed subspace K and T is a bounded oblique
projection (non self-adjoint) from H onto K. We can take V=Vn(b) and
T=Tn(b), so that T*=Tn(&b) and the uniform analyticity of (Tn)n�0

implies, via the Kerzman�Stein formula, the uniform analyticity of
(Vn)n�0 .

Let B be a real Banach space, B� the complexification of B, and Y
another complex Banach space. A sequence of operators Fn : B� � Y (n�0)
is uniformly analytic in a neighbourhood U of 0 # B� if and only if there
exists a constant C>0 such that for every n, and all b # U, we have that

(a) Fn is Gâteaux differentiable

(b) &Fn(b)&�C, where & }& denotes the operator norm.

Consider

Sn(0) f (x)=Sn f (x)=|
1

&1
Kn(x, y) f ( y) d+( y)

where Kn(x, y) is the corresponding n th kernel of the orthonormal polyno-
mials in L2(+). Then

Tn(b) f (x)=|
1

&1
exp[b(x)&b( y)] Kn(x, y) f ( y) d+( y).

For this particular kind of projection it is enough to prove (b), to obtain
uniform analyticity for [Tn(b)]n�0, acting on L2(+), and so the problem
can be reduced to obtaining a uniform weighted norm inequality for the
operators Sn .

For Jacobi polynomials, d+(x)=(1&x): (1+x); dx, with :, ;�&1�2,
and B=BMO (bounded mean oscillation), Coifman and Murray proved
that the operators Tn(b) are bounded from L2(d+) into itself when &b&

*
(the norm of b in BMO) is small enough. This implies that the Tn are
uniformly analytic in a neighbourhood U of 0 and so are the Vn .

The aim of this paper is to deal with a more general class of measures
and to study the uniform boundedness of the operators Tn(b) in L p(d+)
where p belongs to an interval including p=2. This will be possible because
there exists enough information in a more general context about uniform
weighted norm inequalities for the partial sum operators in L p spaces.
As a consequence we obtain the uniform analyticity of the operators Tn

and Vn .
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The paper is organized as follows: in Section 1 we present the notation
and the main results (Theorems 1 and 2), which will be proved in Sec-
tions 3 and 4, respectively. In Section 2 we state and prove some auxiliary
results about the Ap class of weights.

1. NOTATION AND RESULTS

Throughout this paper, C will denote a universal constant which may be
different from line to line. If 1<p<�, we use the notation q= p�( p&1),
i.e., 1�p+1�q=1.

Let 1<p<� and &��a<b��. The class Ap(a, b) consists of those
weights u such that

\ 1
|I | |I

u(x) dx+\ 1
|I | |I

u(x)&1�( p&1) dx+
p&1

�C

where I ranges over all the finite intervals I�(a, b) and |I | stands for the
length of the interval I. The least constant C will be referred to as the Ap

constant of u and will be denoted Ap(u). The Hilbert transform is bounded
on L p(u) if u # Ap (see [7]).

If b is an integrable function on [&1, 1], the mean of b on an interval
I is

bI=
1
|I | |I

b(x) dx.

The function b is said to have bounded mean oscillation on [&1, 1] if

&b&
*

=sup
I

1
|I | |I

|b(x)&bI | dx

is finite, where the supremum is taken over all the intervals I�[&1, 1].
The space BMO of real-valued functions (modulo constants) having
bounded mean oscillation on [&1, 1] is a Banach space with & }&* as its
norm.

Consider a generalized Jacobi weight

w(x)=h(x)(1&x): (1+x); `
N

i=1

|x&ti |
#i, x # [&1, 1] (3)
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where

(a) :, ;> &1, #i�0, ti # (&1, 1), ti{tj \i{ j ;
(b) h is a positive, continuous function on [&1, 1] and |(h, $) $&1 #

L1(0, 1), |(h, $) being the modulus of continuity of h.

Let (Pn)n�0 be the orthonormal polynomials with respect to w(x) dx.
Badkov [2] proved that there exists a constant C such that for every
x # [&1, 1] and n # N

|Pn(x)|�C(1&x+n&2)&(2:+1)�4 (1+x+n&2)&(2;+1)�4 `
N

i=1

|x&ti |
&#i �2.

(4)

Also, if (Qn)n�0 denotes the orthonormal polynomials with respect to the
measure (1&x2) w(x) dx, we have

|Qn(x)|�C(1&x)&(2:+3)�4 (1+x)&(2;+3)�4 `
N

i=1

( |x&ti | )
&#i�2.

For f # L1(w), let Sn f denote the n th partial sum of the orthonormal
Fourier expansion of f in (Pn)n�0 , i.e.

Sn f (x)=|
1

&1
f ( y) Kn(x, y) w( y) dy, Kn(x, y)= :

n

k=0

Pk (x) Pk ( y).

For a suitable function b # BMO, consider the perturbed measure
e2bw dx. The classical Gram�Schmidt procedure applied to the orthonor-
mal system (Pn)n�0 leads to a perturbed orthonormal system related to the
measure e2bw dx. We then have the perturbed Fourier expansion operators
(Sn(b))n�0 . Thus, the sequences of operators (Vn)n�0 and (Tn)n�0 are
given by

Vn(b)=ebSn(b) e&b

and

Tn(b)( f )(x)=eb(x)Sn(e&bf )(x)

=|
1

&1
exp[b(x)&b( y)] Kn(x, y) f ( y) w( y) dy.

Theorem 1. Let 1<p<�, w be as in (3) and assume

(a) w1& p�2(1&x2)&p�4 # L1,

(b) w1&q�2(1&x2)&q�4 # L1.
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Then, there exist some constants C, $>0 such that for all b # BMO with
&b&

*
<$,

sup
n

&Tn(b)&Lp
(w) � Lp

(w)�C.

Remark. Conditions (a) and (b) are also necessary for the uniform
boundedness of Tn(b) in a neighbourhood of 0 # BMO. More precisely, the
uniform boundedness of Tn(0)=Sn implies (a) and (b) [9, Theorem 1].

A real number p satisfies conditions (a) and (b) if and only if the fol-
lowing inequalities hold:

} (:+1) \ 1
p

&
1
2+ }<min{1

4
,

:+1
2 =

} (;+1) \ 1
p

&
1
2+ }<min{1

4
,

;+1
2 =

} (#i+1) \ 1
p

&
1
2+}<min{1

2
,

#i+1
2 = , i=1, ..., N.

It is clear that these conditions determine an interval containing p=2.
The uniform boundedness in Theorem 1, together with the general

arguments pointed out in the Introduction, leads to the following corollary.

Corollary. Let w be as in (3). Then, the sequences of operators
[Tn(b)] and [Vn(b)], acting on L2(w), are uniformly analytic in a neigh-
bourhood of 0 in the complexification of BMO.

Now, let J: be the Bessel function or order :>&1, and put

jn(x)=21�2|J:(:n)|&1 J:(:nx),

where (:n)n�1 is the increasing sequence of the zeros of J: . The functions
( jn)n�1 constitute an complete orthonormal system in L2((0, 1) ; x dx),
called the Bessel system of order : ([13]).

For the sake of simplicity we will write L p(x dx) for L p((0, 1) ; x dx).
For f # L1(x dx), let sn f denote the n th partial sum of the orthonormal

Fourier�Bessel of f in ( jn)n�1 , i.e.

sn f (x)=|
1

0
f ( y) Kn(x, y) y dy, Kn(x, y)= :

n

k=1

jk (x) jk ( y),

and in a similar way define

Vn(b)=ebsn(b) e&b
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and

Tn(b)( f )(x)=eb(x)sn(e&bf )(x)=|
1

0
exp[b(x)&b( y)] Kn(x, y) f ( y) y dy.

Theorem 2. Let :>&1 and assume

(a)
4
3

<p<4, if &
1
2

�:;

(b)
2

:+2
<p<

2
&:

, if &1<:� &
1
2

.

Then, there exist some constants C, $>0 such that for all b # BMO with
&b&

*
<$

sup
n

&Tn(b)&Lp
(x dx) � Lp

(x dx)�C.

Remark. Also, conditions (a) and (b) are necessary for the uniform
boundedness of Tn(0)=sn [6, Theorem 2].

The uniform analyticity follows as a consequence of Theorem 2.

Corollary. The sequences of operators [Tn(b)] and [Vn(b)], acting on
L2(x dx), are uniformly analytic in a neighbourhood of 0 in the complexifica-
tion of BMO.

2. AUXILIARY RESULTS ABOUT THE Ap CLASS

In this section, u, v, w, un , wn will denote weights on some subset Q�Rm

which we may think of as (&1, 1)�R. A sequence (un)n�1 is said to
belong to Ap uniformly if the corresponding sequence of Ap constants is
bounded or, equivalently, if some constant C, independent of n, satisfies the
Ap condition for every weight un .

With utv we mean C1�u�v�C2 for some positive constants C1 , C2 .
With unt

unif vn we mean that the respective constants are independent of n.

Lemma 1. (a) w # Ap , * # (0, +�) O *w # Ap , Ap(*w)=Ap(w).

(b) utv, v # Ap O u # Ap , Ap(u)tAp(v) (with constants depending
only on the ratio constants in utv).

(c) u, v # Ap O u+v # Ap , Ap(u+v)�Ap(u)+Ap(v).

(d) u, v # Ap , w&1=u&1+v&1 O w # Ap , Ap(w)�2 p[Ap(u)+Ap(v)].
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Proof. (a) and (b) are immediate; (d) is analogous to (c).

(c) We have

\ 1
|I | |I

(u+v)&p$�p+
p�p$

�min{\ 1
|I | |I

u&p$�p+
p�p$

, \ 1
|I | |I

v&p$�p+
p�p$

= .

Therefore,

1
|I | |I

(u+v) \ 1
|I | |I

(u+v)&p$�p+
p�p$

�
1
|I | |I

u \ 1
|I | |I

u&p$�p+
p�p$

+
1
|I | |I

v \ 1
|I | |I

v&p$�p+
p�p$

�Ap(u)+Ap(v). K

The properties above easily yield the following result.

Lemma 2.

(a) un t
unif w+wn , w # Ap , wn # Ap uniformly O un # Ap uniformly.

(b) u&1
n t

unif w&1+w &1
n , w # Ap , wn # Ap uniformly O un # Ap uniformly.

Also, as a consequence of Ho� lder's inequality we have:

Lemma 3. Let u and v be two weights, 1 < p < �, 1 <$ < �,
1�$+1�$$=1. If u$, v$$ # Ap , then uv # Ap and the Ap constants verify

Ap(uv)�Ap(u$)1�$ Ap(v$$)1�$$.

Corollary. Let r, R # R, un(x) = (1 & x)r (1 & x + n&2)R. Then,
un # Ap(&1, 1) uniformly � &1<r<p&1, &1<r+R<p&1.

Remark. Analogous results hold when 1&x is replaced by |x&t|,
for some t # (&1, 1).

Proof. ( O ) From the inequality

1
2 |

1

&1
un \ 1

2 |
1

&1
u & p$�p

n +
p�p$

�C

it follows that &1<r<p&1, and taking the limit in n yields &1<
r+R<p&1, by integrability.

(o) It is known that (1&x)r # Ap(&1, 1) � &1<r<p&1.
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Case R�0. We have

1
2[(1&x)R+n&2R]�(1&x+n&2)R�2R[(1&x)R+n&2R],

so that (1&x)r (1&x+n&2)R
t
unif (1&x)r+R+n&2R(1&x)r. Parts (a) of

Lemmas 1 and 2 show that un # Ap(&1, 1) uniformly.

Case R<0. Now,

un(x)&1=(1&x)&r (1&x+n&2)&R
t
unif [(1&x)r+R]&1

+[n&2R(1&x)r]&1

and we can use part (a) of Lemma 1 together with part (b) of Lemma 2. K

3. PROOF OF THEOREM 1

The boundedness of

Tn(b) : L p(w) � L p(w)

is equivalent to the boundedness of

Sn : L p(e pbw) � Lp(e pbw).

By using Pollard's decomposition of the kernels Kn(x, y) (see [12, 10])

Kn(x, y)=rnA1, n(x, y)+snA2, n(x, y)+snA3, n(x, y),

where

A1, n(x, y)=Pn+1(x) Pn+1( y),

A2, n(x, y)=(1& y2)
Pn+1(x) Qn( y)

x& y
,

A3, n(x, y)=(1&x2)
Pn+1( y) Qn(x)

y&x
,

and (rn)n�0, (sn)n�0 are bounded sequences, the uniform boundedness of
Sn can be reduced to that of W1, n , W2, n , W3, n , where
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W1, n f (x)=Pn+1(x) |
1

&1
Pn+1 fw dy,

W2, n f (x)=Pn+1(x) H((1& y2) Qn fw, x),

W3, n f (x)=(1&x2) Qn(x) H(Pn+1 fw, x),

and H is the Hilbert transform on the interval [&1, 1]. For W1, n , by
duality, it is enough to show

&Pneb&Lp
(w)�C, &Pne&b&Lq(w)�C.

Now, by the estimates (4) for Pn and the dominated convergence theorem,
it is enough to prove

&(1&x2)&1�4 w&1�2eb&Lp
(w)�C, (5)

&(1&x2)&1�4 w&1�2e&b&Lq(w)�C. (6)

By the definition of w and the hypothesis w1& p�2(1&x2)&p�4 # L1, there
exists some =>0 such that w1& p�2(1&x2)&p�4 # L1+=. On the other
hand, there exists some #>0 such that if &b&

*
<# then e pb # L(1+=)�= (see

[5, p. 409]).
Now, inequality (5) follows easily from Ho� lder's inequality. In a similar

way (6) follows.
The uniform boundedness of W2, n and W3, n is equivalent to that of the

Hilbert transform with pairs of weights

(e pb |Pn+1 | p w, e pb |Qn | &p (1&x2)&p w1& p)

and

(e pb |Qn | p (1&x2) p w, e pb |Pn+1 | &p w1& p).

Then the proof of Theorem 1 will be finished if we prove the following lem-
mas:

Lemma 4. With the above notation, there exist two constants C1 , C2>0
and a sequence (,n)n�1 uniformly in Ap(&1, 1) such that

C1 |Pn+1 | p w�,n�C2 |Qn |&p (1&x2)&p w1& p.

Lemma 5. With the above notation, there exist two constants C1 , C2>0
and a sequence (,n)n�1 uniformly in Ap(&1, 1) such that

C1 |Qn | p (1&x2) p w�,n�C2 |Pn+1 |&p w1& p.
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Lemma 6. Let 1<p<�. For each , # Ap , there exists some #>0 such
that e pb, # Ap whenever b # BMO with &b&

*
<#. Moreover, # and the Ap

constant of e pb, depend only on the Ap constant of ,.

Proof of Lemma 4. Let w1=>N
i=1 |x&ti |

#i. From the estimates for Pn

and Qn we have

|Pn+1 | p w�Cw1&( p�2)
1 (1&x): (1+x); (1&x+n&2)&p(:�2+1�4)

_(1+x+n&2)&p( ;�2+1�4),

|Qn |&p (1&x2)&p w1& p�Cw1&p�2
1 (1&x)&p+:(1& p) (1+x)&p+;(1& p)

_(1&x+n&2) p(:�2+3�4) (1+x+n&2) p( ;�2+3�4).

It is not difficult to see, from the hypothesis, that we can take a real
number R such that

&p+:(1& p)�R�:,

&1<R<p&1

and choose S such that

&p+:(1& p)+ p(:�2+3�4)�R+S�:& p(:�2+1�4),

&1<R+S<p&1.

Now, it is a straightforward calculation to verify that

C(1&x): (1&x+n&2)&p(:�2+1�4)

�(1&x)R (1&x+n&2)S

�C(1&x)&p+:(1& p) (1&x+n&2) p(:�2+3�4).

We can also take R� and S� such that

&p+;(1& p)�R� �;,

&1<R� <p&1,

&p+;(1& p)+ p(;�2+3�4)�R� +S� �;& p(;�2+1�4),

&1<R� +S� <p&1,
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so that

C(1+x); (1+x+n&2)&p( ;�2+1�4)

�(1+x)R� (1+x+n&2)S�

�C(1+x)&p+;(1& p) (1+x+n&2) p( ;�2+3�4).

If we write

un(x)=(1&x)R (1&x+n&2)S,

vn(x)=(1+x)R� (1+x+n&2)S�

then

C1 |Pn+1 | pw�w1& p�2
1 unvn�C2 |Qn | &p (1&x2)&p w1& p.

Now, from the corollary in the previous section we have

un # Ap uniformly,

vn # Ap uniformly,

w1& p�2
1 # Ap .

Then, splitting in pieces the integrals appearing in the Ap condition it can
be shown that

,n=w1& p�2
1 unvn # Ap uniformly. K

The proof of Lemma 5 is entirely similar, so we omit it.

Proof of Lemma 6. If , # Ap , there exists some =>1 such that ,= # Ap .
Moreover, = and the Ap constant of ,= depend only on the Ap constant of
, [5, Theorem IV.2.7, p. 399]. Take now 1�=+1�=$=1. There exists some
$>0 such that

&b&
*

<$ O e p=$b # Ap

and this in turn implies e pb, # Ap , by Lemma 3. Also, $ and the Ap con-
stant of e p=$b depend only on =$ [5, p. 409]. This proves the lemma. K
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4. PROOF OF THEOREM 2

The following result can be seen in [6].

Proposition 1. Let :� &1�2, 1<p<�, and let u be a weight. If
x1& p�2u p # Ap(0, 1), then there exists some constant C>0 such that

&usn(u&1f )&Lp
(x dx)�C & f &Lp

(x dx)

for every n�0, f # L p(x dx).

For the case &1<:<&1�2 we have

Proposition 2. Let &1<:<&1�2, 1<p<�, and let u be a weight. If

x1& p�2u p # Ap(0, 1)

x1+:pu p # Ap(0, 1) (7)

x1&(:+1)pu p # Ap(0, 1)

then there exists some constant C>0 such that

&usn(u&1f )&Lp
(x dx)�C& f &Lp

(x dx)

for every n�0, f # L p(x dx).

Proof. As shown in [6] it is enough to have

x1+:pu p(M &1
n +x)&p(:+1�2) # Ap(0, 1)

x1&(:+1)pu p(M &1
n +x) p(:+1�2) # Ap(0, 1)

where Mn are certain positive constants with Mn � +�. With the help of
Lemmas 1 and 2 this turns out to be equivalent to (7). K

Remark. In both cases, the constant C depends only on the Ap con-
stants.

Proof of Theorem 2. Assume first that &1�2�:. According to Proposi-
tion 1, we only need to show that there exist some constants C, $>0 such
that

&b&
*

<$ O x1& p�2eb(x) # Ap
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with a constant C. Since x1& p�2 # Ap , there exists some =>1 such that
x=(1& p�2) # Ap [5, Theorem IV.2.7, p. 399]. Take 1�=+1�=$=1; there also
exist some constants C, $>0 such that

&b&
*

<$ O e=$b # Ap

with an Ap constant C (see [5, p. 409). Finally, apply Lemma 3. The case
&1<:< &1�2 is analogous. K
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