Reactivity of Alkynyl Platinum Complexes towards $\mathbf{P P h}_{2} \mathbf{H}$ and $\mathbf{P P h}_{2}(\mathbf{O}) \mathbf{H}$: Unexpected Formation of Alkynyl Tetralithium Diplatinum Compounds Stabilized by $\boldsymbol{\mu}_{3^{-}}\left(\kappa^{3} \mathbf{P}, \boldsymbol{O}, \boldsymbol{O}-\mathbf{P P h}_{2} \mathbf{O}^{-}\right)$Ligands

L. R. Falvello, ${ }^{[a]}$ J. Forniés, $*{ }^{[a]}$ J. Gómez, ${ }^{[b]}$ E. Lalinde, $*\left[\right.$ b] A. Martín, ${ }^{[a]}$ M. T. Moreno, ${ }^{[b]}$ and J. Sacristán ${ }^{[b]}$

Abstract

The reactivity of $\mathrm{Li}_{2^{-}}$ $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})_{4}\right]$ and $c i s-\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})_{2} \mathrm{COD}\right]$ $(\mathrm{R}=t \mathrm{Bu} \mathbf{a}, \mathrm{Ph} \mathbf{b})$ towards $\mathrm{PPh}_{2} \mathrm{H}$ and $\mathrm{PPh}_{2}(\mathrm{O}) \mathrm{H}$ has been investigated. The course of the reaction of $\mathrm{Li}_{2}\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})_{4}\right]$ with $\mathrm{PPh}_{2} \mathrm{H}$ strongly depends not only on the reaction conditions employed, but also on the alkyne subtituent R. Thus, treatment of $\mathrm{Li}_{2}\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu})_{4}\right]$ with $\mathrm{PPh}_{2} \mathrm{H}(1: 3)$ in an acetone/ethanol mixture affords trans $-\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu})_{2^{-}}\right.$ $\left.\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{2}\right]$ (1a) together with an unusual tetralithium diplatinum species $\left[\left\{\mathrm{Pt}(\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu})_{2-x}\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{2+x} \mathrm{Li}_{2} \mathrm{~S}_{n}\right\}_{2}\right] \quad(x=$ $0, \mathrm{~S}_{n}=\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathbf{2}^{\prime} \mathbf{a} ; x=1, \mathrm{~S}_{n}=\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ $3^{\prime} \mathbf{a}$) in low yield. Complexes $\left[\left\{\mathrm{Pt}(\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu})_{2}\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{2} \mathrm{Li}_{2}\left(\mu-\mathrm{H}_{2} \mathrm{O}\right)-\right.\right.$ $\left.\left.\left(\mathrm{Me}_{2} \mathrm{CO}\right)_{2}\right\}_{2}\right]$ (2a) and $[\{\mathrm{Pt}(\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu})-$ $\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{3} \mathrm{Li}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)($ thf $\left.\left.)\right\}_{2}\right] \quad$ (3a) have been characterized by X-ray diffraction. On the other hand, treatment of $\mathrm{Li}_{2}\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CPh})_{4}\right]$ with $\mathrm{PPh}_{2} \mathrm{H}$ (1:3 molar

Abstract

ratio) allows the synthesis not only of the analogous derivatives $\mathbf{1 b}$ and $\mathbf{2}^{\prime} \mathbf{b}$, but also of the unexpected, novel mononuclear compound $\quad\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CPh})_{2^{-}}\right.$ $\left.\left(\mathrm{PPh}_{2} \mathrm{CHPhCH}_{2} \mathrm{PPh}_{2}\right)\right]$ (4b), which has been characterized by X-ray diffraction and contains cis-terminal alkynyl groups and the new chelating ligand 1-phenyl-1,2-bis(diphenylphosphino)ethane. Similar σ-alkynyl complexes cis$\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{2}\right] 5$ are easily prepared by displacement of the cyclooctadiene (COD) ligand from the precursor cis $-\left[\operatorname{Pt}(\mathrm{C} \equiv \mathrm{CR})_{2} \mathrm{COD}\right]$ at low temperature $\left(-30^{\circ} \mathrm{C}\right)$ by $\mathrm{PPh}_{2} \mathrm{H}$. The unexpected diplatinum complex $[\{\mathrm{Pt}(\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu})(\mu$ $\left.\left.\left.\mathrm{PPh}_{2}\right)\left(\mathrm{PPh}_{2} \mathrm{H}\right)\right\}_{2}\right]$ (6a), also character-

Keywords: alkynyl • diphenylphosphine • lithium • phosphinite • platinum

Abstract

ized by X-ray diffraction, is also formed (2% yield) during the synthesis of complex 5a. By contrast, cis-[Pt$\left.(\mathrm{C} \equiv \mathrm{CR})_{2} \mathrm{COD}\right]$ reacts with $\mathrm{PPh}_{2}(\mathrm{O}) \mathrm{H}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at low temperature $\left(-40^{\circ} \mathrm{C}\right)$, either in $1: 2$ or 1:3 molar ratio, to produce novel diphenylphosphinous acid/phosphinite complexes $[\{\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})$ $\left.\left\{\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{2} \mathrm{H}\right\}\left(\mathrm{PPh}_{2} \mathrm{OH}\right)\right]$ 7, which are precursors of the related neutral compounds $\left[\mathrm{Pt}(\mathrm{C}=\mathrm{CR})\left\{\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{2} \mathrm{H}\right\} \mathrm{L}\right] \quad(\mathrm{L}=$ $\left.\mathrm{PEt}_{3}, \quad \mathrm{PPh}_{2} \mathrm{H}, \quad \mathrm{CN} t \mathrm{Bu} \quad \mathbf{8 - 1 0}\right)$ and the ionic $\left(\mathrm{NBu}_{4}\right)[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})(\mathrm{CN})$ $\left.\left\{\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{2} \mathrm{H}\right\}\right]$ (11), which are formed through simple $\mathrm{PPh}_{2} \mathrm{OH}$ substitution reactions. Complexes 7 can also be doubly deprotonated by LiOH to give the corresponding tetralithium diplatinum species $\mathbf{3}$; this route is the most convenient one for the synthesis of $\mathbf{3 a}$ and the only one for complex $\mathbf{3 b}$.

Introduction

Transition metal complexes with σ-acetylide ligands have attracted considerable attention recently, ${ }^{[1]}$ partly because of their close relationship to organometallic vinylidene chemistry, ${ }^{[2]}$ but also because of their role as promising building blocks in the design of species containing linear arrays of

[^0]delocalized π systems. ${ }^{[3]}$ Investigations in this area range from basic chemical transformations to the synthesis of new materials with enhanced nonlinear optical properties or to the preparation of liquid crystals and polymeric materials. ${ }^{[1-3]}$ As a result of the wide variety of metals and coligands used, the family of acetylide complexes is now quite large. ${ }^{[1]}$ Usually, these complexes are stabilized by innocent neutral ligands, such as tertiary phosphines or arsines $\left(\mathrm{ER}_{3} ; \mathrm{E}=\mathrm{P}\right.$, As), diphosphines, and so forth. However, as far as we know, similar compounds containing secondary or primary phosphines $\left(\mathrm{PR}_{2} \mathrm{H}\right.$ or $\left.\mathrm{PRH}_{2}\right)$ as coligands are very scarce. ${ }^{[4]}$ This could be due in part to the fact that the high reactivity of $\mathrm{P}-\mathrm{H}$ bonds in these molecules will have restricted the use of the most conventional synthetic methods employed for acetylide compounds. ${ }^{[1-4]}$ On the other hand, it is well established that addition reactions of $\mathrm{H}-\mathrm{E}(\mathrm{E}=$ a heteroatom or group $)$ across unsaturated carbon linkages are an important class of
reactions from a synthetic viewpoint. ${ }^{[5]}$ However, in spite of recent interest in the metal-catalyzed interaction of $\mathrm{P}-\mathrm{H}$ bonds with acetylenes, ${ }^{[6]}$ the reactivity of alkynyl complexes towards these acidic phosphines has scarcely been explored, ${ }^{[7]}$ in contrast to the very rich chemistry developed for related acetylene ($\mathrm{R}-\mathrm{C} \equiv \mathrm{CR}$) or alkylidyne ($\mathrm{M} \equiv \mathrm{CR}$) bridging complexes. ${ }^{[8-e]} \mathrm{P}-\mathrm{C}$ coupling reactions through the insertion of acetylenes, either at terminal or bridging PR_{2} groups, have been also documented. ${ }^{[8 f-j]}$ In the context of these molecules it should be noted, however, that many di- and polynuclear complexes stabilized by phosphido ($\mu-\mathrm{PR}_{2}^{-}$) and acetylide (μ $\mathrm{C} \equiv \mathrm{CR}^{-}$) bridges have been prepared through $\mathrm{P}-\mathrm{C}($ alkyne $)$ bond cleavage reactions starting from phosphinoacetylene ($\mathrm{PR}_{2} \mathrm{C} \equiv \mathrm{CR}$) and metal carbonyls. ${ }^{[9]}$
Following our work on polymetallic alkynyl dibridged platinum complexes, ${ }^{[10]}$ we recently explored the reactivity of diphenylalkynylphosphine compounds cis-[PtX_{2} $\left.\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CR}^{\prime}\right)_{2}\right] \quad\left(\mathrm{X}=\mathrm{Cl}^{[11 \mathrm{a}]}\right.$ or $\left.\mathrm{C} \equiv \mathrm{CR}^{[11 \mathrm{~b}]} ; \mathrm{R}, \mathrm{R}^{\prime}=\mathrm{Ph}, t \mathrm{Bu}\right)$ towards the labile neutral species cis- $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right]($ thf $=$ tetrahydrofuran) as a possible synthetic route for obtaining hetero-bridged phosphide/acetylide compounds. However, the expected $\mathrm{P}-\mathrm{C}($ alkyne $)$ bond cleavage process does not

[^1]take place and only homo-bridged $(\mu-\mathrm{X})_{2}(\mathrm{X}=\mathrm{Cl}, \mathrm{C} \equiv \mathrm{CR})$, or hetero-bridged $\left(\mu-\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)(\mu-\mathrm{X})$ homo- or hetero-dinuclear complexes resulted from these reactions. These results prompted us to try the preparation of heteroleptic cis- or trans- $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})_{2} \mathrm{~L}_{2}\right]$ platinum alkynyl complexes containing $\mathrm{PR}_{2} \mathrm{H}$ ligands. Such complexes are of interest since it is wellknown that upon coordination the $\mathrm{P}-\mathrm{H}$ bond is reactive and, therefore, could give appropriate precursors for phosphido (PR_{2}^{-}) ligands formed by proton transfer reactions or by addition to sources of unsaturated metal fragments. ${ }^{[12]}$ In addition, the combination of these acidic molecules and the alkynyl ligands on a metal center could in principle induce new features and properties not necessarily encountered in their analogues containing tertiary phosphine ligands.

We have previously prepared trans-substituted derivatives of the type trans- $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ by treatment of cis$\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ with classical alkynyl reagents such as $\mathrm{LiC} \equiv \mathrm{CSiMe}_{3}{ }^{[100]}$ or $(\mathrm{AgC} \equiv \mathrm{CR})_{n}(\mathrm{R}=\mathrm{Ph}, t \mathrm{Bu}),{ }^{[13]}$ although trans $-\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CtBu})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ can also be obtained in high yield by partial displacement of the alkynyl groups (by PPh_{3}) from the reactive $\mathrm{Li}_{2}\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CtBu})_{4}\right]$, prepared in situ. ${ }^{[10 \mathrm{~b}]}$ After a few unsuccessful attempts to prepare related derivatives containing the secondary phosphine $\mathrm{PPh}_{2} \mathrm{H}$, by treatment of cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{2}\right]$ with $\mathrm{MC} \equiv \mathrm{CR}(\mathrm{M}=\mathrm{Li}, \mathrm{Ag})$ (the reactions yield very complex mixtures as deduced through ${ }^{31} \mathrm{P}$ NMR spectroscopy), we finally decided to attempt their synthesis by treating $\mathrm{Li}_{2}\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})_{4}\right]$ with $\mathrm{PPh}_{2} \mathrm{H}$. Preliminary results ${ }^{[14]}$ revealed that treatment of $\mathrm{Li}_{2}\left[\mathrm{Pt}(\mathrm{C}=\mathrm{CtBu})_{4}\right]$ with $\mathrm{PPh}_{2} \mathrm{H}$ (1:3 molar ratio) gives not only the expected trans$\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu})_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{2}\right](\mathbf{1 a})$ in low yield (25%), but also a very unusual complex $\left[\left\{\mathrm{Pt}(\mathrm{C} \equiv \mathrm{Ct} t \mathrm{Bu})_{2}\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{2} \mathrm{Li}_{2}(\mu-\right.\right.$ $\left.\left.\left.\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{Me}_{2} \mathrm{CO}\right)_{2}\right\}_{2}\right] \quad(2 \mathbf{a} ; 40 \%)$, formed by two dianionic trans $-{ }^{-} \mathrm{OPPh}_{2}\left\{\mathrm{Pt}(\mathrm{C}=\mathrm{C} t \mathrm{Bu})_{2}\right\} \mathrm{PPh}_{2} \mathrm{O}^{-}$units connected by four Li^{+}centers.

Some preliminary results, in particular the crystal structure of $\mathbf{2 a},{ }^{[14]}$ have already been reported. We now describe in detail the systematic study that has been undertaken since that report.

Results and Discussion

Reactions of $\mathbf{L i}_{2}\left[\mathbf{P t}(\mathbf{C}=\mathbf{C R})_{4}\right](\mathbf{R}=\boldsymbol{t} \mathbf{B u}, \mathbf{P h})$ with $\mathbf{P P h}_{2} \mathbf{H}$: Complex trans- $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu})_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{2}\right](\mathbf{1 a})$ was prepared in low yield (25%) in a way similar to that previously reported for trans- $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CtBu})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right],{ }^{[106]}$ by partial displacement with $\mathrm{PPh}_{2} \mathrm{H}$ of the 3,3-dimethylbutynyl ligands of the reactive homoleptic species $\mathrm{Li}_{2}\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu})_{4}\right]$. Complex 1a slowly precipitates ($\sim 7 \mathrm{~h}$) as a white solid after treatment of the colorless solution obtained by dissolving the species $\mathrm{Li}_{2}\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu})_{4}\right]$, generated in situ, in an acetone/ethanol mixture with an excess of $\mathrm{PPh}_{2} \mathrm{H}(\mathrm{Pt} / \mathrm{L} 1: 3)$, under a nitrogen atmosphere at room temperature. However, prolonged stirring of the resulting filtrate (7 h) under aerobic conditions leads to the formation of a new white precipitate $\mathbf{2}^{\prime} \mathbf{a}$. The stoichiometry of this solid is in agreement with a formulation $\left[\left\{\mathrm{Pt}(\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu})_{2}\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{2} \mathrm{Li}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right\}_{2}\right]$ and its solubility and spectroscopic data (IR, NMR, see below) are clearly different from those of the mononuclear complex 1a. Recrystallization
of $\mathbf{2}^{\prime} \mathbf{a}$ from hot acetone yields a crystalline solid identified by X-ray crystallography as the unexpected tetralithium diplatinum complex $\left[\left\{\mathrm{Pt}(\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu})_{2}\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{2} \mathrm{Li}_{2}\left(\mu-\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{Me}_{2} \mathrm{CO}\right)_{2}\right\}_{2}\right]$ ($\mathbf{2 a} ; 40 \%$ yield based on Pt). A schematic view of $\mathbf{2 a}$ is given in Scheme 1. The structure and details of the crystallographic study are given in ref. [14] and will not be repeated here. The most interesting feature of this complex is the presence of an unusual linear chain of four lithium ions sandwiched by two square planar dianionic units (trans$\left.{ }^{-} \mathrm{OPPh}_{2}\left\{\mathrm{Pt}(\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu})_{2}\right\} \mathrm{PPh}_{2} \mathrm{O}^{-}\right)$through bridging phosphinite groups, which display a novel $\mu_{3}-\left(\kappa^{3} P, O, O\right)$ bonding mode. The two inner lithium centers are connected by two $\left(\mu-\mathrm{H}_{2} \mathrm{O}\right)$ bridges, while the outer ones interact with two terminal acetone ligands each. If the second filtrate is stirred, small amounts of yet another new white precipitate ($\mathbf{3}^{\prime} \mathbf{a}$) are slowly generated. After 1 d of stirring, the solid $\mathbf{3}^{\prime} \mathbf{a}$ was filtered and recrystallized from $\mathrm{THF} / \mathrm{OEt}_{2}$ giving a microcrystalline solid identified by elemental analysis, spectroscopic data and X-ray crystallography (Figure 1) as the novel tetralithium diplatinum diphenylphosphinite compound $\quad[\{\mathrm{Pt}(\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu})$ $\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{3} \mathrm{Li}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)($ thf $\left.\left.)\right\}_{2}\right]$ 3a, in very low yield (ca 4% based on initial Pt). Although at first sight the formulations of $\mathbf{2 a}$ and 3a are quite different, their overall geometries, in particular the central linear Li_{4} core, are rather similar. In spite of the large structural diversity found in lithium organyl

Figure 1. View of the molecular structure of $\left[\left\{\mathrm{Pt}(\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu})\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{3} \mathrm{Li}_{2}(\mathrm{thf})\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}_{2}\right]$ 3a with the atom numbering scheme.
chemistry, ${ }^{[15]}$ this simple linear Li_{4} core resulting from the perpendicular disposition of the three four-membered $\mathrm{Li}_{2} \mathrm{O}_{2}$ planar rings (apex sharing) is remarkable and contrasts with the more usual cubane (two stacked rings) or stair-shaped

Scheme 1. Reactions of $\mathrm{Li}_{2} \mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})_{4}$ with $\mathrm{PPh}_{2} \mathrm{H}$.

Linear Li_{4} core found in 2a, 3a

Cubane
(ladder of three rings) arrangements found in other tetralithium derivatives. The latter have been elegantly rationalized from ring-stacking or laddering ideas. ${ }^{[15]}$ To our knowledge only the recently reported lithium gallium phosphonate $\mathrm{Li}_{4}\left[(\mathrm{MeGa})_{6}\left(\mu_{3}-\mathrm{O}\right)_{2}\left(t \mathrm{BuPO}_{3}\right)_{6}\right] \cdot(\mathrm{THF})_{4}$ shows a similar linear tetralithium core. ${ }^{[16]}$ A schematic view of the structure of $\mathbf{3 a}$ (Figure 1) is also given in Scheme 1. As can be observed, the similarity between 2a and 3a is clear. The most notable difference is the presence on each Pt center in $\mathbf{3 a}$ of a third phosphinite group, which in turn bridges the two inner lithium centers and displaces the two $\mu-\mathrm{H}_{2} \mathrm{O}$ observed in complex $2 \mathbf{a}$. As in 2a, ${ }^{[14]}$ the crystal structure determination reveals the presence of two independent, but similar half-molecules per asymmetric unit and, therefore, discussion will be limited to only one (denoted A), for which selected bond distances and angles are listed in Table 1. As can be seen in Figure 1, each centrosymmetric hexanuclear $\mathrm{Pt}_{2} \mathrm{Li}_{4}$ molecule is made up by two identical and staggered (180°) dianionic platinate $\mathrm{Pt}(\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu})\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{3}^{2-}$ fragments, which sandwich a onedimensional lithium wire consisting of four Li^{+}ions linked through the oxygen atoms of the phosphinite groups. The inner lithium centers $\left[\operatorname{Li}(2), \operatorname{Li}\left(2^{\prime}\right)\right]$ achieve the usual fourfold coordination through bonding to four oxygen atoms from four different $\mathrm{PPh}_{2} \mathrm{O}^{-}$ligands (two from each platinum fragment), while the peripheral lithium centers $\left[\operatorname{Li}(1), \operatorname{Li}\left(1^{\prime}\right)\right]$ interact with only two oxygen atoms of two different $\mathrm{PPh}_{2} \mathrm{O}^{-}$ligands (one from each Pt unit) and complete their coordination spheres with two different solvent molecules each (THF and $\mathrm{H}_{2} \mathrm{O}$). However, in spite of this structural difference, the $\mathrm{Li}-\mathrm{O}$ bond distances [range $1.95(2)-2.00(2) \AA$ for $\mathrm{Li}(2)$ and

Stair
$1.90(2)-1.99(2) \AA$ for $\mathrm{Li}(1)]$ are similar and comparable with those found in $\mathbf{2} \mathbf{a}^{[14]}$ and in other lithium compounds containing pseudotetrahedral LiO_{4} units. ${ }^{[15-16]}$ While in 2a the outer $\mathrm{Li}_{2} \mathrm{O}_{2}$ rings possess bridging $\mathrm{H}_{2} \mathrm{O}$, in 3a these rings are bound by the oxygen atoms $\left[\mathrm{O}(2), \mathrm{O}\left(2^{\prime}\right)\right]$ of the $\mathrm{PPh}_{2} \mathrm{O}^{-}$ groups trans to $\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu}$ ligands. As a consequence, the $\mathrm{Li} \cdots$ Li separation and angles at the oxygen atoms in the external rings $\left[\mathrm{Li}(1)-\mathrm{Li}(2)=2.62(3) \AA, 85.4(9)^{\circ}\right.$ at $\mathrm{O}(1)$ and $84.4(8)^{\circ}$ at $O(3)]$ are similar to those found in $\mathbf{2 a}[\operatorname{Li}(1)-\operatorname{Li}(2)=$ $2.610(13) \AA$, angles at $\mathrm{O}, 84.5(4)^{\circ}$ average], but they are very different in the central $\mathrm{Li}_{2} \mathrm{O}_{2}$ ring $[\mathrm{Li}(3) \cdots \mathrm{Li}(2) 2.57(4) \AA$ in $\mathbf{3} \mathbf{a}$ vs $2.848(13) \AA$ in $\mathbf{2 a} ; \operatorname{Li}(2)-\mathrm{O}(2)-\operatorname{Li}\left(2^{\prime}\right)=82.1(9)$ in $\mathbf{3} \mathbf{a}$ vs. $\mathrm{Li}(2)-\mathrm{O}(5) \mathrm{Li}\left(2^{\prime}\right)=88.1(4)^{\circ}$ in 2a).

Another remarkable structural feature in complex $\mathbf{3} \mathbf{a}$ is the presence, as in complex 2a, of phosphinite ligands displaying an unusual $\mu_{3}-\left(\kappa^{3} P, O, O^{\prime}\right)$ bonding mode. Although a variety of metal coordination modes have been observed ${ }^{[17]}$ for $\mathrm{PR}_{2} \mathrm{O}^{-}$ ligands, (monodentate P - or O -bonded and bridging $\mu-\mathrm{P}, \mathrm{O}$), to our knowledge these complexes are the first examples in which this type of ligand connects three centers. Each $\mathrm{PPh}_{2} \mathrm{O}^{-}$ ligand is P -bonded to the soft Pt center $[\mathrm{Pt}(1)-\mathrm{P}(1,2,3)$ 2.307(3), 2.290(3), 2.315(3) Å] and O-bridging to two lithium centers. All $\mathrm{P}-\mu_{3}-\mathrm{O}$ bond lengths vary over a small range $[1.527(8)-1.543(8) \AA]$ and are comparable with those observed in $\mathbf{2 a}$ [average $1.538(4) \AA$]. These distances are also similar to those reported for $\left[\left\{\mathrm{Me}_{3} \mathrm{Si}_{2} \mathrm{~N}\right\} \mathrm{Cd}\left\{(\mathrm{mes})_{2} \mathrm{P} \cdots \mathrm{O}\right\}_{2}{ }^{-}\right.$ $\left.\mathrm{Li}(\text { thf })_{2}\right][1.512(8), 1.526(8) \AA],{ }^{[18]}$ which is the only previously reported structure containing metal and Li centers connected by phosphinite bridging ligands $\left\{\mu_{2}-\mathrm{P}(\mathrm{mes})_{2} \mathrm{O}\right\}$, and only slightly larger than those seen in $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}$ [1.461, $1.484(1) \AA],{ }^{[19]}$ suggesting that the interaction with the Li is substantially electrostatic in nature ${ }^{[20]}$ The stereochemistry about the bridging oxygen atoms varies; it is almost trigonal planar for the outer atoms $\mathrm{O}(1)$ and $\mathrm{O}(3)$ from mutually trans

Table 1. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\left\{\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CtBu})\left(\mathrm{PPh}_{2} \mathrm{O}\right){ }_{3} \mathrm{Li}_{2}(\operatorname{thf})\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}_{2}\right] \cdot 1.75 \mathrm{Et}_{2} \mathrm{O}\left(\mathbf{3} \mathbf{a}\right.$, molecule A). ${ }^{[a]}$

$\mathrm{Pt}(1)-\mathrm{C}(1)$	2.010 (12)	$\mathrm{Pt}(1)-\mathrm{P}(2)$	2.290 (3)	$\mathrm{Pt}(1)-\mathrm{P}(1)$	2.307 (3)
$\mathrm{Pt}(1)-\mathrm{P}(3)$	2.315 (3)	$\mathrm{P}(1)-\mathrm{O}(1)$	1.527 (8)	$\mathrm{P}(1)-\mathrm{C}(13)$	1.812 (12)
$\mathrm{P}(1)-\mathrm{C}(7)$	1.847 (13)	$\mathrm{P}(2)-\mathrm{O}(2)$	1.536 (7)	$\mathrm{P}(2)-\mathrm{C}(19)$	1.818 (12)
$\mathrm{P}(2)-\mathrm{C}(25)$	1.832 (11)	$\mathrm{P}(3)-\mathrm{O}(3)$	1.543 (8)	$\mathrm{P}(3)-\mathrm{C}(37)$	1.815 (12)
$\mathrm{P}(3)-\mathrm{C}(31)$	1.827 (12)	$\mathrm{O}(1)-\mathrm{Li}(1)$	1.92 (2)	$\mathrm{O}(1)-\mathrm{Li}(2)$	1.95 (2)
$\mathrm{O}(2)-\mathrm{Li}(2)$	1.95 2)	$\mathrm{O}(2)-\mathrm{Li}\left(2^{\prime}\right)$	1.96 (2)	$\mathrm{O}(3)-\mathrm{Li}\left(1^{\prime}\right)$	1.90 (2)
$\mathrm{O}(3)-\mathrm{Li}\left(2^{\prime}\right)$	2.00 (2)	$\mathrm{O}(4)-\mathrm{Li}(1)$	1.99 (2)	$\mathrm{O}(5)-\mathrm{Li}(1)$	1.94 (2)
$\mathrm{Li}(1)-\mathrm{Li}(2)$	2.62 (3)	$\mathrm{Li}(2)-\mathrm{Li}\left(2^{\prime}\right)$	2.57 (4)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.21 (2)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.49 (2)				
$\mathrm{C}(1)-\mathrm{Pt}(1)-\mathrm{P}(2)$	175.0 (3)	$\mathrm{O}\left(3^{\prime}\right)-\mathrm{Li}(1)-\mathrm{O}(4)$	111.1 (11)	$\mathrm{P}(1)-\mathrm{O}(1)-\mathrm{Li}(2)$	121.6 (7)
$\mathrm{P}(2)-\mathrm{Pt}(1)-\mathrm{P}(1)$	89.51 (11)	$\mathrm{O}(5)-\mathrm{Li}(1)-\mathrm{O}(4)$	99.0 (10)	$\mathrm{P}(2)-\mathrm{O}(2)-\mathrm{Li}(2)$	110.0 (7)
$\mathrm{P}(2)-\mathrm{Pt}(1)-\mathrm{P}(3)$	89.76 (10)	$\mathrm{O}(2)-\mathrm{Li}(2)-\mathrm{O}\left(2^{\prime}\right)$	97.9 (9)	$\mathrm{Li}(2)-\mathrm{O}(2)-\mathrm{Li}\left(2^{\prime}\right)$	82.1 (9)
$\mathrm{C}(13)-\mathrm{P}(1)-\mathrm{C}(7)$	103.0 (6)	$\mathrm{O}(2)-\mathrm{Li}(2)-\mathrm{O}\left(3^{\prime}\right)$	126.5 (11)	$\mathrm{P}(3)-\mathrm{O}(3)-\mathrm{Li}\left(2^{\prime}\right)$	121.3 (7)
$\mathrm{C}(19)-\mathrm{P}(2)-\mathrm{C}(25)$	96.9(5)	$\mathrm{O}\left(2^{\prime}\right)-\mathrm{Li}(2)-\mathrm{O}\left(3^{\prime}\right)$	108.8(10)	$\mathrm{O}\left(3^{\prime}\right)-\mathrm{Li}(1)-\mathrm{O}(1)$	97.0(9)
$\mathrm{C}(37)-\mathrm{P}(3)-\mathrm{C}(31)$	102.2 (6)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Pt}(1)$	174.9 (10)	$\mathrm{O}(1)-\mathrm{Li}(1)-\mathrm{O}(5)$	104.7 (11)
$\mathrm{P}(1)-\mathrm{O}(1)-\mathrm{Li}(1)$	148.9(8)	$\mathrm{C}(1)-\mathrm{Pt}(1)-\mathrm{P}(1)$	90.9(3)	$\mathrm{O}(1)-\mathrm{Li}(1)-\mathrm{O}(4)$	123.0(11)
$\mathrm{Li}(1)-\mathrm{O}(1)-\mathrm{Li}(2)$	85.4(9)	$\mathrm{C}(1)-\mathrm{Pt}(1)-\mathrm{P}(3)$	91.8(3)	$\mathrm{O}(2)-\mathrm{Li}(2)-\mathrm{O}(1)$	110.2(10)
$\mathrm{P}(2)-\mathrm{O}(2)-\mathrm{Li}\left(2^{\prime}\right)$	109.2 (7)	$\mathrm{P}(1)-\mathrm{Pt}(1)-\mathrm{P}(3)$	157.54 (10)	$\mathrm{O}(1)-\mathrm{Li}(2)-\mathrm{O}\left(2^{\prime}\right)$	123.3 (10)
$\mathrm{P}(3)-\mathrm{O}(3)-\mathrm{Li}\left(1^{\prime}\right)$	153.8(8)	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{Pt}(1)$	112.7(3)	$\mathrm{O}(1)-\mathrm{Li}(2)-\mathrm{O}\left(3^{\prime}\right)$	92.7(8)
$\mathrm{Li}\left(1^{\prime}\right)-\mathrm{O}(3)-\mathrm{Li}\left(2^{\prime}\right)$	84.4(8)	$\mathrm{O}(2)-\mathrm{P}(2)-\mathrm{Pt}(1)$	115.2(3)	$\operatorname{Li}\left(2^{\prime}\right)-\mathrm{Li}(2)-\mathrm{Li}(1)$	174.0(14)
$\mathrm{O}\left(3^{\prime}\right)-\mathrm{Li}(1)-\mathrm{O}(5)$	124.1 (12)	$\mathrm{O}(3)-\mathrm{P}(3)-\mathrm{Pt}(1)$	110.9 (3)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	174.1 (13)

[a] Symmetry transformation used to generate equivalent primed atoms is $-x+2,-y+1,-z$.
$\mathrm{PPh}_{2} \mathrm{O}^{-}$ligands (the sums of angles are 356° and 359.5°, respectively) and clearly pyramidal at $\mathrm{O}(2)$ (sum of the angles $\left.301.3^{\circ}\right)$. The net result is that the six metal centers $\left(\mathrm{Pt}_{2} \mathrm{Li}_{4}\right)$ and the phosphorus and oxygen atoms of the mutually trans phosphinite ligands $[\mathrm{P}(1), \mathrm{O}(1)$ and $\mathrm{P}(3), \mathrm{O}(3)]$ are essentially coplanar [max. deviation 0.165° for $\operatorname{Pt}(1)$]. Finally, it should be noted that the simultaneous coordination of the three $\mathrm{PPh}_{2} \mathrm{O}^{-}$ligands to the Li_{4} core produces a significant distortion in the platinum coordination; the angle $\mathrm{P}(1)-\mathrm{Pt}(1)-\mathrm{P}(3)\left(157.5^{\circ}\right)$ is rather smaller than from the ideal value $\left(180^{\circ}\right)$ and considerably smaller than that observed in $2 \mathbf{2 a}\left[170.95(5)^{\circ}\right]$.

As is shown in Scheme 1 (path ii), addition of $\mathrm{PPh}_{2} \mathrm{H}$ to an acetone/ethanol solution of $\mathrm{Li}_{2}\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CPh})_{4}\right]$ generated a mixture from which, after 12 h of stirring under nitrogen, the complex trans- $\left[\mathrm{Pt}(\mathrm{C}=\mathrm{CPh})_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{2}\right] \quad(\mathbf{1 b})$ and mixed species $\mathbf{2}^{\prime} \mathbf{b}$, which are analogous to $\mathbf{1 a}$ and $\mathbf{2}^{\prime} \mathbf{a}$, respectively, were obtained. Both complexes were isolated in very low yield ($\sim 11 \%$) after adequate recrystallization $\left(\mathrm{CHCl}_{3}\right.$ /hexane $\mathbf{1 b}$ or THF/hexane $\mathbf{2}^{\prime} \mathbf{b}$) of the corresponding first and second crude fractions (see Experimental Section), which also contained a considerable amount of a new mononuclear derivative $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CPh})_{2}\left(\mathrm{PPh}_{2} \mathrm{CHPhCH}_{2} \mathrm{PPh}_{2}\right)\right](\mathbf{4 b}$; characterized by ${ }^{31} \mathrm{P}$ NMR). We have observed that the formation of this latter complex $\mathbf{4 b}$ is clearly favored by prolonged reaction times. Thus, by stirring the initial mixture for six days (even under not very rigorous anaerobic conditions, path iii), complex 4b separates cleanly in very high yield (91%). An X-ray diffraction study (Figure 2, Table 2) confirms that 4b is a square planar $\mathrm{Pt}^{\mathrm{II}}$ complex formed by an unsymmetrical diphosphine ligand and two mutually cis-alkynide groups. The geometrical details are unexceptional for these types of ligands. Chemically equivalent both lengths $\mathrm{Pt}-\mathrm{P}$ [2.258(3), $2.270(3) \AA], \quad \mathrm{Pt}-\mathrm{C} \quad[1.997(12), \quad 2.020(14) \AA]$, and $\mathrm{C} \equiv \mathrm{C}$ [1.20(2) \AA] are identical within experimental error, and the $\mathrm{Pt}-\mathrm{C}_{a} \equiv \mathrm{C}_{\beta}(\mathrm{Ph})$ fragments do not deviate significantly from linearity (angles at $\mathrm{C}_{a} / \mathrm{C}_{\beta} 176.4(12) / 174.6(14) ; 169.9(11) /$ 174.8(16).

During our efforts to optimize the synthesis of the mononuclear complexes $\mathbf{1}$ as possible precursors to polynuclear species, we observed that the yields were dependent on the presence of air in the reaction system and on whether deoxygenated solvents were used. For instance, under anaerobic conditions the yield of $\mathbf{1 a}$ was increased to about 40%

Figure 2. View of the molecular structure of $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CPh})_{2}-\right.$ $\left.\left(\mathrm{PPh}_{2} \mathrm{CHPhCH}_{2} \mathrm{PPh}_{2}\right)\right] \mathbf{4 b}$ with the atom numbering scheme.
or 88% by stirring for twelve hours or six days (path iv), respectively, while that of $\mathbf{2 a}$ decreases to about 11% when isolated as a pure material and, under these conditions complex 3a was not detected (see Experimental Section). Similarly, by stirring $(24 \mathrm{~h}) \mathrm{Li}_{2}\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CPh})_{4}\right]$ with $\mathrm{PPh}_{2} \mathrm{H}$ in an acetone/ethanol (1:1) mixture under aerobic conditions no trace of $\mathbf{1 b}$ was detected, and $\mathbf{2}^{\prime} \mathbf{b}$ was isolated in 31% yield from the mixture after adequate workup (path v). All these facts clearly show that the formation of $\mathbf{2}$ and $\mathbf{3 a}$, containing phosphinite $\mathrm{PPh}_{2} \mathrm{O}^{-}$ligands, stems from the partial oxidation of the $\mathrm{PPh}_{2} \mathrm{H}$ ligand to diphenylphosphine oxide $\mathrm{PPh}_{2}(\mathrm{O}) \mathrm{H}$ during the course of the reactions. In fact, as is shown in Scheme 1 (path vi), treatment of tetraalkynylplatinate species $\mathrm{Li}_{2}\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu})_{4}\right]$ with three equivalents of $\mathrm{PPh}_{2}(\mathrm{O}) \mathrm{H}$ causes the slow precipitation (3d) of a white solid identified by ${ }^{31} \mathrm{P}\left\{^{1} \mathrm{H}\right\} \mathrm{NMR}$ as a mixture of $\mathbf{2}^{\prime} \mathbf{a}$ and $\mathbf{3}^{\prime} \mathbf{a}$ from which both complexes can be separated as a result of their different solubilities (see Experimental Section). In addition, the formation of $\mathbf{2}^{\prime} \mathbf{a}$ and $\mathbf{3}^{\prime} \mathbf{a}$ seems to be independent to the formation of the mononuclear derivative $\mathbf{1 a}$. Thus, an attempt to obtain $\mathbf{2 a}$ by treatment of $\mathbf{1 a}$ with a stoichiometric mixture of LiOH (2 equiv) and $\mathrm{H}_{2} \mathrm{O}_{2}$ (2 equiv) in acetone was not successful. After 15 hours of stirring at room temperature, no reaction was observed. However, we noted that under more

Table 2. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CPh})_{2}\left(\mathrm{PPh}_{2} \mathrm{CHPhCH}_{2} \mathrm{PPh}_{2}\right)\right] \mathbf{4 b}$.

$\mathrm{Pt}-\mathrm{C}(1)$	1.997 (12)	$\mathrm{Pt}-\mathrm{C}(9)$	2.020 (14)	$\mathrm{Pt}-\mathrm{P}(2)$	2.258 (3)
$\mathrm{Pt}-\mathrm{P}(1)$	2.270 (3)	$\mathrm{P}(1)-\mathrm{C}(25)$	1.786 (14)	$\mathrm{P}(1)-\mathrm{C}(31)$	1.809 (13)
$\mathrm{P}(1)-\mathrm{C}(17)$	1.833 (11)	$\mathrm{P}(2)-\mathrm{C}(37)$	1.78 (2)	$\mathrm{P}(2)-\mathrm{C}(43)$	1.817 (13)
$\mathrm{P}(2)-\mathrm{C}(18)$	1.859 (13)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.20 (2)	$\mathrm{C}(2)-\mathrm{C}(3)$	1.41 (2)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.20 (2)	$\mathrm{C}(10)-\mathrm{C}(11)$	1.44 (2)	$\mathrm{C}(17)-\mathrm{C}(18)$	1.50 (2)
$\mathrm{C}(18)-\mathrm{C}(19)$	1.51 (2)				
C(1)-Pt-C(9)	93.6 (5)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Pt}$	169.9 (11)	$\mathrm{C}(17)-\mathrm{P}(1)-\mathrm{Pt}$	106.1 (4)
$\mathrm{C}(9)-\mathrm{Pt}-\mathrm{P}(1)$	94.4 (3)	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{Pt}$	176.4 (12)	$\mathrm{C}(37)-\mathrm{P}(2)-\mathrm{C}(18)$	106.2 (6)
$\mathrm{C}(25)-\mathrm{P}(1)-\mathrm{C}(31)$	104.7 (6)	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{P}(1)$	108.0 (8)	$\mathrm{C}(37)-\mathrm{P}(2)-\mathrm{Pt}$	116.1 (5)
$\mathrm{C}(31)-\mathrm{P}(1)-\mathrm{C}(17)$	105.1 (6)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{P}(2)$	108.5 (8)	$\mathrm{C}(18)-\mathrm{P}(2)-\mathrm{Pt}$	106.7 (4)
$\mathrm{C}(31)-\mathrm{P}(1)-\mathrm{Pt}$	119.9 (4)	$\mathrm{C}(1)-\mathrm{Pt}-\mathrm{P}(2)$	85.8 (3)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	174.8 (16)
$\mathrm{C}(37)-\mathrm{P}(2)-\mathrm{C}(43)$	108.5 (7)	$\mathrm{P}(2)-\mathrm{Pt}-\mathrm{P}(1)$	86.26 (12)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	174.6 (14)
$\mathrm{C}(43)-\mathrm{P}(2)-\mathrm{C}(18)$	106.1 (6)	$\mathrm{C}(25)-\mathrm{P}(1)-\mathrm{C}(17)$	105.6 (6)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	113.2 (11)
$\mathrm{C}(43)-\mathrm{P}(2)-\mathrm{Pt}$	112.5 (5)	$\mathrm{C}(25)-\mathrm{P}(1)-\mathrm{Pt}$	114.3 (5)	$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{P}(2)$	114.6 (9)

drastic conditions (excess of LiOH and $\mathrm{H}_{2} \mathrm{O}_{2}$) and a prolonged reaction time (6 d) complex 1 a disappears, giving a very complex mixture of unidentified platinum compounds containing phosphorus, in which no trace of $\mathbf{2}^{\prime}$ a could be detected. Moreover, the formation of $\mathbf{3 a}\left(\mathbf{3}^{\prime} \mathbf{a}\right)$, which contains three diphenylphosphinito groups on each Pt center, seems to take place through the formation of $\mathbf{2 a}\left(\mathbf{2}^{\prime} \mathbf{a}\right)$ with only two $\mathrm{PPh}_{2} \mathrm{O}^{-}$ligands, as intermediate. This can be inferred from the observation that treatment of a suspension of $\mathbf{2 a}$ in CHCl_{3} with $\mathrm{PPh}_{2}(\mathrm{O}) \mathrm{H}$ slowly produces the displacement of one tertbutylacetylide by one $\mathrm{PPh}_{2} \mathrm{O}^{-}$on each platinum center, transforming 2a into complex 3a (or $\mathbf{2}^{\prime} \mathbf{a}$ into $\mathbf{3}^{\prime} \mathbf{a}$). The process is slow, with only $\sim 50 \%$ conversion in two days [compound 2a is still present in small amounts even with longer reaction times (~ 5 days)].

The mechanism of formation of $\mathbf{4 b}$, containing two mutually cis-alkynyl ligands and a new diphosphine 1 -phe-nyl-1,2-bis(diphenylphosphino)ethane, is less clear. This complex can be seen as formed throgh the formal addition of $\mathrm{PhC} \equiv \mathrm{CH}$ to cis- $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CPh})_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{2}\right] \quad(5 b)$. The nearest example to be found in the literature is the base-induced addition of coordinated phosphines on $\left[\mathrm{M}(\mathrm{CO})_{4}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{2}\right]$ $(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo})$ to acetylenes, yielding metal complexes of chelating diphosphine ligands. ${ }^{[8 h-j]}$ However our attempt to obtain $\mathbf{4 b}$ starting from $\mathbf{5 b}$ and $\mathrm{LiC} \equiv \mathrm{CPh}$ (3 equiv) was unsuccesful. The reaction yielded a complex reaction mixture in which no trace of $\mathbf{4 b}$ was detected.
It should be mentioned that the yield of platinate lithium species can be diminished (see Scheme 2 path i for $\mathrm{R}=t \mathrm{Bu}$) or eliminated ($\mathrm{R}=\mathrm{Ph}$) by treating the initial suspension, formed with $\left[\mathrm{PtCl}_{2}(\mathrm{tht})_{2}\right]$ (tht = tetrahydrothiophene), with a lesser excess of $\mathrm{LiC} \equiv \mathrm{CR}$ (1:3) [giving what is probably a mixture of species of the type $\operatorname{Pt}(\mathrm{C} \equiv \mathrm{CR})_{4-x}(\text { (tht })_{x} \mathrm{Li}_{2-x}(x=0-$ 2)], with $\mathrm{PPh}_{2} \mathrm{H}$ (Scheme 2, paths i and ii). In the case of $\mathrm{R}=$ Ph , the yield of $\mathbf{1 b}$ can be increased to 67%; but surprisingly, under these conditions the unexpected new phosphidobridged dinuclear compound $\left[\left\{\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CPh})\left(\mu-\mathrm{PPh}_{2}\right)\right.\right.$ $\left.\left.\left(\mathrm{PPh}_{2} \mathrm{H}\right)\right\}_{2}\right] \mathbf{6 b}$ is also isolated in very low yield (11%) from the mother liquors.

All complexes $\mathbf{1}, \mathbf{2}, \mathbf{3 a}, \mathbf{4 b}$, and $\mathbf{6 b}$ have been characterized by microanalysis, mass spectra (FAB), and IR and NMR spectroscopy (see Experimental Section). For the mononuclear complexes $\mathbf{1}$ the appearance in their IR spectra of absorptions assignable to $(\mathrm{C} \equiv \mathrm{C})\left(2106 \mathrm{~cm}^{-1} \mathbf{1} \mathbf{a}, 2110 \mathrm{~cm}^{-1} \mathbf{1 b}\right)$ and to $(\mathrm{P}-\mathrm{H})^{[12,21]}\left(2369 \mathrm{~cm}^{-1} \mathbf{1 a}, 2376 \mathrm{~cm}^{-1} \mathbf{1 b}\right)$ confirms the presence of terminal alkynyl ${ }^{[10]}$ groups and $\mathrm{PPh}_{2} \mathrm{H}$ ligands. ${ }^{[12, ~ 21]}$

Scheme 2. Reactions of $\left[\mathrm{PtCl}_{2}(\mathrm{tht})_{2}\right]$ with $\mathrm{PPh}_{2} \mathrm{H}$.

In addition, the presence of a singlet in their ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra ($-1.99 \mathbf{1 a},-4.26 \mathbf{1 b}$), which splits into the expected XX^{\prime} pattern $(N \sim 400 \mathrm{~Hz} \mathbf{1 a}, 402.7 \mathrm{~Hz} \mathbf{1 b})$ under off resonance conditions, and especially the magnitude of ${ }^{1} J(\mathrm{Pt}, \mathrm{P})$ [$2616 \mathrm{~Hz} \mathrm{1a}, 2547 \mathrm{~Hz} \mathbf{1 b}$], indicates a trans configuration of the ligands about platinum. ${ }^{[22]}$ In agreement with this, the $\mathrm{P}-\mathrm{H}$ protons in the ${ }^{1} \mathrm{H}$ NMR spectra give rise to a pattern (centered at $\delta=6.46$ for 1a and at $\delta=6.72$ for 1b), corresponding to the AA^{\prime} part of an $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ system with characteristic values for the N parameter $\left[{ }^{1} J(\mathrm{P}, \mathrm{H})+{ }^{3} J\left(\mathrm{P}^{\prime}, \mathrm{H}\right)\right]$ ($\sim 400 \mathrm{~Hz}$) and for the ${ }^{2} J(\mathrm{Pt}, \mathrm{H})$ coupling constant $(26.2 \mathrm{~Hz}$ $\mathbf{1 a}, 26.8 \mathrm{~Hz} \mathrm{1b})$. In the ${ }^{13} \mathrm{C}$ NMR spectra the acetylenic carbons ($\delta \mathrm{C}_{\alpha} / \mathrm{C}_{\beta} 85.2 / 120.6 \mathbf{1 a} ; 102.9 / 112.4$ 1b), which are easily identified owing to the significantly different coupling constants to ${ }^{195} \mathrm{Pt}$ nuclei $\left[{ }^{1} J\left(\mathrm{Pt}, \mathrm{C}_{\alpha}\right)=913 \mathrm{~Hz} \mathbf{1 a}, 834 \mathrm{~Hz} \mathbf{1 b}\right.$; $\left.{ }^{2} J\left(\mathrm{Pt}, \mathrm{C}_{\beta}\right) 249 \mathrm{~Hz} \mathbf{1 a}, 259 \mathrm{~Hz} \mathbf{1 b}\right]$, are seen as triplets $\left[{ }^{2} J\left(\mathrm{C}_{\alpha}, \mathrm{P}\right)=15.9 \mathrm{~Hz} \mathbf{1 a}, \sim 27 \mathrm{~Hz} \mathbf{1 b} ;{ }^{3} J\left(\mathrm{C}_{\beta}, \mathrm{P}\right)=2.6 \mathrm{~Hz} 1 \mathbf{1 a}\right]$ confirming unambiguously the trans disposition of the ligands. ${ }^{[22]}$ The characterization of 2a has been reported previously ${ }^{[14]}$ (see also Experimental Section). As in complex 2a ($\mathbf{2}^{\prime} \mathbf{a}$), compounds $\mathbf{2}^{\prime} \mathbf{b}$ and $\mathbf{3 a}\left(\mathbf{3}^{\prime} \mathbf{a}\right)$ exhibit in their IR spectra broad $\nu(\mathrm{OH})$ bands ($3374-3623 \mathrm{~cm}^{-1}$), confirming the presence of water, and show absorptions in the $\mathrm{P}-\mathrm{O}$ stretching region ($997-1038 \mathrm{~cm}^{-1}$), suggesting the presence of phosphinito bridging groups. ${ }^{[17]}$ Moreover, while no ($\mathrm{C} \equiv \mathrm{C}$) vibration is observed in the typical region of alkynyl ligands for $\mathbf{3} \mathbf{a}$, a band at $2095 \mathrm{~cm}^{-1}$ is seen for $\mathbf{2}^{\mathbf{\prime}} \mathbf{b}$. As in complex $\mathbf{2 a}$ (or 2'a) compound $\mathbf{2}^{\prime} \mathbf{b}$ exhibits a singlet far downfield [$\delta=$ $68.07,{ }^{1} J(\mathrm{Pt}, \mathrm{P})=2395 \mathrm{~Hz}$] in its ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, indicative of the phosphorus oxidation to P^{V}. In contrast, $\mathbf{3 a}$ exhibits an $\mathrm{A}_{2} \mathrm{X}$ pattern with ${ }^{195} \mathrm{Pt}$ satellites in the expected downfield region consisting of a doublet at $\delta_{\mathrm{A}}=73.14$ as a result of the two mutually trans phosphorus atoms and a triplet at $\delta_{\mathrm{X}}=58.70$ assigned to the phosphinite group trans to $\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu}$ with a cis coupling constant ${ }^{2} J\left(\mathrm{P}_{\mathrm{A}}, \mathrm{P}_{\mathrm{X}}\right)$ of 29.3 Hz . The considerable upfield shift of the phoshorous resonance of the latter phosphinite group suggests that the negative charge is more localized over the oxygen atom, in agreement with the pyramidal coordination found in the crystal structure (see above). The most remarkable features of the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a}$ are the presence (in addition to Ph resonances) of a sharp singlet at $\delta=0.49$ due to the equivalent tert-butyl groups and a broad signal at $\delta=1.59$. This latter signal disappears upon addition of a drop of $\mathrm{D}_{2} \mathrm{O}$ to the solution and, therefore, could be tentatively assigned to the $\mathrm{H}_{2} \mathrm{O}$ molecules at the lithium centers. The low solubility of these heteronuclear complexes prevents ${ }^{13} \mathrm{C}$ NMR analysis. It is worth noting that although the ${ }^{31} \mathrm{P}$ and ${ }^{1} \mathrm{H}$ NMR spectra of these mixed species (2, 3a) at room temperature are compatible with the solid structures (2a, 3a), their ${ }^{7}$ Li NMR does not show the expected two lithium environments. At room temperature the complexes show only one singlet signal ($\delta=0.88$ 2a, $-0.62 \mathbf{2}^{\prime} \mathbf{b}$ sharp; - $1.03 \mathbf{3 a}$,
broad with $w_{1 / 2}=129 \mathrm{~Hz}$), suggesting fast intermolecular lithium exchange (no $\mathrm{P}-\mathrm{Li}$ splitting is observed), ${ }^{[23]}$ most probably due to partial dissociation of Li^{+}in solution, in agreement with the essentially electrostatic nature of the interactions. By lowering the temperature for complex 3a the signal broadens (coalesces at ca. $1-3^{\circ} \mathrm{C}$) and is finally resolved into a pair of singlets of similar intensity $\left(-20^{\circ} \mathrm{C}\right.$, $\delta=-0.23,-1.97$).
The IR spectrum of $\mathbf{4 b}$ confirms the presence of terminal alkynyl ligands $\left[(\mathrm{C} \equiv \mathrm{C}) 2114 \mathrm{~cm}^{-1}\right]$ and its ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum reveals two doublet $\left[{ }^{2} J(\mathrm{P}, \mathrm{P})_{c i s}=13.8 \mathrm{~Hz}\right]$ resonances with ${ }^{195} \mathrm{Pt}$ satellites $\left[\delta /^{1} J(\mathrm{Pt}, \mathrm{P}) 49.24 / 2260 \mathrm{~Hz} ; 21.53 / 2250 \mathrm{~Hz}\right.$], consistent with the presence of the unsymmetrical diphosphine. The most noteworthy features of its proton spectrum are the presence of two multiplets at $\delta=3.83$ and 2.53 due to diasterotopic methylene protons $\left(\mathrm{CH}_{2}\right)$ and a doublet $\left[{ }^{2} J(\mathrm{H}, \mathrm{P})=47 \mathrm{~Hz}\right]$ of multiplets centered at $\delta=3.19$ attributable to CHPh .
The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum of complex $\mathbf{6} \mathbf{b}$ exhibits, as in complex 6 a (see below), two different $\left[\delta=1.58\right.$ for $\mathrm{PPh}_{2} \mathrm{H}\left(\mathrm{AA}^{\prime}\right)$ and $\delta=-138.7$ for $\left.\mu-\mathrm{PPh}_{2}\left(\mathrm{XX}^{\prime}\right)\right]$ and characteristic signals [AA'XX' pattern; $N={ }^{2} J\left(\mathrm{P}_{\mathrm{A}}, \mu-\mathrm{P}_{\mathrm{X} \text { trans }}\right)+{ }^{2} J\left(\mathrm{P}_{\mathrm{A}}-\mu, \mathrm{P}_{\mathrm{X}^{\prime} \text { cis }}\right)=321.4$, $\left.{ }^{1} J\left(\mathrm{Pt}, \mathrm{P}_{\mathrm{A}}\right)=2051 \mathrm{~Hz}, \quad{ }^{1} J\left(\mathrm{Pt}, \mathrm{P}_{\mathrm{X}}, \mathrm{P}_{\mathrm{X}^{\prime}}\right)=1688, \quad 1766 \mathrm{~Hz}\right]$. The ${ }^{1} \mathrm{H}$ NMR shows a signal at $\delta=5.35$ (doublet of multiplets, dm) due to $\mathrm{P}-\mathrm{H}$. In addition, the IR spectrum of $\mathbf{6 b}$ shows an absorption at $2104 \mathrm{~cm}^{-1}$, which can be assigned to ($\mathrm{C} \equiv \mathrm{C}$). All these data are compatible with the formulation given and confirmed by X-ray crystallography on the analogous tertbutylacetylide derivative $\mathbf{6 a}$.

Reactions of cis-[$\left.\mathbf{P t}(\mathbf{C}=\mathbf{C R})_{2} \mathbf{C O D}\right]$ with $\mathbf{P P h}_{2} \mathbf{H}$ and $\mathbf{P P h}_{\mathbf{2}} \mathbf{(\mathbf { O }) \mathbf { H } \text { : The results are shown in Scheme 3. As has }}$ already been mentioned, the $\mathrm{P}-\mathrm{H}$ bonds are highly reactive and therefore, synthetic routes for generating [$\mathrm{MPR}_{2} \mathrm{H}$] complexes usually require only mild conditions. ${ }^{[21]} \mathrm{A}$ general synthetic strategy for preparing cis- $\left[\mathrm{PtX}_{2} \mathrm{~L}_{2}\right](\mathrm{X}=$ an anionic ligand such as alkynyl, alkyl, aryl, halide; $\mathrm{L}=\mathrm{PR}_{3}$) is based in the easy displacement of labile COD from appropiate precursors $\left[\mathrm{PtX}_{2} \mathrm{COD}\right]$ by the incoming phosphine ligand. ${ }^{[10 \mathrm{a}, 11 \mathrm{~b}]}$ Therefore, the recently reported neutral platinum derivatives $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})_{2} \mathrm{COD}\right]\left(\mathrm{R}=t \mathrm{Bu},{ }^{[10 \mathrm{a}]} \mathrm{Ph}^{[24]}\right)$ were assumed to be the most suitable starting materials for the preparation of the corresponding geometrical isomers with the $\mathrm{PPh}_{2} \mathrm{H}$ ligands mutually cis. As is shown in Scheme 3 (path i) treatment of the complex $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})_{2} \mathrm{COD}\right](\mathrm{R}=$ $t \mathrm{Bu}, \mathrm{Ph})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at low temperature $\left(-30^{\circ} \mathrm{C}\right)$ with $\mathrm{PPh}_{2} \mathrm{H}$ (1:2 molar ratio) results in the displacement of the cyclooctadiene ligand, yielding solutions from which the expected products cis- $\left[\mathrm{Pt}(\mathrm{C}=\mathrm{CR})_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{2}\right]$ are obtained as white ($\mathrm{R}=t \mathrm{Bu} 5 \mathbf{5}$) or yellow ($\mathrm{R}=\mathrm{Ph} \mathbf{5 b}$) solids in high yields ($79 \% \mathbf{5 a}, 76 \% \mathbf{5 b}$). Surprisingly, in the synthesis of the tertbutylacetylide derivative 5a, cooling the resulting diethyl ether filtrate for a week results in the precipitation of a white solid (2% based on Pt), which after recrystallization from $\mathrm{CHCl}_{3} /$ hexane is identified as the phosphido-bridged dinuclear $\mathrm{Pt}^{\mathrm{II}}$ complex $\left[\left\{\mathrm{Pt}(\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu})\left(\mu-\mathrm{PPh}_{2}\right)\left(\mathrm{PPh}_{2} \mathrm{H}\right)\right\}_{2}\right](6 \mathbf{a})$.

Complexes 5, which are stable enough to display their molecular peaks in $\mathrm{FAB}(+)$ mass spectra, are easily characterized by elemental analysis and spectroscopic means (see

Scheme 3. Reactions of $c i s-\left[\operatorname{Pt}(\mathrm{C} \equiv \mathrm{CR})_{2}(\mathrm{COD})\right]$.

Experimental Section). Thus, their IR spectra confirm the presence of $\mathrm{P}-\mathrm{H}$ bonds $\left[(\mathrm{P}-\mathrm{H}) 2354 \mathrm{~cm}^{-1} \mathbf{5 a}, 2342 \mathrm{~cm}^{-1} \mathbf{5 b}\right]$ and terminal alkynyl ligands $\left[\nu(\mathrm{C} \equiv \mathrm{C}) 2118 \mathrm{~cm}^{-1} \mathbf{5 a}, 2119 \mathrm{~cm}^{-1}\right.$ 5b]; their ${ }^{1} \mathrm{H}$ NMR spectra display the $\mathrm{P}-\mathrm{H}$ resonances in the expected region ($\delta=5.88 \mathbf{5 a}, 6.08 \mathbf{5 b}$) with a pattern (dm) corresponding to an $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ system ($\mathrm{X}={ }^{31} \mathrm{P}, N=378 \mathrm{~Hz} \mathbf{5 a}$, $390 \mathrm{~Hz} \mathbf{5 b}$). The ${ }^{31} \mathrm{P}$ NMR spectra exhibit a doublet due to phosphorus - hydrogen coupling [${ }^{1} J(\mathrm{P}, \mathrm{H}) \sim N$] with ${ }^{195} \mathrm{Pt}$ satellites, which is reduced to the expected singlet ($\delta-5.49 \mathbf{5 a}$, $-7.07 \mathbf{5 b}$) by ${ }^{1} \mathrm{H}$ decoupling. Similar to previous findings, ${ }^{[21]}$ the observed large value for ${ }^{1} J(\mathrm{P}, \mathrm{H})$ coupling compared with free $\mathrm{PPh}_{2} \mathrm{H}(214 \mathrm{~Hz})$ is consistent with the change in the hybridization of P to sp^{3}, leading to more s character in the $\mathrm{P}-\mathrm{H}$ bond upon coordination. ${ }^{[25]}$ The platinum coupling constants ${ }^{1} J(\mathrm{Pt}, \mathrm{P})$ are significantly lower $(2156 \mathrm{~Hz} \mathrm{5a}$, $2169 \mathrm{~Hz} \mathrm{5b}$) than those observed in the trans derivative $\mathbf{1}$ $(2616 \mathrm{~Hz} \mathbf{1 a}, 2547 \mathrm{~Hz} \mathbf{1 b})$, suggesting that the $\mathrm{PPh}_{2} \mathrm{H}$ ligand in these mononuclear complexes exerts a weaker trans influence than the terminal alkynyl ligands. Finally, in accordance with the proposed cis formulation ${ }^{[26]}$ for these isomers the acetylene carbon resonances C_{α} and C_{β} appear in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra ($\delta \mathrm{C}_{\alpha} / \mathrm{C}_{\beta}=84.3 / 118.8 \mathbf{5 a} ; 99.9 / 110.6 \mathbf{5 b}$) as a first-order doublet of doublets (dd) $\left[{ }^{2} J\left(\mathrm{C}_{\alpha}\right.\right.$, Ptrans $) /^{2} J\left(\mathrm{C}_{\alpha}, \mathrm{P}\right.$ cis $)$ 153.0 Hz/21.2 Hz 5a, $148.8 \mathrm{~Hz} / 21.4 \mathrm{~Hz} \mathbf{5 b}$] and as a typical A part of a second-order AXX^{\prime} system $\quad\left[{ }^{3} J\left(\mathrm{C}_{\beta}\right.\right.$, Ptrans $)+$ ${ }^{3} J\left(\mathrm{C}_{\beta}\right.$, Pcis $\left.) \sim 36.3 \mathrm{~Hz} \mathbf{5 a}, 36.4 \mathrm{~Hz} \mathbf{5 b}\right]$, respectively. Comparison of the one-bond $\mathrm{Pt}-\mathrm{C}_{a}$ coupling constants (Hz) with those observed for the corresponding trans isomers again confirms a higher influence for the $\mathrm{C} \equiv \mathrm{CR}$ ligands ($1122.4 \mathbf{5 a}$, $1114.6 \mathbf{5 b}$ vs. $913 \mathbf{1 a}, 834 \mathbf{1 b}$).
The identity of the complex $\quad[\{\mathrm{Pt}(\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu})(\mu-$ $\left.\left.\mathrm{PPh}_{2}\right)\left(\mathrm{PPh}_{2} \mathrm{H}\right)\right\}_{2}$] 6a has been determined not only by elemental analysis and spectroscopic techniques, but also by a single-crystal X-ray diffraction study. The IR spectrum of 6 a exhibits a strong absorption at $2352 \mathrm{~cm}^{-1}$ assignable to the $(\mathrm{P}-\mathrm{H})$ stretching vibration, but no absorption is observed in the typical $\tilde{v}(\mathrm{C} \equiv \mathrm{C})$ region. The presence of alkynyl $\mathrm{C} \equiv \mathrm{CtBu}$ ligands is better revealed by the ${ }^{1} \mathrm{H}$ NMR spectrum which shows, in addition to a doublet of multiplets centered at 5.25 $[J(\mathrm{P}, \mathrm{H})=368 \mathrm{~Hz}]$, as a result of $\mathrm{P}-\mathrm{H}$ protons, a singlet signal at $\delta=0.86$ attributable to equivalent $t \mathrm{Bu}$ groups. In agreement with the formulation, two well-separated signals were observed in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum at $\delta=1.36$ and -145.4 whose central lines, due to the $\mathrm{Pt}-\mathrm{Pt}$ isotopomer (43.8%), show the expected $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ pattern (see Experimental Section for numbering) with a value of 328.4 Hz for the N parameter $\left[{ }^{2} J\left(\mathrm{P}_{\mathrm{A}}, \mathrm{P}_{x}\right)+{ }^{2} J\left(\mathrm{P}_{\mathrm{A}}, \mathrm{P}_{x^{\prime}}\right)={ }^{2} J\left(\mathrm{P}, \mathrm{P}_{\text {trans }}\right)+{ }^{2} J\left(\mathrm{P}, \mathrm{P}_{\text {cis }}\right)\right]$ and
are comparable with those observed in related systems, for example, $\left[\left\{\mathrm{PtCl}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{L}_{2}\right]\left(\mathrm{L}=\mathrm{PEt}_{3} 378.8 \mathrm{~Hz}, \mathrm{~L}=\mathrm{PPh}_{2} \mathrm{H}\right.\right.$ $394.4 \mathrm{~Hz}),{ }^{[27 \mathrm{7a}]}\left[\left\{\mathrm{PtCl}(\mu \text {-PHMes })\left(\mathrm{PH}_{2} \mathrm{Mes}\right)\right\}_{2}\right](360 \mathrm{~Hz}){ }^{[27 \mathrm{~d}]}$ The values of the $K\left[K={ }^{4} J\left(\mathrm{P}_{\mathrm{A}}, \mathrm{P}_{\mathrm{A}^{\prime}}\right)+{ }^{2} J\left(\mathrm{P}_{\mathrm{X}}, \mathrm{P}_{\mathrm{X}^{\prime}}\right)=136.4 \mathrm{~Hz}\right]$ and L $\left[L={ }^{2} J\left(\mathrm{P}_{\mathrm{A}}, \mathrm{P}_{\mathrm{X}}\right)-{ }^{2} J\left(\mathrm{P}_{\mathrm{A}}, \mathrm{P}_{\mathrm{X}}\right)=362 \mathrm{~Hz}\right]$ parameters, which allow the determination of the coupling constants ${ }^{2} J\left(\mathrm{P}_{\mathrm{A}}, \mu-\mathrm{P}_{\mathrm{X} \text { trans }}\right)$ [345.2 Hz] and ${ }^{2} J\left(\mathrm{P}_{\mathrm{A}}, \mu-\mathrm{P}_{\mathrm{X}^{\prime} i s}\right)[16.8 \mathrm{~Hz}]$, are directly obtained from the analysis of the spectrum. Comparison of the N and L values $(|N|<|L|)$ proves that their signs are opposite and, probably, that ${ }^{2} J\left(\mathrm{P}_{\mathrm{A}}, \mu-\mathrm{P}_{\mathrm{X}^{\prime} c i s}\right)$ is negative, since coupling constants between phosphorus atoms in mutually trans positions, such as ${ }^{2} J\left(\mathrm{P}_{\mathrm{A}}, \mu-\mathrm{P}_{\mathrm{X}}\right)$ are known to be large and positive. ${ }^{[27]}$ If ${ }^{4} J\left(\mathrm{P}_{\mathrm{A}}, \mathrm{P}_{\mathrm{A}}\right)$ is assumed to be ~ 0, this leads a value of 136 Hz for $\left|{ }^{2} J\left(\mathrm{P}_{\mathrm{X}}, \mathrm{P}_{\mathrm{X}}\right)\right|$, comparable with those reported for related systems. ${ }^{[27]}$ The low-field resonance $(\delta=1.36)$ is assigned to the equivalent $\mathrm{PPh}_{2} \mathrm{H}$ ligands, while the strongly shielded signal (at $\delta-145.4$) is in accordance with the high-field shifts found in related phosphido-bridged dimers in which no significant metal-metal interaction is observed, ${ }^{[25,27,28]}$ and is consistent with the platinum-platinum separation [3.649(1) \AA] found in the crystal structure. Each signal is flanked by satellites due to the isotopomer ${ }^{195} \mathrm{Pt}-\mathrm{Pt}\left(\mathrm{AA}^{\prime} \mathrm{XX}^{\prime} \mathrm{M}\right.$ spin system, 44.8%), which permits the determination of the platinum - phosphorus coupling constants. In agreement with the formulation, the downfield resonance $(\delta=1.36)$ only exhibits one set of short ${ }^{195} \mathrm{Pt}$ satellites $\left[{ }^{1} J\left(\mathrm{Pt}, \mathrm{P}_{\mathrm{A}}\right)=2035 \mathrm{~Hz}\right.$, $\left.{ }^{3} J\left(\mathrm{Pt}, \mathrm{P}_{\mathrm{A}^{\prime}}\right) \sim 0 \mathrm{~Hz}\right]$, while the upfield signal shows two different sets of ${ }^{195} \mathrm{Pt}$ satellites $\left[{ }^{1} J\left(\mathrm{Pt}, \mathrm{P}_{\mathrm{X}}, \mathrm{P}_{\mathrm{X}}\right)=1689,1792 \mathrm{~Hz}\right)$, unambiguously confirming the bridging nature of these phosphorus atoms $\left(\mu-\mathrm{PPh}_{2}\right)$. In keeping with earlier observations ${ }^{[27]}$ the one-bond $\mathrm{Pt}-\mathrm{P}_{\mathrm{A}}$ coupling constant for the terminal phosphine is larger than for the phosphido bridge (346 and 243 Hz , respectively), consistent not only with the observation of a shorter $\mathrm{Pt}-\mathrm{P}$ distance in the X-ray structure [2.2944(11) \AA terminal vs. 2.3376(10), 2.3169 (11) Å bridging], but also with previous suggestions of a lower phosphorus s-orbital contribution to the $\mathrm{P}_{\mu}-\mathrm{Pt}$ bond due to ring strain effects. ${ }^{[12 b]}$ If as in complexes $\mathbf{1}$ and 5 (and also in 9) the $\mathrm{PPh}_{2} \mathrm{H}$ ligand exerts a lower trans influence than does $\mathrm{C} \equiv \mathrm{CR}$, then the ${ }^{1} J\left(\mathrm{Pt}, \mathrm{P}_{\mathrm{X}^{\prime}}\right)$ [1792 Hz] could be assigned to the $\mathrm{P}_{\mathrm{X}^{\prime}}$ atom trans to $\mathrm{PPh}_{2} \mathrm{H}$, although this assignment is not unequivocal. The X-ray structural data for $\mathbf{6 a}$ reveal (Table 3, Figure 3) that the $\mathrm{Pt}-\mathrm{P}$ (bridging) bond trans to $\mathrm{PPh}_{2} \mathrm{H}$ [2.3376(10) \AA] is slightly longer than the $\mathrm{Pt}-\mathrm{P}$ (bridging) bond trans to $\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu}[2.3169$ (11) \AA] , suggesting the opposite assignement. Clearly more structural and spectroscopic studies including other secondary phosphines and other types of platinum complexes will be

Table 3. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\left\{\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CtBu})\left(\mu-\mathrm{PPh}_{2}\right)\left(\mathrm{PPh}_{2} \mathrm{H}\right)\right\}_{2}\right] \mathbf{6 a}{ }^{\left[{ }^{[a]}\right.}$

$\mathrm{Pt}-\mathrm{C}(1)$	$2.003(4)$	$\mathrm{Pt}-\mathrm{P}(1)$	$2.2944(11)$	$\mathrm{Pt}-\mathrm{P}(2)$
$\mathrm{Pt}-\mathrm{P}\left(2^{\prime}\right)$	$2.3376(10)$	$\mathrm{P}(1)-\mathrm{C}(7)$	$1.814(4)$	$\mathrm{P}(1)-\mathrm{C}(13)$
$\mathrm{P}(2)-\mathrm{C}(25)$	$1.821(4)$	$\mathrm{P}(2)-\mathrm{C}(19)$	$1.847(3)$	$\mathrm{C}(1)-\mathrm{C}(2)$
$\mathrm{Pt} \cdots \mathrm{Pt}$				
$\mathrm{C}(1)-\mathrm{Pt}-\mathrm{P}(1)$	$90.38(11)$	$\mathrm{C}(25)-\mathrm{P}(2)-\mathrm{Pt}^{\prime}$	$114.77(12)$	
$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{P}(2)$	$98.31(4)$	$\mathrm{Pt}-\mathrm{P}(2)-\mathrm{Pt}^{\prime}$	$103.17(4)$	$\mathrm{C}(7)-\mathrm{P}(1)-\mathrm{Pt}$
$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{P}\left(2^{\prime}\right)$	$173.23(3)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$177.2(4)$	$\mathrm{C}(25)-\mathrm{P}(2)-\mathrm{C}(19)$
$\mathrm{C}(7)-\mathrm{P}(1)-\mathrm{C}(13)$	$103.5(2)$	$\mathrm{C}(1)-\mathrm{Pt}-\mathrm{P}(2)$	$169.98(10)$	$\mathrm{C}(19)-\mathrm{P}(2)-\mathrm{Pt}$
$\mathrm{C}(13)-\mathrm{P}(1)-\mathrm{Pt}$	$117.15(13)$	$\mathrm{C}(1)-\mathrm{Pt}-\mathrm{P}\left(2^{\prime}\right)$	$94.90(10)$	$\mathrm{C}(19)-\mathrm{P}(2)-\mathrm{Pt}$
$\mathrm{C}(25)-\mathrm{P}(2)-\mathrm{Pt}$	$114.99(13)$	$\mathrm{P}(2)-\mathrm{Pt}-\mathrm{P}\left(2^{\prime}\right)$	$76.83(4)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Pt}$

[a] Symmetry transformation used to generate equivalent primed atoms is $-x,-y,-z$.

Figure 3. View of the molecular structure of $[\{\mathrm{Pt}(\mathrm{C} \equiv \mathrm{Ct} \mathrm{Bu})(\mu$ $\left.\left.\mathrm{PPh}_{2}\right)\left(\mathrm{PPh}_{2} \mathrm{H}\right)\right\}_{2}$] 6a with the atom numbering scheme.
required to obtain more conclusive results relevant to the trans influence of the $\mathrm{PR}_{2} \mathrm{H}$ and $\mathrm{C} \equiv \mathrm{CR}$ ligands. Complex $\mathbf{6 a}$, which is the first structurally characterized platinum compound simultaneously stabilized by alkynyl, phosphide, and $\mathrm{PPh}_{2} \mathrm{H}$ ligands, crystallizes as the more symmetrical anti isomer, as observed previously for other μ-phosphido dimers. ${ }^{[27 a,}{ }^{29]}$ The central $\mathrm{Pt}_{2} \mathrm{P}_{2}$ core is roughly planar and exhibits angles at the Pt center $\left[\mathrm{P}(2)-\mathrm{Pt}-\mathrm{P}\left(2^{\prime}\right)=76.83(4)^{\circ}\right]$ and the phosphorus atoms $\left[\mathrm{Pt}-\mathrm{P}(2)-\mathrm{Pt}^{\prime}=103.17(4)^{\circ}\right]$ comparable with those found in other phosphide-bridged platinum(II) dimers without metal-metal bonds ($\mathrm{P}-\mathrm{Pt}-\mathrm{P} 74.6-$ $\left.77.2^{\circ} ; \mathrm{P}-\mathrm{P}-\mathrm{Pt} 102.8-105.4^{\circ}\right) \cdot{ }^{[12 e,}{ }^{27 \mathrm{c}, \mathrm{d}, 29]}$ The angles and $\mathrm{Pt} \cdots \mathrm{Pt}$ separation $[3.649(1) \AA$] in $\mathbf{6 a}$ can be compared with those observed in $\left[\left\{\mathrm{PtCl}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mathrm{PPh}_{2} \mathrm{H}\right)\right\}_{2}\right]$ (angles at $\mathrm{P} / \mathrm{Pt} 102.8^{\circ} /$ 77.20°; $\left.\mathrm{Pt}-\mathrm{Pt} 3.585(1) \AA{ }^{\circ}\right] .{ }^{[29]}$ As expected, the terminal $\mathrm{Pt}-\mathrm{P}(1)$ bond $[2.2944(11) \AA$] is shorter than the bridging $\mathrm{Pt}-\mathrm{P}$ bonds $[2.3376(10) \AA$ and $2.3169(11) \AA$. A . The $\mathrm{Pt}-\mathrm{C}$ [2.003(4) \AA] and $\mathrm{C}-\mathrm{C}[1.212(5) \AA]$ separations and the angles at $\mathrm{C}_{\alpha}\left[174.8(3)^{\circ}\right]$ and $\mathrm{C}_{\beta}\left[177.2(4)^{\circ}\right]$ of the terminal $\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu}$ group are unexceptional and merit no further comment.
For comparative purposes, the reactivity of cis$\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})_{2} \mathrm{COD}\right]$ towards diphenylphosphine oxide [diphenylphosphinous acid $\left.\mathrm{PPh}_{2}(\mathrm{O}) \mathrm{H}\right]$ has also been explored. The coordination chemistry of these ditopic ligands, $\mathrm{R}_{2} \mathrm{P}(\mathrm{O}) \mathrm{H}$, (soft P and hard O donors) and that of their monoanionic phosphinite counterparts, $\mathrm{R}_{2}(\mathrm{O}) \mathrm{P}^{-}$, has been thoroughly investigated, ${ }^{[17]}$ and special mention is due the chelating mixed system $\mathrm{R}_{2} \mathrm{PO} \cdots-\mathrm{OPR}_{2}$ that is easily formed when a phosphinite ligand, $\mathrm{R}_{2} \mathrm{PO}^{-}$, and a hydroxyphosphine $\mathrm{PR}_{2}(\mathrm{O}) \mathrm{H}$ group are in a cisoidal disposition about a metal center. ${ }^{[17 \mathrm{~h}, 30]}$ Interest in this system, formed through strong intramolecular hydrogen bonds ${ }^{[31]}(\mathrm{O} \cdots \mathrm{H} \cdots \mathrm{O})$, as well as the recent implication of several complexes of the type $\left[\mathrm{MH}\left\{\left(\mathrm{PR}_{2} \mathrm{O}\right)_{2} \mathrm{H}\right\} \mathrm{L}\right](\mathrm{M}=\mathrm{Pt}, \mathrm{Pd})$ in catalytic processes such as hydrogenation or hydroformylation of alkenes ${ }^{[32]}$ and hydrophosphinylation or hydrophosphorylation of alkynes, ${ }^{[6]}$ gives renewed importance to the search for new complexes stabilized by these ligands.
It was not surprising that treatment of cis$\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})_{2} \mathrm{COD}\right]$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, at low temperature $\left(-40^{\circ} \mathrm{C}\right)$
with $\mathrm{PPh}_{2}(\mathrm{O}) \mathrm{H}$ in either 1:2 or 1:3 molar ratio led to the formation of the respective neutral phosphinito/hydroxyphosphine containing derivatives $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})\left\{\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{2} \mathrm{H}\right\}\right.$ $\left.\left(\mathrm{PPh}_{2} \mathrm{OH}\right)\right](7 \mathbf{a} \mathrm{R}=t \mathrm{Bu} ; 7 \mathrm{~b} \mathrm{R}=\mathrm{Ph}$; Scheme 3, path ii). In the reaction with $\mathrm{R}=t \mathrm{Bu}$, a small amount of $\left[\mathrm{Pt}\left\{\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{2} \mathrm{H}\right\}_{2}\right]$ is also detected in the mixture by ${ }^{31} \mathrm{P}$ NMR spectroscopy. The quantity increases considerably with the temperature of the reaction; at room temperature the reaction of cis$\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{Ct} \mathrm{Bu})_{2} \mathrm{COD}\right]$ with two equivalents of $\mathrm{PPh}_{2}(\mathrm{O}) \mathrm{H}$ gives $\left[\mathrm{Pt}\left\{\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{2} \mathrm{H}\right\}_{2}\right]^{[30 \mathrm{ec}]}\left[\delta=72.33,{ }^{1} J(\mathrm{Pt}, \mathrm{P})=2454 \mathrm{~Hz}\right]$ in 36% yield, and only small amounts of $\mathbf{7 a}$ are detected in the reaction mixture. The formation of the bis(phosphinite) bis(hydroxyphosphine) derivative under these mild conditions contrasts with the more drastic conditions previously reported for its preparation $\left(\left[\operatorname{PtX}\left\{\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{2} \mathrm{H}\right\}_{2} \mathrm{PPh}_{2} \mathrm{OH}\right]\right.$ and $\left[\mathrm{AgPPh}_{2} \mathrm{O}\right]_{n}, 18 \mathrm{~h}, \mathrm{RT}^{[30 \mathrm{ec}]}$.

Complexes 7 are air-stable white solids, slightly soluble in CHCl_{3} or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and very insoluble ${ }^{[33]}$ in other common solvents such as acetone or THF, and which display spectral properties (see Experimental Section) consistent with their formulation. Thus, both complexes show in their $\mathrm{FAB}(+)$ mass spectra the expected peak corresponding to the molecular ion and in their IR spectra absorptions in the $v(\mathrm{P}-\mathrm{O})$ region $\left(900-1028 \mathrm{~cm}^{-1}\right)$. As has been previously noted, ${ }^{[30 a, d-f]}$ the lack of $(\mathrm{O}-\mathrm{H})$ bands in the usual spectral region is consistent with the presence of symmetrical hydrogen-bonding interactions of type $\mathrm{O} \cdots \mathrm{H} \cdots \mathrm{O}$, because the vibrations ascribed to this system occur below $2000 \mathrm{~cm}^{-1} \cdot{ }^{[34]}$ On the basis of deuteration experiments, only an absorption at $1260 \mathrm{~cm}^{-1}$ in $\mathbf{7 a}$ and at $1221 \mathrm{~cm}^{-1}$ in $\mathbf{7 b}$, which disappears in the IR spectra of the deuterated derivatives, could be assigned tentatively to such an $\mathrm{O} \cdots \mathrm{H} \cdots \mathrm{O}$ system. Both compounds also exhibit a broad band at about $1650 \mathrm{~cm}^{-1}$, which is weakened upon deuteration, and which could also result from the $\mathrm{O}-\mathrm{H}$ stretch. The (OH) modes of strong hydrogen bonds are typically broad, intense bands in this region. ${ }^{[31]}$ Although the presence of alkynyl ligands is only observed in the IR spectrum of $\mathbf{7 b}\left(2120 \mathrm{~cm}^{-1}\right)$, the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{7 a}$ exhibits the expected singlet due to $\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu}$ at $\delta=0.8$ with the correct integration ratio. In spite of their poor solubility, which limits the sensitivity of the solution NMR measurements, both derivatives exhibit a broad downfield signal ($\delta=$ 16.9 7a, $\delta=16.57 \mathbf{b})$ in their low temperature $\left(-50^{\circ} \mathrm{C}\right){ }^{1} \mathrm{H}$ spectra, confirming the presence of strong $\mathrm{O} \cdots \mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. ${ }^{[30 c, d, 31]}$ Furthermore, at $-50^{\circ} \mathrm{C}$ they display the expected ABX pattern with ${ }^{195} \mathrm{Pt}$ satellites in their ${ }^{31} \mathrm{P}$ NMR spectra. The most deshielded signals $\left[\delta \mathrm{P}_{\mathrm{A}} / \mathrm{P}_{\mathrm{X}}=81.75 / 75.56\right.$ 7a; $84.91 / 75.667 \mathbf{7 b} ;{ }^{2} J\left(\mathrm{P}_{\mathrm{A}}, \mathrm{P}_{\mathrm{B} \text { trans }}\right)^{2} J\left(\mathrm{P}_{\mathrm{A}}, \mathrm{P}_{\mathrm{X} \text { cis }}\right) 405.4 \mathrm{~Hz} / 20.4 \mathrm{~Hz}$ $7 \mathbf{a} ; 405.3 \mathrm{~Hz} / \sim 24 \mathrm{~Hz} 7 \mathbf{~ b}]$ are assigned (tentatively for P_{A}) to the inequivalent phosphorus atoms of the $\mathrm{PPh}_{2} \mathrm{O} \cdots \mathrm{H} \cdots$ OPPh_{2} system and the highfield resonance $\left[\delta \mathrm{P}_{\mathrm{B}}{ }^{2} J\left(\mathrm{P}_{\mathrm{B}}, \mathrm{P}_{\mathrm{x}}\right)\right.$ $70.29 / 26.3 \mathrm{~Hz} \mathrm{7a} ; 70.35 / \sim 24 \mathrm{~Hz} 7 \mathrm{~b}$] to the hydroxydiphenylphosphine $\mathrm{PPh}_{2} \mathrm{OH}$. The magnitudes of the one-bond platinum - phosphorus coupling constants ${ }^{1} J\left(\mathrm{Pt}, \mathrm{P}_{\mathrm{X}}\right)>{ }^{1} J\left(\mathrm{Pt}, \mathrm{P}_{\mathrm{B}}\right)>$ ${ }^{1} J\left(\mathrm{Pt}, \mathrm{P}_{\mathrm{A}}\right)$ provide information about the trans influence of these groups ($\mathrm{C} \equiv \mathrm{CR}<\mathrm{PPh}_{2} \mathrm{O}^{-}<\mathrm{PPh}_{2} \mathrm{OH}$). It should be noted that due to the insolubility of the related $\left.\left[\mathrm{PtX}_{\{ }\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{2} \mathrm{H}\right\}\left(\mathrm{PPh}_{2} \mathrm{OH}\right)\right](\mathrm{X}=\mathrm{H} \text { or halide })^{[30 \mathrm{e}, 32 \mathrm{~b}]}$ derivatives no structural data were reported for them. In complexes

7a and 7b the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra are temperature dependent (see Figure 4 for complex $\mathbf{7 a}$). When the temperature is increased, the mutually trans phosphorus resonances P_{A} and P_{B} broaden, and disappear into the baseline at $\sim 25^{\circ} \mathrm{C}$ [no merging was observed at the high temperature limit of the experiment $\left(\sim 50^{\circ} \mathrm{C}\right)$], while the central signal $\left(\mathrm{P}_{\mathrm{x}}\right)$ due to $\mathrm{PPh}_{2} \mathrm{O}^{-}$trans to $\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu}$ is seen as a sharp triplet $\left[J\left(\mathrm{P}_{\mathrm{X}}, \mathrm{P}_{\mathrm{A}, \mathrm{B}}\right) \sim 23 \mathrm{~Hz}\right]$ through the whole range of temperatures. These spectra clearly indicate that at high temperature P_{A} and P_{B} become magnetically equivalent without phosphine dissociation, imputing a fast migration of the acidic protons H_{a} and H_{b} between the forms $\mathbf{7 A}$ and $\mathbf{7} \mathbf{A}^{\prime}$ depicted in Scheme 4. The motion of a proton between donor and acceptor atoms is one of the simplest chemical reactions, and has been thoroughly studied ${ }^{[35]}$ In complexes 7 the transformation of $\mathbf{7 A}$ to $\mathbf{7} \mathbf{A}^{\prime}$ may occur intramolecularly through the concerted motion of the two hydrogens via an intermediate as such as 7B, or by two successive motions through the trans-alkynyl, bis(hydroxyphosphine)phosphinite platinum intermediate 7C. However, although an intramolecular pathway seems reasonable, isomerization pathways involving intermolecular interaction through hydrogen bonding cannot be excluded.

Reactivity studies on $\left[\mathbf{P t}(\mathbf{C} \equiv \mathbf{C R})\left\{\left(\mathbf{P P h}_{2} \mathbf{O}\right)_{2} \mathbf{H}\right\}\left(\mathbf{P P h}_{2} \mathbf{O H}\right)\right]$ (7): It has been previously reported that one of the diphenylphosphinous acid molecules in $\left[\mathrm{PtH}\left(\mathrm{PPh}_{2} \mathrm{OHOPPh} 2\right)\right.$ $\left.\left(\mathrm{PPh}_{2} \mathrm{OH}\right)\right]$ is easily displaced by other functionalized phosphines or phosphinites (alkenyl or alkynyl), yielding related $\left[\mathrm{PtH}\left(\mathrm{PPh}_{2} \mathrm{OHOPPh} 2\right) \mathrm{L}\right]$ compounds. ${ }^{[32 \mathrm{~b}]}$ We have also exam-
ined the reactivity of complexes 7 towards a variety of different ligands. These complexes remain intact after stirring with PPh_{3} or prolonged bubbling with CO. However, they react immediately in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with stoichiometric amounts of $\mathrm{PEt}_{3}, \mathrm{PPh}_{2} \mathrm{H}, \mathrm{CN} t \mathrm{Bu}$, or $\left(\mathrm{NBu}_{4}\right) \mathrm{CN}$, affording colorless solutions from which the related neutral $[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})$ $\left.\left\{\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{2} \mathrm{H}\right\} \mathrm{L}\right] \quad \mathbf{8 - 1 0} \quad$ or anionic $\quad\left(\mathrm{NBu}_{4}\right)[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})$ $\left.(\mathrm{CN})\left\{\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{2} \mathrm{H}\right\}\right] \mathbf{1 1}$ derivatives are isolated as white microcrystalline solids in moderate ($\mathbf{8 a}, \mathbf{9}, \mathbf{1 1 b}$) or high yield ($\mathbf{8 b}$, $\mathbf{1 0}, 11 \mathbf{a})$. The characterization of these complexes by microanalysis and spectroscopic means (mass spectra, IR and NMR spectroscopy) is straightforward (see Experimental Section for data). Particularly clear are the ${ }^{13} \mathrm{C}$ NMR spectra that show, in addition to the expected aromatic carbon resonances for two nonequivalent $\mathrm{PPh}_{2} \mathrm{O}$ moieties of the $\mathrm{PPh}_{2} \mathrm{OHOPPh}_{2}$ fragment and signals due to the ligand L , resonances attributed to the acetylenic fragment $\left(\mathrm{C}_{\alpha}\right.$ and $\left.\mathrm{C}_{\beta}\right)$ with the expected splitting pattern. Thus, whereas the C_{α} and C_{β} resonances are seen as a doublet of doublets in complexes $\mathbf{1 0}(\mathrm{L}=\mathrm{CN} t \mathrm{Bu})$ and $\mathbf{1 1}\left(\mathrm{L}=\mathrm{CN}^{-}\right)$[for complexes $\mathbf{1 0}$ the C_{β} appears only as a doublet], compounds $8\left(\mathrm{~L}=\mathrm{PEt}_{3}\right)$ and 9 (only $\mathrm{C}_{\alpha} ; \mathrm{C}_{\beta}$ not observed) exhibit a ddd coupling pattern due to the three inequivalent phosphorus nuclei. Complex 9b shows a dm at $\delta=105.4\left[{ }^{2} J\left(\mathrm{C}_{a}, \mathrm{P}_{\text {trans }}\right) \sim 120 \mathrm{~Hz}\right]$ and a doublet at $\delta=117.07$ $\left[{ }^{3} J\left(\mathrm{C}_{\beta}, \mathrm{P}_{\text {trans }}\right)=32 \mathrm{~Hz}\right]$ for C_{α} and C_{β} in the expected region. The ${ }^{31} \mathrm{P}$ NMR data provide additional information about the trans influence of these groups in these very similar species. Complexes $8\left(\mathrm{~L}=\mathrm{PEt}_{3}\right)$ and $9\left(\mathrm{~L}=\mathrm{PPh}_{2} \mathrm{H}\right)$ display in their ${ }^{31} \mathrm{P}$ NMR the three expected mutually coupled (AMX system) set

Figure 4. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectra $\left(\mathrm{CDCl}_{3}\right)$ of complex $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CtBu})\left\{\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{2} \mathrm{H}\right\}\left(\mathrm{PPh}_{2} \mathrm{OH}\right)\right] \mathbf{7 a}$ at different temperatures. At $+50^{\circ} \mathrm{C}$ the spectrum observed is identical to that at $25^{\circ} \mathrm{C}$. ABX system: ${ }^{*} \mathrm{X} ; \nabla \bullet \mathrm{AB}$ (for assignment see Experimental Section).

7 C
Scheme 4. Migration of protons in 7.
of resonances. The most deshielded P_{X} resonance ($\delta=75.68$ 79.41), due to the phosphorus atom trans to the $\mathrm{C} \equiv \mathrm{CR}$ group, occurs as a triplet due to similar cis $-\mathrm{P}_{\mathrm{X}}-\mathrm{P}_{\mathrm{M}, \mathrm{A}}(21.5-27.4 \mathrm{~Hz})$ coupling, and the remaining $\mathrm{P}_{\mathrm{M}}\left(\delta=69.19-72.49 \mathrm{PPh}_{2} \mathrm{O} \cdots \mathrm{H}\right)$ and $\mathrm{P}_{\mathrm{A}}[\delta=(-3.61)-5.14, \mathrm{~L}]$ signals due to mutually trans phosphorus atoms exhibit the expected dd splitting pattern with a large two-bond trans $\mathrm{P}_{\mathrm{A}}, \mathrm{P}_{\mathrm{M}}$ coupling ($380.1-404.7 \mathrm{~Hz}$). Comparison of the value of the ${ }^{1} J(\mathrm{Pt}, \mathrm{P})$ coupling constants (see Experimental Section) suggests the trans influence order of $\mathrm{PEt}_{3} \sim \mathrm{C}=\mathrm{CR}>\mathrm{PPh}_{2} \mathrm{H}$
As was expected, compounds $\mathbf{1 0}$ and $\mathbf{1 1}$ display only two sets of coupled signals $\left[J\left(\mathrm{P}, \mathrm{P}_{c i s}\right) 24.4-25.4 \mathrm{~Hz}\right]$ in the phosphinite region. Consistent with what is observed for $\mathbf{8}$ and 9 , in 10 and 11, the downfield resonance ($\delta=69.85-70.93$) is tentatively assigned to the $\mathrm{PPh}_{2} \mathrm{O}^{-}$unit trans to $\mathrm{C} \equiv \mathrm{CR}$, and the low-frequency signal ($\delta=60.95-66.11$) is then assigned to the phosphorus atom trans to $\mathrm{CN} t \mathrm{Bu}$ in $\mathbf{1 0}$ or CN^{-}in 11. The larger coupling to platinum observed for this latter signal ($2816-3071 \mathrm{~Hz}$) suggests, that the trans influence of alkynyl ligands is slightly stronger than that of the isoelectronic $\mathrm{CN} t \mathrm{Bu}$ or CN^{-}groups.
On the other hand, the similarity between these alkynylphosphinite/bis(hydroxyphosphine) di(acidic) species $7 \mathbf{a}$ and 7b and the observed deprotonated skeleton in each of the alkynyltris(phosphinite)platinum ate units of the dimeric $\mathrm{Pt}_{2} \mathrm{Li}_{4}$ complex 3a led us to investigate their reactivity towards lithium hydroxide. As was expected, treatment of complex $\mathbf{7 a}$ with a slight excess of $\mathrm{LiOH}(1: 2.2)$ in tetrahydrofuran at room temperature induces the self-assembly of the resulting tert-butylalkynyltris(diphenylphosphinite)plati-
nate fragments with the lithium counter ions, yielding the sandwiched $\mathrm{Pt}_{2} \mathrm{Li}_{4}$ complex $\mathbf{3}^{\prime} \mathbf{a}$ in very high yield. Using this alternative strategy, we can also prepare the corresponding phenylacetylide derivative $\mathbf{3 b}$ in a similar reaction of $\mathbf{7 b}$ with 2.2 equivalents of LiOH . The similarity of the spectroscopic data for $\mathbf{3}^{\prime} \mathbf{a}$ and $\mathbf{3 b}$ suggest the same geometry for both species. Thus, complex 3b displays in its ${ }^{31} \mathrm{P}$ NMR spectrum two sets of signals whose multiplicities, chemical shifts (a doublet at $\delta=73.20$ and a triplet at $\delta=58.8)$, and ${ }^{1} J(\mathrm{Pt}, \mathrm{P})$ coupling constants are analogous to those observed for $\mathbf{3}^{\prime} \mathbf{a}$. Its ${ }^{7} \mathrm{Li}$ NMR spectrum exhibits a broad signal at room temperature ($\delta=-0.89, w_{1 / 2}=86 \mathrm{~Hz}$) which splits at $0^{\circ} \mathrm{C}$ into two signals ($\delta=-0.1,-1.8$; coalescence ca. $3-4^{\circ} \mathrm{C}$), confirming the presence of inequivalent lithium environments. Finally, further support of this formulation for $\mathbf{3 b}$ comes from its mass spectrum in which a peak with $m / z=1826$, corresponding to the central hexanuclear $\left[\mathrm{Pt}_{2}(\mathrm{C}=\mathrm{CPh})_{2}\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{6} \mathrm{Li}_{4}\right]$ fragment, is also observed.

Conclusion

It is well known that the development of a selective chemistry in many circumstances is strongly conditioned by the possibility of access to adequate precursors. With this in mind we have concentrated on the reactivity of the homoleptic tetraalkynyl platinate species $\mathrm{Li}_{2}\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})_{4}\right](\mathrm{R}=t \mathrm{Bu}, \mathrm{Ph})$ and $c i s-\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})_{2} \mathrm{COD}\right]$ towards $\mathrm{PPh}_{2} \mathrm{H}$ and $\mathrm{PPh}_{2}(\mathrm{O}) \mathrm{H}$ and the identification of the products obtained. This study has enabled us to prepare five different new types of alkynyl
platinum compounds, which may will be inaccessible by other synthetic routes: i) the mononuclear bis(alkynyl) complexes stabilized by $\mathrm{PPh}_{2} \mathrm{H}$ ligands $\left.[\mathrm{PtC} \equiv \mathrm{CR})_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{2}\right]$ (trans $\mathbf{1}$ or cis-2);ii) the unexpected mononuclear diphosphine derivative $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})_{2}\left(\mathrm{PPh}_{2} \mathrm{CHPhCH}_{2} \mathrm{PPh}_{2}\right)\right](\mathbf{4 b})$; iii) the phosphidebridged diplatinum complexes $\quad\left[\left\{\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})\left(\mu-\mathrm{PPh}_{2}\right)\right.\right.$ $\left.\left.\left(\mathrm{PPh}_{2} \mathrm{H}\right)\right\}_{2}\right]$ (6), also containing alkynyl and $\mathrm{PPh}_{2} \mathrm{H}$ as coligands; iv) the novel mononuclear alkynyl derivatives $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})\left\{\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{2} \mathrm{H}\right\}\left(\mathrm{PPh}_{2} \mathrm{OH}\right)\right]$ (7), stabilized by one diphenylphosphinito anion and two diphenylphosphonious acid molecules; v) and finally the very unusual tetralithium diplatinum species formed by a linear chain of four lithium ions sandwiched by two square-planar dianionic platinate units: $\left[\left\{\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})_{2}\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{2} \mathrm{Li}_{2}\left(\mu-\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{Me}_{2} \mathrm{CO}\right)_{2}\right\}_{2}\right]$ (2) and $\left[\left\{\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{3} \mathrm{Li}_{2}(\mathrm{thf})\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}_{2}\right]$ (3).
Complexes $\mathbf{1}$ and 5, which are the first reported alkynyl derivatives incorporating only secondary phosphines, are notably stable, remaining unaltered after several hours of refluxing in acetone. The absence of halide coligands avoids the very common dehydrohalogenation reaction ${ }^{[27 \mathrm{~b},}{ }^{36]}$ leading to phosphido bridging; moreover they seem not to be reactive enough to add the $\mathrm{P}-\mathrm{H}$ bond either oxidatively to the metal ${ }^{[12]}$ or through the $\mathrm{C} \equiv \mathrm{C}$ triple bond of the alkynyl fragments. ${ }^{[7 \mathrm{a}]}$ However, the formation of the diplatinum complexes $\mathbf{6}$ under the reaction conditions used for the synthesis of the mononuclear complexes $\mathbf{5 a}$ or $\mathbf{1 b}$, respectively, is surprising and the mechanism of their formation remains obscure. Alternatively, both complexes $6 \mathbf{a}$ and $\mathbf{6 b}$ can be obtained, although in very low yield, by treating 5 with an excess of acetic acid (see Experimental Section) suggesting that these diplatinum complexes are formed by formal elimination of acetylene from 5 (probably initiated by protonation of the alkynyl function) followed by a subsequent dimerization through a double-diphenylphosphido-bridging system. On this basis, their formation in the synthesis of $\mathbf{5 a}$ or $\mathbf{1 b}$ could be tentatively attributed to the presence of an excess of $\mathrm{PPh}_{2} \mathrm{H}$. However, we have also observed that the treatment of complexes 5 with one equivalent of $\mathrm{PPh}_{2} \mathrm{H}$ slowly produces their isomerization to the corresponding trans-isomers 1 (see Experimental Section), but in the case of $\mathbf{5 a}$ the dimer $\mathbf{6 a}$ is also generated (final ratio $\mathbf{1 a} / \mathbf{6 a} 3.7$:1). The structure of $\mathbf{6 a}$ demonstrates that the PPh_{2}^{-}groups have a stronger preference to act as bridges than do the alkynyl ligands. The μ-phosphido ligand is very common in coordination chemistry, and has been found to stabilize both early and late transition metal dinuclear systems. ${ }^{[28,37]}$ However, although there are many examples of homo- and heterodinuclear di- μ-phosphido-bridged complexes of the type $\left[\mathrm{L}_{m} \mathrm{M}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{M}^{\prime} \mathrm{L}_{n}^{\prime}\right]$, to our knowledge complex $6 \mathbf{a}$ is only the second example reported that also possesses terminal alkynyl ligands. ${ }^{[38]}$ In contrast, it should be noted that there are many homo- and heterodinuclear compounds stabilized by mixed $\left(\mu-\mathrm{PR}_{2}\right)(\mu-\mathrm{C} \equiv \mathrm{CR})$-bridging systems. ${ }^{[9, ~ 28, ~ 39]}$

The availability of all these alkynyl platinum complexes offers us an excellent opportunity for further investigation. We have conducted a preliminary exploration of the potential of one of the new complexes. Thus, treatment of $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})\left\{\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{2} \mathrm{H}\right\}\left(\mathrm{PPh}_{2} \mathrm{OH}\right)\right]$ (7), which formally contains two $\mathrm{PPh}_{2}(\mathrm{O}) \mathrm{H}$ ligands, with Lewis bases such as PEt_{3},
$\mathrm{PPh}_{2} \mathrm{H}, \mathrm{CNR}$, or CN^{-}, produces simple displacement of one of the molecules of diphenylphosphinous acid, leading to the mononuclear complexes (8-11). However, the promising deprotonation-induced chemistry of these new complexes is partially demonstrated by the aggregation of $\mathbf{7}$ into $\mathbf{3}$ following treatment with the deprotonation agent LiOH (see Scheme 3).

In light of the fact that all these new mononuclear complexes contain alkynyl groups and acidic molecules $\left(\mathrm{PPh}_{2} \mathrm{H} \mathbf{1}, 5,6,9\right.$ or $\left.\mathrm{PPh}_{2} \mathrm{OH} 7\right)$ in mutually cis positions, we are currently studying their reactivity towards a variety of deprotonating metal complexes with the aim to obtain homoand heterometallic, heterobridged $\left(\mu-\mathrm{C}_{2} \mathrm{R}\right) /\left(\mu-\mathrm{PPh}_{2}\right)$ or ($\mu-$ $\left.\left.\mathrm{C}_{2} \mathrm{R}\right) / \mu-\mathrm{PPh}_{2} \mathrm{O}^{-}\right)$species.

Experimental Section

General considerations: Unless noted otherwise, all reactions and manipulations were carried out under nitrogen atmosphere with Schlenk techniques, and with distilled solvents purified by known procedures. IR spectra were recorded on Perkin-Elmer 883 and Perkin-Elmer FTIR 1000 spectrometers from Nujol mulls between polyethylene sheets unless otherwise noted. NMR spectra were recorded on a Bruker ARX300 spectrometer, and chemical shifts are reported relative to external standards $\left(\mathrm{SiMe}_{4}, \mathrm{CFCl}_{3}, 85 \% \mathrm{H}_{3} \mathrm{PO}_{4}\right.$, and LiCl in $\left.\mathrm{H}_{2} \mathrm{O}\right)$. Elemental analyses were carried out with a Perkin - Elmer 2400 CHNS/O microanalyzer; the electrospray mass spectra on a HP5989B with interphase API-ES HP 59987A (in the negative ion mode with methanol as mobile phase), and the mass spectra ($\mathrm{FAB}+$) on a VG Autospec spectrometer. The starting complexes $\left[\mathrm{PtCl}_{2}(\mathrm{tht})_{2}\right]^{[40]}$ and cis- $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})_{2} \mathrm{COD}\right]\left(\mathrm{R}=\mathrm{Ph},{ }^{[24]}\right.$ $\left.t \mathrm{Bu}^{[10 \mathrm{a}]}\right)$ were prepared by published methods. $\mathrm{PPh}_{2} \mathrm{H}$ and $\mathrm{PPh}_{2}(\mathrm{O}) \mathrm{H}$ were purchased from commercial suppliers.
Reaction of $\mathrm{Li}_{2}\left[\mathrm{Pt}(\mathrm{C} \equiv \mathbf{C t B u})_{4}\right]$ with $\mathbf{P P h}_{2} \mathrm{H}$. Preparation of trans$\left[\mathbf{P t}(\mathbf{C} \equiv \mathbf{C} t \mathrm{Bu})_{2}\left(\mathbf{P P h}_{2} \mathrm{H}\right)_{2}\right] \quad(\mathbf{1 a}), \quad\left[\left\{\mathrm{Pt}(\mathrm{C}=\mathbf{C} t \mathrm{Bu})_{2}\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{2} \mathrm{Li}_{\mathbf{2}}\left(\mu-\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{Me}_{2^{-}}\right.\right.\right.$ $\left.\left.\mathbf{C O})_{2}\right\}_{2}\right] \quad(2 \mathbf{a}) \quad$ and $\quad\left[\left\{\mathbf{P t}(\mathbf{C}=\mathbf{C t B u})\left(\mathbf{P P h}_{2} \mathbf{O}\right)_{3} \mathbf{L i}_{2}(\mathbf{t h f})\left(\mathbf{H}_{2} \mathbf{O}\right)\right\}_{2}\right] \quad$ (3a): $\left[\mathrm{PtCl}_{2}(\text { tht })_{2}\right] \quad(0.400 \mathrm{~g}, 0.904 \mathrm{mmol})$ was added to a fresh solution of $\mathrm{LiC}=\mathrm{C} t \mathrm{Bu}(4.972 \mathrm{mmol})$ in diethyl ether/hexane ($\sim 25 \mathrm{~mL}$) at low temperature $\left(-20^{\circ} \mathrm{C}\right)$. The mixture was allowed to warm to room temperature and the solvent was then removed in vacuum. The solid residue containing $\mathrm{Li}_{2} \mathrm{Pt}(\mathrm{C} \equiv \mathrm{CtBu})_{4}$ was treated with 25 mL of an acetone/EtOH mixture (1:4; not deoxygenated). The resulting colourless solution was treated with $\mathrm{PPh}_{2} \mathrm{H}(0.5 \mathrm{~mL}, 2.745 \mathrm{mmol})$, and the mixture stirred. After 2 h of stirring a white solid began to precipitate. The mixture was stirred for another 5 h and then the resulting solid $(0.122 \mathrm{~g})$ was filtered and washed with cold EtOH. This solid was identified as trans- $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{Ct} \mathrm{Bu})_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{2}\right](\mathbf{1 a})$. Concentration of the mother liquor (to ca. 15 mL) yielded an additional fraction of complex $\mathbf{1 a}(0.043 \mathrm{~g}$; total yield $25 \%)$. The ethanolic filtrate was again stirred in air for 7 hours, causing the precipitation of $\mathbf{2}^{\prime} \mathbf{a}$, which was filtered and washed with ether. The analysis of $\mathbf{2}^{\prime} \mathbf{a}$ gives $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CtBu})_{2}\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{2} \mathrm{Li}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{n}\right] \quad(n=3) . \mathrm{C}_{36} \mathrm{H}_{44} \mathrm{Li}_{2} \mathrm{O}_{5} \mathrm{P}_{2} \mathrm{Pt}$ (827.7): calcd C 52.24, H 5.36; found C 52.12, H 4.85. However, recrystallization of this solid from hot acetone yields $\left[\left\{\mathrm{Pt}(\mathrm{C}=\mathrm{C} t \mathrm{Bu})_{2}\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{2} \mathrm{Li}_{2}\left(\mu-\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{Me}_{2}-\right.\right.\right.$ $\left.\mathrm{CO})_{2}\right\}_{2}$] (2a) as a microcrystalline solid (40% yield). This solid has a tendency to exchange acetone molecules for $\mathrm{H}_{2} \mathrm{O}$. In fact, all samples analysed give analyses in agreement either with $\mathbf{2}^{\prime} \mathbf{a}$ or with a composition between 2a and $\mathbf{2}^{\prime} \mathbf{a}$. This notwithstanding, the IR of 2a and $\mathbf{2}^{\prime} \mathbf{a}$ are essentially identical and the NMR spectra (${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$) are identical. Finally, prolonged stirring of the last ethanolic filtrate for 1 day slowly produced a new white solid ($\mathbf{3}^{\prime} \mathbf{a}$), which was filtered and washed with ethanol. The analysis of compound $\mathbf{3}^{\prime} \mathbf{a}$ gives $[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu})$ $\left.\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{3} \mathrm{Li}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{n}\right](n=2) . \mathrm{C}_{42} \mathrm{H}_{43} \mathrm{Li}_{2} \mathrm{O}_{5} \mathrm{P}_{3} \mathrm{Pt}$ (929.7): calcd: C 54.26, H 4.66; found: C 54.28, H 4.71. Recrystallization of $\mathbf{3}^{\prime}$ a from a mixture of THF/diethyl-ether gives $\left[\left\{\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CtBu})\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{3} \mathrm{Li}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)(\text { thf })\right\}_{2}\right]$ 3a as colorless microcrystalline prisms (4% yield). Different samples of $\mathbf{3}$ a give analyses corresponding to $\mathbf{3}^{\prime} \mathbf{a}$ or between $\mathbf{3}^{\prime} \mathbf{a}$ and $\mathbf{3 a}$. If the reaction is carried out under anaerobic conditions 1a and $\mathbf{2 a}$ are obtained in yields of
40% and 11%, respectively. 3a is not detected under these conditions. Longer periods of stirring (6 days) under the same conditions improved the yield of $\mathbf{1 a}(88 \%)$.
Data for $\mathbf{1} \boldsymbol{a}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=7.96(\mathrm{br}, 8 \mathrm{H}), 7.37(\mathrm{br}, 8 \mathrm{H} ; \mathrm{Ph}), 6.46$ (AA^{\prime} part of an $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ system $(\mathrm{X}=\mathrm{P}) ; N={ }^{1} J(\mathrm{P}, \mathrm{H})+{ }^{3} J\left(\mathrm{P}^{\prime}, \mathrm{H}\right)=400 \mathrm{~Hz}$, $\left.{ }^{2} J(\mathrm{Pt}, \mathrm{H})=26.2 \mathrm{~Hz}, \mathrm{P} H\right), 1.05(\mathrm{~s}, 18 \mathrm{H} ; t \mathrm{Bu}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=$ $-1.99\left({ }^{1} J(\mathrm{Pt}, \mathrm{P})=2616 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=-1.97,\left(\mathrm{XX}^{\prime}\right.$ part of an $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ system $(\mathrm{A}=\mathrm{H}) ;{ }^{1} J(\mathrm{P}, \mathrm{H})=399.9 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}, \mathrm{P}^{\prime}\right)=484 \mathrm{~Hz},{ }^{3} J\left(\mathrm{P}, \mathrm{H}^{\prime}\right)=$ $\left.3.6 \mathrm{~Hz}, J\left(\mathrm{H}, \mathrm{H}^{\prime}\right) \sim 0\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=134.2(\mathrm{t}, J(\mathrm{C}, \mathrm{P})=6.2 \mathrm{~Hz}$, $\left.{ }^{3} J(\mathrm{Pt}, \mathrm{C})=24.5 \mathrm{~Hz} ; o-\mathrm{C}, \mathrm{PPh}_{2} \mathrm{H}\right), 130.1\left(\mathrm{~s} ; p-\mathrm{C}, \mathrm{PPh}_{2} \mathrm{H}\right), 128.7(\mathrm{t}, J(\mathrm{C}, \mathrm{P})=$ $\left.28.3 \mathrm{~Hz} ; i-\mathrm{C}, \mathrm{PPh}_{2} \mathrm{H}\right), 128.0\left(\mathrm{t}, J(\mathrm{C}, \mathrm{P})=5.4 \mathrm{~Hz} ; m-\mathrm{C}, \mathrm{PPh}_{2} \mathrm{H}\right), 120.6(\mathrm{t}$, $\left.{ }^{3} J\left(\mathrm{C}_{\beta}, \mathrm{P}\right)=2.6 \mathrm{~Hz},{ }^{2} J\left(\mathrm{Pt}, \mathrm{C}_{\beta}\right)=249 \mathrm{~Hz} ; \mathrm{C}_{\beta},-\mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta}-t \mathrm{Bu}\right), 85.2\left(\mathrm{t},{ }^{2} J\left(\mathrm{C}_{\alpha}, \mathrm{P}\right)=\right.$ $\left.15.9 \mathrm{~Hz},{ }^{1} J\left(\mathrm{Pt}, \mathrm{C}_{\alpha}\right)=913 \mathrm{~Hz} ; \mathrm{C}_{\alpha}, \mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta}-t \mathrm{Bu}\right), 32.0\left(\mathrm{~s} ; \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 29.0(\mathrm{~s}$, $\left.{ }^{3} J(\mathrm{Pt}, \mathrm{C})=17.9 \mathrm{~Hz} ;-\mathrm{CMe}_{3}\right] ;$ IR: $\tilde{v}=2369(\mathrm{vs} ; \mathrm{P}-\mathrm{H}), 2106 \mathrm{~cm}^{-1}(\mathrm{~m} ; \mathrm{C} \equiv \mathrm{C})$; MS: $m / z(\%): 1294(9)\left[\left\{\mathrm{Pt}\left(\mathrm{PPh}_{2} \mathrm{H}\right)(\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu})\left(\mu-\mathrm{PPh}_{2}\right)\right\}_{2}\right]^{+}=[A]^{+}, 1212$ (9) $[A-\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu}-\mathrm{H}]^{+}, 1027$ (6) $\left[A-\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu}-\mathrm{PPh}_{2} \mathrm{H}\right]^{+}$, 729 (31) $\left[M^{+}\right], 647$ (33) $[M-\mathrm{C} \equiv \mathrm{CtBu}-\mathrm{H}]^{+}, 565$ (68) $\left[\mathrm{Pt}\left(\mathrm{PPh}_{2}\right)_{2}\right]^{+}, 379$ (70) $\left[\mathrm{PtPPh}_{2}-\mathrm{H}\right]^{+}$; $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{P}_{2} \mathrm{Pt}$ (729.7): calcd C 59.25, H 5.52; found: C 59.12, H 5.54.
Data for $2 \boldsymbol{a}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right)$: $\delta=7.18(\mathrm{~m}), 7.82(\mathrm{~m}) \mathrm{Ph}, 0.46(\mathrm{~s} ;$ $t \mathrm{Bu}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta=67.37(J(\mathrm{Pt}, \mathrm{P})=2510 \mathrm{~Hz}) ;{ }^{7} \mathrm{Li}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta=0.88(\mathrm{~s}) ;$ IR: $\tilde{v}=3646(\mathrm{w}), 3402(\mathrm{~m} ; \mathrm{O}-\mathrm{H})_{\mathrm{s}}, 1611$ (w; O-H) , $2092(\mathrm{w} ; \mathrm{C} \equiv \mathrm{C}), 1030(\mathrm{~m}), 1006(\mathrm{~m}), 996 \mathrm{~cm}^{-1}(\mathrm{~m} ; \mathrm{P}-\mathrm{O}) ;$ MS: $m / z(\%): 1294(53)\left[\left\{\mathrm{Pt}\left(\mathrm{PPh}_{2} \mathrm{H}\right)(\mathrm{C} \equiv \mathrm{Ct} t \mathrm{Bu})\left(\mu-\mathrm{PPh}_{2} \mathrm{H}\right)\right\}_{2}\right]^{+}=[A]^{+}, 1213$ (59) $[A-\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu}]^{+}, 1108$ (27) $\left[A-\mathrm{PPh}_{2} \mathrm{H}\right]^{+}$, 1026 (32) $[A-\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu}-$ $\left.\mathrm{PPh}_{2} \mathrm{H}\right]^{+}, 767(30)\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CtBu})_{2}\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{2} \mathrm{Li}+\mathrm{H}\right]^{+}, 679(46)[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CtBu})-$ $\left.\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{2}+\mathrm{H}\right]^{+}, 604(100)\left[\mathrm{Pt}\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{2} \mathrm{Li}\right]^{+}, 402(87)\left[\mathrm{Pt}\left(\mathrm{PPh}_{2} \mathrm{O}\right) \mathrm{Li}\right]^{+}$
Data for $3 \boldsymbol{a}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=7.94(\mathrm{~m}), 7.51(\mathrm{t}), 7.30(\mathrm{~m}), 7.13(\mathrm{t}), 6.69$ (t), $6.40(\mathrm{t})(\mathrm{Ph}), 1.59\left(\mathrm{br} ; \mathrm{H}_{2} \mathrm{O}\right), 0.49(\mathrm{~s} ; t \mathrm{Bu}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=$ $73.14\left(\mathrm{~d},{ }^{1} J\left(\mathrm{Pt}, \mathrm{P}_{\mathrm{A}}\right)=2723 \mathrm{~Hz}, 2 \mathrm{P}\right), 58.70\left(\mathrm{t},{ }^{1} J\left(\mathrm{Pt}, \mathrm{P}_{\mathrm{x}}\right)=2673 \mathrm{~Hz}, 1 \mathrm{P}\right)$, $\left.{ }^{2} J\left(\mathrm{P}_{\mathrm{A}}, \mathrm{P}_{\mathrm{x}}\right)=29.3 \mathrm{~Hz} ;{ }^{7} \mathrm{Li}{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: at $20^{\circ} \mathrm{C}, \delta=-1.03$ (brs); at $3^{\circ} \mathrm{C}, \delta=-1.3(\mathrm{br})$; at $0^{\circ} \mathrm{C}, \delta=-0.22(\mathrm{br}),-1.75(\mathrm{br}) ;$ at $-20^{\circ} \mathrm{C}, \delta=-0.23$ (s), -1.97 (s); IR : $\tilde{v}=3623$ (br), 3374 (br; OH), 1036 (s), 1024 (m), $998 \mathrm{~cm}^{-1}$ (w; P-O); MS: $m / z(\%): 1705(10)\left[\mathrm{Pt}_{2}(\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu})\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{6} \mathrm{Li}_{4}\right]^{+} ; 882$ (100) $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu})\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{3}+3 \mathrm{H}\right]^{+}, \quad 806$ (27) $\quad\left[\mathrm{Pt}\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{3} \mathrm{Li}\right]^{+}, \quad 604 \quad$ (80) $\left[\mathrm{Pt}\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{2} \mathrm{Li}\right]^{+}, 396(54)\left[\mathrm{Pt}\left(\mathrm{PPh}_{2} \mathrm{O}\right)\right]^{+}$.
Reaction of $\mathbf{L i}_{2}\left[\mathbf{P t}(\mathbf{C}=\mathbf{C t B u})_{4}\right]$ with $\mathbf{P P h}_{\mathbf{2}}(\mathbf{O}) \mathbf{H}$: A fresh solution of $\mathrm{Li}_{2} \mathrm{Pt}(\mathrm{C} \equiv \mathrm{CtBu})_{4}(0.452 \mathrm{mmol})$ in an acetone/EtOH mixture $(25 \mathrm{~mL})$ prepared as described above was treated with $\mathrm{PPh}_{2}(\mathrm{O}) \mathrm{H}(0.283 \mathrm{~g}$, 1.356 mmol) and the mixture stirred for 3 days. The resulting white precipitate was filtered, washed with EtOH , and identified by ${ }^{31} \mathrm{P}$ NMR as a mixture of $\mathbf{2}^{\prime} \mathbf{a}$ and $\mathbf{3}^{\prime} \mathbf{a}$. Upon stirring of this solid with $\mathrm{CHCl}_{3}(\mathrm{ca} 10 \mathrm{~mL}$.$) ,$ complex $\mathbf{3}^{\prime}$ a dissolved and $\mathbf{2}^{\prime} \mathbf{a}$, which is insoluble in CHCl_{3}, was separated by filtration $\left(0.083 \mathrm{~g}, 20 \%\right.$ yield based on Pt in $\left.\left[\mathrm{PtCl}_{2}(\mathrm{tht})_{2}\right]\right)$. Removal of the solvent from the filtrate and addition of diethyl ether (5 mL) gave $\mathbf{3}^{\prime} \mathbf{a}$ ($0.168 \mathrm{~g}, 37 \%$ yield).
Reaction of $\left[\left\{\mathbf{P t}(\mathbf{C} \equiv \mathbf{C} t \mathrm{Bu})_{\mathbf{2}}\left(\mathbf{P P h}_{2} \mathbf{O}\right)_{\mathbf{2}} \mathbf{L i}_{2}\left(\boldsymbol{\mu}-\mathbf{H}_{2} \mathbf{O}\right)\left(\mathrm{Me}_{2} \mathbf{C O}\right)_{2}\right\}_{2}\right]$ (2a) with $\mathbf{P P h}_{\mathbf{2}}(\mathbf{O}) \mathbf{H}$: A white suspension of $2 \mathbf{2 a}(0.050 \mathrm{~g}, 0.027 \mathrm{mmol})$ in CHCl_{3} $(30 \mathrm{~mL})$, was treated with $\mathrm{PPh}_{2}(\mathrm{O}) \mathrm{H}(0.011 \mathrm{~g}, 0.054 \mathrm{mmol})$, and the mixture stirred for 2 d at room temperature. The remaining white solid was filtered off and identified $\left({ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\right.$ NMR in $\left.\mathrm{CD}_{3} \mathrm{COCD}_{3}\right)$ as $\mathbf{2 a}(40 \%$ yield with respect to the initial quantity). Evaporation of the filtrate to dryness and treatment with diethyl ether $(10 \mathrm{~mL})$ gave a white solid, which was a mixture (${ }^{31} \mathrm{P}$ NMR) of $\mathbf{3} \mathbf{a}$ and free $\mathrm{PPh}_{2}(\mathrm{O}) \mathrm{H}$. When the reaction was monitored by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy at $20^{\circ} \mathrm{C}$ for longer periods (5 days), it was observed that complex $2 \mathbf{a}$ was always present in the reaction mixture, since the formation of $\mathbf{3 a}$ was not complete.
Reaction of trans-[$\left.\mathbf{P t}(\mathbf{C} \equiv \mathbf{C t B u})_{2}\left(\mathbf{P P h}_{2} \mathbf{H}\right)_{2}\right]\left(\mathbf{1 a)}\right.$ with $\mathbf{L i O H}$ and $\mathbf{H}_{2} \mathbf{O}_{\mathbf{2}}$: $\mathrm{H}_{2} \mathrm{O}_{2}(27.7 \mu \mathrm{l}, 0.274 \mathrm{mmol})$ and $\mathrm{LiOH}(0.011 \mathrm{~g}, 0.274 \mathrm{mmol})$ were added to a solution of $1 \mathbf{1 a}(0.100 \mathrm{~g}, 0.137 \mathrm{mmol} ; 2: 2: 1$ molar ratio) in acetone $(20 \mathrm{~mL})$, and the mixture was stirred for 15 h at room temperature. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of this solution shows only the presence of starting material. When an excess of LiOH and $\mathrm{H}_{2} \mathrm{O}_{2}$ (4:4:1 molar ratio) and longer periods of stirring (6 d) are employed, a complex mixture of unidentified platinum complexes is observed by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR.
Preparation of trans- $\left[\mathbf{P t}(\mathbf{C}=\mathbf{C P h})_{2}\left(\mathbf{P P h}_{2} \mathbf{H}\right)_{2}\right] \quad(\mathbf{1 b}), \quad\left[\left\{\mathbf{P t}(\mathbf{C} \equiv \mathbf{C P h})_{2}\right.\right.$ $\left.\left.\left(\mathbf{P P h}_{2} \mathbf{O}\right)_{2} \mathbf{L i}_{2}\left(\mu-\mathbf{H}_{2} \mathbf{O}\right) \mathbf{S}_{2}\right\}_{2}\right] \quad\left(\mathbf{S}=\mathbf{H}_{2} \mathrm{O} \quad \mathbf{2}^{\prime} \mathrm{b}\right), \quad\left[\mathrm{Pt}(\mathbf{C} \equiv \mathbf{C P h})_{2^{-}}\right.$ $\left.\left(\mathbf{P P h}_{2} \mathbf{C H P h C H} \mathbf{H P h}_{2}\right)\right](\mathbf{4 b})$, and $\left[\left\{\mathbf{P t}(\mathbf{C} \equiv \mathbf{C P h})\left(\boldsymbol{\mu}-\mathbf{P P h}_{2}\right)\left(\mathbf{P P h}_{2} \mathbf{H}\right)\right\}_{2}\right](\mathbf{6 b})$
a) Reaction of $\operatorname{Li}_{2}\left[\operatorname{Pt}(\mathrm{C} \equiv \mathrm{CPh})_{4}\right]$ with $P P h_{2} \mathrm{H}$: A white suspension of $\mathrm{Li}_{2}\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CPh})_{4}\right]$, prepared from $\left[\mathrm{PtCl}_{2}(\mathrm{tht})_{2}\right](0.300 \mathrm{~g}, 0.678 \mathrm{mmol})$ and $\mathrm{LiC}=\mathrm{CPh}$, (3.73 mmol ; 1:5. molar ratio) in diethyl ether/hexane was
concentrated in vacuo, dissolved in a deoxygenated acetone/EtOH mixture (20 mL), and finally treated with $\mathrm{PPh}_{2} \mathrm{H}(0.352 \mathrm{~mL}, 2.035 \mathrm{mmol})$. After stirring the mixture for 12 hours, the solution was concentrated giving a beige solid (mixture of $\mathbf{1 b}$ and $\mathbf{4 b} \sim 1: 1$ as shown by ${ }^{31} \mathrm{P}$ NMR). Slow crystallization of this solid from $\mathrm{CHCl}_{3} /$ hexane in air afforded $\mathbf{1 b}$ as paleyellow crystals ($0.06 \mathrm{~g}, 11 \%$ yield). Concentration of the mother liquor (ca. 5 mL) caused the precipitation of a second beige solid (mixture of $\mathbf{2 b}$ and $\mathbf{4 b}$), which was recrystallized from THF/hexane, yielding $\mathbf{2}^{\prime} \mathbf{b}$ as a microcrystalline solid $(0.06 \mathrm{~g}, 11 \%$ yield). If the reaction is carried out under aerobic conditions and for longer periods of stirring (24 h), only $\mathbf{2}^{\prime} \mathbf{b}$ was obtained in the first fraction $(0.57 \mathrm{~g}, 31 \%$ yield). Upon stirring the ethanolic filtrate for 3 days a white solid separates, which is a complex mixture of products (${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR) containing mainly $\mathbf{2}^{\prime} \mathbf{b}$. However, when a solution of $\mathrm{Li}_{2}\left[\mathrm{Pt}(\mathrm{C}=\mathrm{CPh})_{4}\right](2.261 \mathrm{mmol})$ dissolved in an acetone/ ethanol mixture ($5 \mathrm{~mL} / 15 \mathrm{~mL}$) was treated directly with $\mathrm{PPh}_{2} \mathrm{H}(1.17 \mathrm{~mL}$, 6.78 mmol) and stirred for 6 days under aerobic conditions, a new white solid precipitated ($1.8 \mathrm{~g}, 91 \%$ yield). This solid was identified as $\mathbf{4 b}$.
b) Preparation of $\boldsymbol{1} \boldsymbol{b}$ and $\boldsymbol{6} \boldsymbol{b}$: Treatment of $\left[\mathrm{PtCl}_{2}(\mathrm{tht})_{2}\right](0.600 \mathrm{~g}$, $1.356 \mathrm{mmol})$ at low temperature $\left(-20^{\circ} \mathrm{C}\right)$ with a lesser excess of $\mathrm{LiC} \equiv \mathrm{CPh}$ ($4.069 \mathrm{mmol}, 1: 3 \mathrm{molar}$ ratio) slowly ($\sim 45 \mathrm{~min}$) yields a suspension [probably mixtures of species of the type $\operatorname{Pt}(\mathrm{C} \equiv \mathrm{CPh})_{4-x}(\mathrm{tht})_{x} \mathrm{Li}_{2-x},(x=$ $0-2)$]. Addition of $\mathrm{PPh}_{2} \mathrm{H}(0.7 \mathrm{~mL}, 4.069 \mathrm{mmol}, 1: 3$ molar ratio) to this mixture at room temperature, immediately produces a yellow suspension. After 10 minutes of stirring, the mixture was evaporated to dryness, treated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, filtered through celite, and the resulting filtrate evaporated to small volume ($\sim 5 \mathrm{~mL}$). Addition of n-hexane (15 mL) gave a beige solid, which was recrystallized from $\mathrm{CHCl}_{3} /$ hexane, yielding 1b $(0.7 \mathrm{~g}, 67 \%)$ as a yellow microcrystalline solid. The mother liquor $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane) was evaporated to dryness, treated with ethanol (20 mL), and stirred for three days. The resulting white solid, which was filtered off and washed with diethyl ether, was identified as $\mathbf{6 b}(0.10 \mathrm{~g}, 11 \%$ yield $)$. If the reaction is carried out in a $1: 2$ molar ratio $\left(\mathrm{Pt}_{2}: \mathrm{PPh}_{2} \mathrm{H}\right)$, identical products are observed in yields of 48% (for $\mathbf{1 b}$) and 3% (for $\mathbf{6 b}$). Complex $\mathbf{6 b}$ is also obtained by treatment of $\mathbf{5 b}$ with $\mathrm{CH}_{3} \mathrm{COOH}$: Acetic acid (0.5 mL) was added to a solution of $\mathbf{5 b}(0.100 \mathrm{~g}, 0.1299 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and the mixture was stirred for 6 days. The brown solution was evaporated to dryness, and the residue was treated with a mixture of diethyl ether/hexane (1:2). The resulting beige solid containing $\mathbf{6 b}$ with other unidentified products ($\mathbf{9 b}$ is also observed) was recrystallized twice from $\mathrm{CHCl}_{3} /$ hexane yielding 6b in very low yield ($\sim 15 \%$).
Data for $\boldsymbol{1} \boldsymbol{b}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$: $\delta=7.96,7.41,7.11(\mathrm{~m}, \mathrm{Ph}), \sim 6.72\left(\mathrm{AA}^{\prime}\right.$ part of an $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ system $(\mathrm{X}=\mathrm{P})$, due to overlapping with Ph resonances only ${ }^{2} J(\mathrm{Pt}, \mathrm{H})=26.8 \mathrm{~Hz}$ can be calculated; $\left.\mathrm{P} H\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=$ $-4.26\left({ }^{1} J(\mathrm{Pt}, \mathrm{P})=2547 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=-4.25$, $\left(\mathrm{XX}^{\prime}\right.$ part of an $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ system $(\mathrm{A}=\mathrm{H}) ; N=402.7 \mathrm{~Hz},{ }^{1} J(\mathrm{P}, \mathrm{H})=397.5 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}, \mathrm{P}^{\prime}\right)=$ $\left.459.5 \mathrm{~Hz},{ }^{3} J\left(\mathrm{P}, \mathrm{H}^{\prime}\right)=5.2 \mathrm{~Hz}, J\left(\mathrm{H}, \mathrm{H}^{\prime}\right) \sim 0\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: at $20^{\circ} \mathrm{C}$, $\delta=134.4\left(o-\mathrm{C}, \mathrm{PPh}_{2} \mathrm{H}\right), 131.2\left({ }^{4} J(\mathrm{Pt}, \mathrm{C})=8.7 \mathrm{~Hz} ; o-\mathrm{C}, \mathrm{C} \equiv \mathrm{CPh}\right), 130.5(p-\mathrm{C}$, $\left.\mathrm{PPh}_{2} \mathrm{H}\right), 128.63\left(m-\mathrm{C}, \mathrm{PPh}_{2} \mathrm{H}\right), 127.9(i-\mathrm{C}, \mathrm{C} \equiv \mathrm{CPh}), 127.7(m-\mathrm{C}, \mathrm{C} \equiv \mathrm{CPh})$, $125.8(p-\mathrm{C}, \mathrm{C} \equiv \mathrm{CPh}), 112.4\left({ }^{2} J\left(\mathrm{Pt}, \mathrm{C}_{\beta}\right)=259 \mathrm{~Hz} ; \mathrm{C}_{\beta},-\mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta}-\mathrm{Ph}\right), 102.9$ $\left({ }^{1} J\left(\mathrm{Pt}, \mathrm{C}_{\alpha}\right)=834 \mathrm{~Hz} ; \mathrm{C}_{\alpha}, \mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta}-\mathrm{Ph} ;\right.$ at $-50{ }^{\circ} \mathrm{C},{ }^{2} J\left(\mathrm{P}, \mathrm{C}_{\alpha}\right) \sim 27 \mathrm{~Hz}$ is observed) ; IR: $\tilde{v}=2376(\mathrm{~m} ; \mathrm{P}-\mathrm{H}), 2110 \mathrm{~cm}^{-1}(\mathrm{vs} ; \mathrm{C} \equiv \mathrm{C}) ; \mathrm{MS}: m / z(\%): 770$ (100) $[\mathrm{M}+\mathrm{H}]^{+}, 666(97)\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CPh})\left(\mathrm{PPh}_{2}\right)_{2}\right]^{+}, 565(62)\left[\mathrm{Pt}\left(\mathrm{PPh}_{2}\right)_{2}\right]^{+}, 378$ (47) $\left[\mathrm{PtPPh}_{2}-2 \mathrm{H}\right]^{+} ; \mathrm{C}_{40} \mathrm{H}_{32} \mathrm{P}_{2} \mathrm{Pt}$ (769.7): calcd C 62.42, H 4.19; found C 62.45, H 4.12.

Data for $\mathbf{2}^{\prime} \boldsymbol{b}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=7.78,7.14,6.76,6.19\left(\mathrm{Ph}, \mathrm{PPh}_{2}\right.$, $\mathrm{C} \equiv \mathrm{CPh}$), 3.53 (brs, $\mathrm{H}_{2} \mathrm{O}$), signals due to THF are also observed 3.73 (m), $1.84(\mathrm{~m}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=68.07\left(\mathrm{~s},{ }^{1} J(\mathrm{Pt}, \mathrm{P})=2395 \mathrm{~Hz}\right) ;{ }^{7} \mathrm{Li}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: at $20^{\circ} \mathrm{C}, \delta=-0.62(\mathrm{~s})$, at $-20^{\circ} \mathrm{C}, \delta=-0.32(\mathrm{brs}) ;$ IR: $\tilde{v}=$ 3565 (vs), 3398 (vs; O-H), 2095 ($\mathrm{s} ; \mathrm{C}=\mathrm{C}$), 1038 (vs), 1024 (vs), $997 \mathrm{~cm}^{-1}$ (w; $\mathrm{P}-\mathrm{O})$; ES-MS $(-): m / z(\%): 800.6(100)\left[\mathrm{Pt}(\mathrm{C}=\mathrm{CPh})_{2}\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{2}+\mathrm{H}\right]^{-}$, 498.4 (14) $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CPh})\left(\mathrm{PPh}_{2} \mathrm{OH}\right)\right]^{-} ; \quad\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CPh})_{2}\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{2} \mathrm{Li}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]$, $\mathrm{C}_{40} \mathrm{H}_{36} \mathrm{Li}_{2} \mathrm{O}_{5} \mathrm{P}_{2} \mathrm{Pt} \quad$ (867.6): calcd $\mathrm{C} \quad 55.37, \quad \mathrm{H} \quad 4.18 ; \quad\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CPh})_{2}-\right.$ $\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{2} \mathrm{Li}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}($ thf $\left.)\right], \mathrm{C}_{44} \mathrm{H}_{42} \mathrm{Li}_{2} \mathrm{O}_{5} \mathrm{P}_{2} \mathrm{Pt}$ (921.7): calcd C 57.34, H 4.59; found: C 48.67 , H 3.98, poor analyses with low C content are found systematically.
Data for $\boldsymbol{4} \boldsymbol{b}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=8.19(\mathrm{~m}, 2 \mathrm{H}), 7.99(\mathrm{~m}, 2 \mathrm{H}), 7.70-6.90$ $(\mathrm{m}, 29 \mathrm{H}), 6.66(\mathrm{~d}, 2 \mathrm{H})(\mathrm{Ph}), 3.83\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}\right), 3.19\left(\mathrm{dm},{ }^{2} J(\mathrm{H}, \mathrm{P})=47 \mathrm{~Hz}\right.$, $\left.{ }^{3} J(\mathrm{Pt}, \mathrm{H}) \sim 25 \mathrm{~Hz} ; \mathrm{CH}\right), 2.53\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right):$ Decoupling the $\delta=21.4$ phosphorus resonance: $8.19(\mathrm{~d}, J(\mathrm{H}, \mathrm{H})=6 \mathrm{~Hz})$, $7.99(\mathrm{~d}, J(\mathrm{H}, \mathrm{H})=6.3 \mathrm{~Hz}), 7.59-6.90(\mathrm{~m}), 6.66(\mathrm{~d}, J(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz})$ $(\mathrm{Ph}), 3.83\left(\mathrm{tm},{ }^{2} J\left(\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}\right) \sim{ }^{3} J\left(\mathrm{P}, \mathrm{H}_{\mathrm{a}}\right)=9.3 \mathrm{~Hz} ; \mathrm{H}_{\mathrm{a}}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 3.21$ (ddd,
${ }^{2} J\left(\mathrm{P}, \mathrm{H}_{\mathrm{c}}\right)=47 \mathrm{~Hz}, \quad{ }^{3} J\left(\mathrm{H}_{\mathrm{c}}, \mathrm{H}_{\mathrm{b}}\right)=14.4 \mathrm{~Hz}, \quad{ }^{3} J\left(\mathrm{H}_{\mathrm{c}}, \mathrm{H}_{\mathrm{a}}\right)=3.3 \mathrm{~Hz}, \quad{ }^{3} J\left(\mathrm{Pt}, \mathrm{H}_{\mathrm{c}}\right) \sim$ $25 \mathrm{~Hz}), 2.53\left(\mathrm{td},{ }^{2} J\left(\mathrm{H}_{\mathrm{b}}, \mathrm{H}_{\mathrm{a}}\right)=9.3 \mathrm{~Hz},{ }^{3} J\left(\mathrm{H}_{\mathrm{b}}, \mathrm{H}_{\mathrm{c}}\right) \sim{ }^{3} J\left(\mathrm{H}_{\mathrm{b}}, \mathrm{P}\right)=14.4 \mathrm{~Hz} ; \mathrm{H}_{\mathrm{b}}\right.$, $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$). By decoupling the signal at $\delta=49.24$ under similar conditions the modification of the proton spectrum was negligible. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta=49.24\left(\mathrm{~d},{ }^{1} J(\mathrm{Pt}, \mathrm{P})=2260 \mathrm{~Hz}\right), 21.53\left(\mathrm{~d},{ }^{1} J(\mathrm{Pt}, \mathrm{P})=2250 \mathrm{~Hz},{ }^{3} J(\mathrm{P}, \mathrm{P})=\right.$ 13.8 Hz) ; the ${ }^{13} \mathrm{C}$ NMR spectrum could not be recorded due to the low solubility of the complex; IR: $\tilde{v}=2114 \mathrm{~cm}^{-1}(\mathrm{~s} ; \mathrm{C} \equiv \mathrm{C}) ; \operatorname{ES}-\mathrm{MS}(+): \mathrm{m} / \mathrm{z}(\%)$: 871 (44) $[M]^{+}, 771$ (47) $\left[M-\mathrm{C}_{2} \mathrm{Ph}+\mathrm{H}\right]^{+}, 668$ (58) $\left[M-2 \mathrm{C}_{2} \mathrm{Ph}-\mathrm{H}\right]^{+}, 565$ (100) $\left[\mathrm{Pt}\left(\mathrm{PPh}_{2}\right)_{2}\right]^{+}, 487$ (90) $\left[\mathrm{PtPPh}_{2} \mathrm{PPh}-\mathrm{H}\right]^{+}, 379$ (95) $\left[\mathrm{PtPPh}_{2}-\mathrm{H}\right]^{+}$; $\mathrm{C}_{48} \mathrm{H}_{38} \mathrm{P}_{2} \mathrm{Pt}$ (871.9): calcd C 66.12, H 4.39; found C 65.87, H 3.97.

Data for $\boldsymbol{6} \boldsymbol{b}$: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=7.63,7.28,7.06,6.71(\mathrm{~m}, \mathrm{Ph}), 5.35(\mathrm{dm}$, $\left.J(\mathrm{P}, \mathrm{H})=372 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{PH}) ;{ }^{31} \mathrm{P}{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \mathrm{AA}^{\prime} \mathrm{XX}^{\prime}+\mathrm{AA}^{\prime} \mathrm{XX}^{\prime} \mathrm{M}$ $(\mathrm{M}=\mathrm{Pt})$ spin systems $\delta \mathrm{P}_{\mathrm{AA}^{\prime}}=1.58\left(\mathrm{PPh}_{2} \mathrm{H}\right), \delta \mathrm{P}_{\mathrm{XX}^{\prime}}=-138.7\left(\mu-\mathrm{PPh}_{2}^{-}\right)$, $\left[N={ }^{2} J\left(\mathrm{P}_{\mathrm{A}}, \mathrm{P}_{\mathrm{X}}\right)+{ }^{2} J\left(\mathrm{P}_{\mathrm{A}}, \mathrm{P}_{\mathrm{X}^{\prime}}\right)=321.4 \mathrm{~Hz}, \quad K={ }^{4} J\left(\mathrm{P}_{\mathrm{A}}, \mathrm{P}_{\mathrm{A}^{\prime}}\right)+{ }^{2} J\left(\mathrm{P}_{\mathrm{X}}, \mathrm{P}_{\mathrm{X}^{\prime}}\right)=\right.$ $132.6 \mathrm{~Hz}, \quad L={ }^{2} J\left(\mathrm{P}_{\mathrm{A}}, \mathrm{P}_{\mathrm{X}}\right)-{ }^{2} J\left(\mathrm{P}_{\mathrm{A}}, \mathrm{P}_{\mathrm{X}}\right)=351.9 \mathrm{~Hz}, \quad\left|{ }^{2} J\left(\mathrm{P}_{\mathrm{A}}, \mathrm{P}_{\mathrm{x}}\right)\right|=336.7 \mathrm{~Hz}$, $\left|{ }^{2} J\left(\mathrm{P}_{\mathrm{A}}, \mathrm{P}_{\mathrm{X}^{\prime}}\right)\right|=15.3 \mathrm{~Hz}, \quad{ }^{1} J\left(\mathrm{Pt}, \mathrm{P}_{\mathrm{x}}\right)=1688 \mathrm{~Hz}, \quad{ }^{1} J\left(\mathrm{Pt}_{\mathrm{X}}, \mathrm{P}_{\mathrm{X}^{\prime}}\right)=1766 \mathrm{~Hz}$, $\left.{ }^{1} J\left(\mathrm{Pt}, \mathrm{P}_{\mathrm{A}}\right)=2051 \mathrm{~Hz}\right]$ IR: $\tilde{v}=2357(\mathrm{w} ; \mathrm{P}-\mathrm{H}), 2104 \mathrm{~cm}^{-1}(\mathrm{~s} ; \mathrm{C}=\mathrm{C})$; ES-MS (apci +): m/z (\%): 666.5 (98) $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CPh})\left(\mathrm{PPh}_{2}\right)_{2}\right]^{+}, \quad 667.5 \quad$ (100) $\left[\mathrm{Pt}(\mathrm{C}=\mathrm{CPh})\left(\mathrm{PPh}_{2}\right)\left(\mathrm{PPh}_{2} \mathrm{H}\right)\right]^{+}, \quad 566$ (15) $\left[\mathrm{Pt}\left(\mathrm{PPh}_{2}\right)\left(\mathrm{PPh}_{2} \mathrm{H}\right)\right]^{+} ; \mathrm{C}_{64} \mathrm{H}_{52} \mathrm{P}_{4} \mathrm{Pt}_{2}$ (1335.2): calcd C 57.57, H 3.92; found C 57.73, H 4.42.

Preparation of cis- $\left[\mathbf{P t}(\mathbf{C}=\mathbf{C t B u})_{2}\left(\mathbf{P P h}_{2} \mathbf{H}\right)_{2}\right] \quad$ (5a) and $[\{\mathbf{P t}(\mathbf{C} \equiv \mathbf{C t B u})(\mu-$ $\left.\left.\left.\mathbf{P P h}_{2}\right)\left(\mathbf{P P h}_{2} \mathbf{H}\right)\right\}_{2}\right](6 a): A$ solution of $c i s-\left[\mathrm{Pt}(\mathrm{C}=\mathrm{C} t \mathrm{Bu})_{2}(\mathrm{COD})\right](1.114 \mathrm{~g}$, $2.393 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was treated at $-30^{\circ} \mathrm{C}$ with $\mathrm{PPh}_{2} \mathrm{H}$ $(0.87 \mathrm{~mL}, 4.770 \mathrm{mmol})$, and the resulting mixture was stirred for 15 min at low temperature. Then the solvent was removed in vacuum and the addition of diethyl ether (5 mL) caused the precipitation of cis$\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu})_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{2}\right] 5 \mathrm{a}$ as a white solid $(1.383 \mathrm{~g}, 79 \%$ yield $)$. On cooling the filtrate to $-30^{\circ} \mathrm{C}$ for a week, a beige solid separated, which was recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane and identified as $\mathbf{6 a} 0.031 \mathrm{~g}, 2 \%$ yield). The complex $\mathbf{6 a}$ is also obtained by treatment of $\mathbf{5 a}$ with $\mathrm{CH}_{3} \mathrm{COOH}: \mathbf{5 a}$ ($0.100 \mathrm{~g}, 0.1379 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was treated with glacial acetic acid (1 mL). After 7 d of stirring, the solution was evaporated to dryness and the residue treated with n-hexane, affording a beige solid identified by ${ }^{31}$ P NMR spectroscopy as impure $\mathbf{6 a}$. Recrystallization from $\mathrm{CHCl}_{3} /$ hexane gives pure 6a, but in very low yield ($\sim 25 \%$).

Data for $5 \boldsymbol{a}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=7.65(\mathrm{~m}, 8 \mathrm{H}), 7.33(\mathrm{~m}, 12 \mathrm{H})(\mathrm{Ph}), 5.88$ $\left(\mathrm{dm}, N={ }^{1} J(\mathrm{P}, \mathrm{H})+{ }^{3} J\left(\mathrm{P}^{\prime}, \mathrm{H}\right)=378 \mathrm{~Hz} ; 2 \mathrm{H}, \mathrm{PH}\right), 1.02(\mathrm{~s}, 18 \mathrm{H}, t \mathrm{Bu}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=-5.49\left(\mathrm{~s},{ }^{1} J(\mathrm{Pt}, \mathrm{P})=2156 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=$ $-5.49(\mathrm{~d}, J(\mathrm{P}, \mathrm{H})=377 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: at $20^{\circ} \mathrm{C}, \delta=134.0(\mathrm{t}$, $\left.J(\mathrm{C}, \mathrm{P})=5.3 \mathrm{~Hz}, J(\mathrm{Pt}, \mathrm{C})=20.2 \mathrm{~Hz} ; o-\mathrm{C}, \mathrm{PPh}_{2} \mathrm{H}\right), 130.3\left(\mathrm{~s}, p-\mathrm{C}, \mathrm{PPh}_{2} \mathrm{H}\right)$, $128.1\left(\mathrm{t}, J(\mathrm{C}, \mathrm{P})=5.4 \mathrm{~Hz} ; m-\mathrm{C}, \mathrm{PPh}_{2} \mathrm{H}\right), 127.4\left(\mathrm{AXX}^{\prime},{ }^{1} J(\mathrm{C}, \mathrm{P})+{ }^{3} J\left(\mathrm{C}, \mathrm{P}^{\prime}\right)=\right.$ $57.5 \mathrm{~Hz} ; i$-C), 118.8 ($\mathrm{AXX}^{\prime}, \quad{ }^{3} J\left(\mathrm{C}_{\beta}\right.$, Ptrans $)+{ }^{3} J\left(\mathrm{C}_{\beta}\right.$, Pcis $) \sim 36.3 \mathrm{~Hz}$, $\left.{ }^{2} J\left(\mathrm{Pt}, \mathrm{C}_{\beta}\right)=306.4 \mathrm{~Hz} ; \mathrm{C}_{\beta},-\mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} t \mathrm{Bu}\right), 84.3\left(\mathrm{dd},{ }^{2} J\left(\mathrm{C}_{\alpha}\right.\right.$, Ptrans $)=153.0 \mathrm{~Hz}$, $\left.{ }^{2} J\left(\mathrm{C}_{a}, \mathrm{Pcis}\right)=21.2 \mathrm{~Hz}, \quad{ }^{1} J\left(\mathrm{Pt}, \mathrm{C}_{\alpha}\right)=1122.4 \mathrm{~Hz} ; \quad \mathrm{C} \alpha, \quad-\mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} t \mathrm{Bu}\right) \quad 31.6 \quad(\mathrm{~s}$, $\left.{ }^{4} J(\mathrm{Pt}, \mathrm{C})=8.0 \mathrm{~Hz} ; \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 28.7\left(\mathrm{~s},{ }^{3} J(\mathrm{Pt}, \mathrm{C})=20.9 \mathrm{~Hz} ;-\mathrm{CMe}_{3}\right)$; IR: $\tilde{v}=$ $2354(\mathrm{~m} ; \mathrm{P}-\mathrm{H}), 2118 \mathrm{~cm}^{-1}$ (w; C=C); MS: m/z (\%): 1214 (8) $\left[\mathrm{Pt}_{2}(\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu})\left(\mu-\mathrm{PPh}_{2}\right)_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{2}\right]^{+}, 730$ (76) $[M+\mathrm{H}]^{+}, 647$ (33) [$M-$ $\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu}-\mathrm{H}]^{+}, 566(100)\left[\mathrm{Pt}^{(}\left(\mathrm{PPh}_{2} \mathrm{H}\right)\left(\mathrm{PPh}_{2}\right)\right]^{+}, 379(42)\left(\left[\mathrm{PtPPh}_{2}-\mathrm{H}\right]^{+}\right.$; $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{P}_{2} \mathrm{Pt}$ (729.8): calcd C 59.25, H 5.52; found C 58.99, H 5.65.

Data for $\boldsymbol{6} \boldsymbol{a}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=7.61(\mathrm{~m}, 16 \mathrm{H}), 7.27(\mathrm{~m}), 7.07(\mathrm{~m})(24 \mathrm{H})$ $(\mathrm{Ph}), 5.25(\mathrm{dm}, J=368 \mathrm{~Hz} ; 2 \mathrm{H}, \mathrm{P} H), 0.86(\mathrm{~s}, 18 \mathrm{H}, t \mathrm{Bu}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ spin system $\delta \mathrm{P}_{\mathrm{AA}^{\prime}}=1.36\left(\mathrm{PPh}_{2} \mathrm{H}\right), \delta \mathrm{P}_{\mathrm{XX}^{\prime}}=-145.4$ $\left(\mu-\mathrm{PPh}_{2}^{-}\right), \quad\left[N={ }^{2} J\left(\mathrm{P}_{\mathrm{A}}, \mathrm{P}_{\mathrm{X}}\right)+{ }^{2} J\left(\mathrm{P}_{\mathrm{A}}, \mathrm{P}_{\mathrm{X}^{\prime}}\right)=328.4 \mathrm{~Hz}, \quad K={ }^{4} J\left(\mathrm{P}_{\mathrm{A}}, \mathrm{P}_{\mathrm{A}^{\prime}}\right)+\right.$ ${ }^{2} J\left(\mathrm{P}_{\mathrm{X}}, \mathrm{P}_{\mathrm{X}^{\prime}}\right)=136.4 \mathrm{~Hz}, \quad L={ }^{2} J\left(\mathrm{P}_{\mathrm{A}}, \mathrm{P}_{\mathrm{X}}\right)-{ }^{2} J\left(\mathrm{P}_{\mathrm{A}}, \mathrm{P}_{\mathrm{X}}\right)=362 \mathrm{~Hz}, \quad\left|{ }^{2} J\left(\mathrm{P}_{\mathrm{A}}, \mathrm{P}_{\mathrm{X}}\right)\right|=$ $345.2 \mathrm{~Hz},\left|{ }^{2} J\left(\mathrm{P}_{\mathrm{A}}, \mathrm{P}_{\mathrm{X}^{\prime}}\right)\right|=16.8 \mathrm{~Hz},{ }^{1} J\left(\mathrm{Pt}, \mathrm{P}_{\mathrm{X}}\right)=1689 \mathrm{~Hz},{ }^{1} J\left(\mathrm{Pt}, \mathrm{P}_{\mathrm{X}^{\prime}}\right)=1792 \mathrm{~Hz}$, $\left.{ }^{1} J\left(\mathrm{Pt}, \mathrm{P}_{\mathrm{A}}\right)=2035 \mathrm{~Hz}\right] ;$ IR: $\tilde{v}=2352 \mathrm{~cm}^{-1}(\mathrm{~s} ; \mathrm{P}-\mathrm{H}) ; \mathrm{MS}: m / z(\%): 1294$ (60) $[A]^{+}, 1213$ (100) $[A-\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu}]^{+}$, 1108 (31) $\left[A-\mathrm{PPh}_{2} \mathrm{H}-\mathrm{H}\right]^{+}, 1027$ (53) $\left[A-\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu}-\mathrm{PPh}_{2} \mathrm{H}\right]^{+} ; \mathrm{C}_{60} \mathrm{H}_{60} \mathrm{P}_{4} \mathrm{Pt}_{2}$ (1295.2): calcd C 55.64, H 4.67; found C 55.49, H 4.76.

Preparation of $\boldsymbol{c i s}-\left[\mathbf{P t}(\mathbf{C}=\mathbf{C P h})_{\mathbf{2}}\left(\mathbf{P P h}_{\mathbf{2}} \mathbf{H}\right)_{\mathbf{2}}\right](\mathbf{5 b})$: A yellow solution of cis$\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CPh})_{2}(\mathrm{COD})\right](1.004 \mathrm{~g}, 1.986 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was treated at low temperature $\left(-30^{\circ} \mathrm{C}\right)$ with $\mathrm{PPh}_{2} \mathrm{H}(0.72 \mathrm{~mL}, 3.973 \mathrm{mmol})$ and the mixture stirred for 5 min . The solvent was removed in vacuum, and the residue was treated with diethyl ether (5 mL) to give $\mathbf{5 b}$ as a yellow solid, which was washed with diethylether and dried under vacuum ($1.169 \mathrm{~g}, 76 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=7.67(\mathrm{~m}), 7.38(\mathrm{~m}), 7.08(\mathrm{~m}),(30 \mathrm{H} ; \mathrm{Ph}), 6.08$ $\left(\mathrm{dm}, N={ }^{1} J(\mathrm{P}, \mathrm{H})+{ }^{3} J\left(\mathrm{P}^{\prime}, \mathrm{H}\right)=390 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{P} H\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right)$:
$\delta=-7.07 \quad\left(\mathrm{~s}, \quad{ }^{1} J(\mathrm{Pt}, \mathrm{P})=2169 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=-7.07 \quad(\mathrm{~d}$, $J(\mathrm{P}, \mathrm{H})=383 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: at $-50^{\circ} \mathrm{C}, \delta=134.2(\mathrm{t}$, $J(\mathrm{C}, \mathrm{P})=5.2 \mathrm{~Hz} ; o-\mathrm{C}, \mathrm{PPh}_{2} \mathrm{H}$), 131.4 (in this signal, the $o-\mathrm{C}$ of the $-\mathrm{C} \equiv \mathrm{CPh}$ groups and p - C of the ligands $\mathrm{PPh}_{2} \mathrm{H}$ probably overlap), 131.1 ($\mathrm{s} ; \mathrm{Ph}$), 128.6 $\left(\mathrm{t}, J(\mathrm{C}, \mathrm{P})=5.0 \mathrm{~Hz} ; m-\mathrm{C}, \mathrm{PPh}_{2} \mathrm{H}\right), 127.5(\mathrm{~s} ; m-\mathrm{C}, \mathrm{Ph},-\mathrm{C} \equiv \mathrm{CPh}), 127.3(\mathrm{~s} ; i-\mathrm{C}$, $\mathrm{Ph},-\mathrm{C} \equiv \mathrm{CPh}), 126.2\left(\mathrm{AXX}^{\prime},{ }^{1} J(\mathrm{C}, \mathrm{P})+{ }^{3} J\left(\mathrm{C}, \mathrm{P}^{\prime}\right)=59.4 \mathrm{~Hz}, i-\mathrm{C}, \mathrm{PPh}_{2} \mathrm{H}\right)$, 125.5 (s; p-C, Ph, $-\mathrm{C} \equiv \mathrm{CPh}), 110.6\left(\mathrm{AXX}^{\prime},{ }^{3} J\left(\mathrm{C}_{\beta}, \mathrm{P}\right.\right.$ trans $)+{ }^{3} J\left(\mathrm{C}_{\beta}, \mathrm{P}\right.$ cis $)=$ $\left.36.4 \mathrm{~Hz},{ }^{2} J\left(\mathrm{Pt}, \mathrm{C}_{\beta}\right)=308.4 \mathrm{~Hz} ; \mathrm{C}_{\beta},-\mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Ph}\right), 99.9\left(\mathrm{dd},{ }^{2} J\left(\mathrm{C}_{\alpha}, \mathrm{P}\right.\right.$ trans $)=$ $148.8 \mathrm{~Hz},{ }^{2} J\left(\mathrm{C}_{\alpha}\right.$, Pcis $\left.)=21.4 \mathrm{~Hz},{ }^{1} J\left(\mathrm{Pt}, \mathrm{C}_{\alpha}\right)=1114.6 \mathrm{~Hz} ; \mathrm{C}_{\alpha}, \quad-\mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Ph}\right)$; IR: $\tilde{v}=2342(\mathrm{~m} ; \mathrm{P}-\mathrm{H}), 2119 \mathrm{~cm}^{-1}(\mathrm{~m} ; \mathrm{C}=\mathrm{C}) ; \mathrm{MS}: m / z(\%): 1334$ (10) $\left[\left\{\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CPh})\left(\mu-\mathrm{PPh}_{2}\right)\left(\mathrm{PPh}_{2} \mathrm{H}\right)\right\}_{2}\right]^{+}=[B]^{+}, 1233$ (14) $[B-\mathrm{C} \equiv \mathrm{CPh}]^{+}, 1133$ (11) $[B-2 \mathrm{C} \equiv \mathrm{CPh}+\mathrm{H}]^{+}, 1047$ (6) $\left[B-\mathrm{C} \equiv \mathrm{CPh}-\mathrm{PPh}_{2} \mathrm{H}\right]^{+}, 769$ (51) $[M]^{+}$, 667 (35) $[M-\mathrm{C} \equiv \mathrm{CPh}-\mathrm{H}]^{+}$, 566 (100) $\left[\mathrm{Pt}^{(}\left(\mathrm{PPh}_{2} \mathrm{H}\right)\left(\mathrm{PPh}_{2}\right)\right]^{+}$, 379 (39) $\left[\mathrm{PtPPh}_{2}-\mathrm{H}\right]^{+} ; \mathrm{C}_{40} \mathrm{H}_{32} \mathrm{P}_{2} \mathrm{Pt}$ (769.7): calcd C 62.42, H 4.19; found C 62.05, H 4.06.

Reactions of cis- $\left[\mathbf{P t}(\mathbf{C} \equiv \mathbf{C R})_{\mathbf{2}}\left(\mathbf{P P h}_{\mathbf{2}} \mathbf{H}\right)_{\mathbf{2}}\right]$ with $\mathbf{P P h}_{\mathbf{2}} \mathbf{H}$: For $\mathrm{R}=t \mathrm{Bu} ; \mathrm{PPh}_{2} \mathrm{H}$ $(28.9 \mu \mathrm{~L}, 0.167 \mathrm{mmol})$ was added to a stirred solution of 5 a $(0.122 \mathrm{~g}$, $0.167 \mathrm{mmol})$ in deoxygenated $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. After 24 h stirring, the solution was evaporated to dryness and the residue treated with deoxygenated diethyl ether $(5 \mathrm{~mL})$ to give a solid $(0.09 \mathrm{~g})$, identified as a mixture of trans $-\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu})_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{2}\right] \mathbf{1 a}$ and $\left[\left\{\mathrm{Pt}(\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu})\left(\mu-\mathrm{PPh}_{2}\right)\left(\mathrm{PPh}_{2} \mathrm{H}\right)\right\}_{2}\right]$ 6 (3.7:1 ratio). If the initial mixture is stirred for 3 days under aerobic conditions, oxidation of $\mathrm{PPh}_{2} \mathrm{H}$ takes place and $\mathrm{PPh}_{2}(\mathrm{O}) \mathrm{H}$ is generated. The ${ }^{31} \mathrm{P}$ NMR spectrum of the final mixture shows the complete transformation of 6a to $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu})\left\{\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{2} \mathrm{H}\right\}\left(\mathrm{PPh}_{2} \mathrm{H}\right)\right]$ (9a). Similar results were obtained starting from $5 \mathbf{5 b}(0.120 \mathrm{~g}, 0.156 \mathrm{mmol})$ and 1 equiv of $\mathrm{PPh}_{2} \mathrm{H}$ ($26.98 \mu \mathrm{~L}, 0.156 \mathrm{mmol}$). In this case after 48 hours under anaerobic conditions, the solid obtained $(0.08 \mathrm{~g})$ is identified as trans$\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CPh})_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{2}\right] \mathbf{1 b}$ with a small amount of $\mathrm{PPh}_{2}(\mathrm{O}) \mathrm{H}$ as impurity.
Preparation of $\left[\mathbf{P t}(\mathbf{C} \equiv \mathbf{C R})\left\{\left(\mathbf{P P h}_{2} \mathbf{O}\right)_{2} \mathbf{H}\right\}\left(\mathbf{P P h}_{\mathbf{2}} \mathbf{O H}\right)\right](\mathbf{R}=\boldsymbol{t B u} \mathbf{7 a} ; \mathbf{R}=\mathbf{P h}$ 7b): A suspension of $c i s-\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CtBu})_{2}(\mathrm{COD})\right](0.150 \mathrm{~g}, 0.322 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was treated at $-40^{\circ} \mathrm{C}$ with $\mathrm{PPh}_{2}(\mathrm{O}) \mathrm{H}(97 \% ; 0.201 \mathrm{~g}$, $0.996 \mathrm{mmol})$ and the mixture stirred for 15 min at low temperature. The solution was evaporated to dryness and the residue treated with acetone $(5 \mathrm{~mL})$ to give $\mathbf{7 a}$ as a white solid $(0.213 \mathrm{~g}, 75 \%$ yield). Complex $\mathbf{7 b}$ was prepared similarly starting from cis- $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CPh})_{2}(\mathrm{COD})\right] \quad(0.200 \mathrm{~g}$, $0.396 \mathrm{mmol})$ and $\mathrm{PPh}_{2}(\mathrm{O}) \mathrm{H}(0.247 \mathrm{~g}, 1.188 \mathrm{mmol})$, but in this case the reaction time was 4 h and the final solid was recrystallized from $\mathrm{CHCl}_{3} /$ hexane yielding $7 \mathbf{b}$ as a white solid $(0.215 \mathrm{~g}, 60 \%)$. Similar results were obtained using a $\mathrm{Pt} / \mathrm{PPh}_{2}(\mathrm{O}) \mathrm{H}$ ratio of $1: 2$ at $-20^{\circ} \mathrm{C}$ (yield: $45 \% \mathbf{7 a}, 43 \%$ 7b). If cis-[$\left.\mathrm{Pt}(\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu})_{2}(\mathrm{COD})\right](0.250 \mathrm{~g}, 0.537 \mathrm{mmol})$ is treated with two molar equiv of $\mathrm{PPh}_{2}(\mathrm{O}) \mathrm{H}(0.224 \mathrm{~g}, 1.074 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$ at room temperature, and the resulting solution evaporated to dryness after 15 min . of stirring, a white solid is obtained ($0.192 \mathrm{~g}, 36 \%$ yield based on Pt) by treating with diethyl ether $(10 \mathrm{~mL})$, and is identified as $\left[\mathrm{Pt}\left\{\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{2} \mathrm{H}\right\}_{2}\right]:\left[{ }^{[30 e]} \quad{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR} \quad\left(\mathrm{CDCl}_{3}\right): \quad \delta=72.33 \quad(J(\mathrm{Pt}-\mathrm{P})=\right.$ 2454 Hz).

Data for $7 \boldsymbol{a}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: at $20^{\circ} \mathrm{C}, \delta=7.55-7.03(\mathrm{~m} ; \mathrm{Ph}), 0.80(\mathrm{~s}$; $t \mathrm{Bu}$); at $-50^{\circ} \mathrm{C}$, a broad signal is seen at 16.92 , which can tentatively be assigned to $\mathrm{O} \cdots H \cdots \mathrm{O} ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: at $-50^{\circ} \mathrm{C}$, ABX pattern $\delta \mathrm{P}_{\mathrm{A}}=81.75\left(\mathrm{PPh}_{2} \mathrm{O}^{-}\right), \delta \mathrm{P}_{\mathrm{B}}=70.29\left(\mathrm{PPh}_{2} \mathrm{OH}\right), \delta \mathrm{P}_{\mathrm{x}}=75.56(\mathrm{P}$ trans to $\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu}), \quad{ }^{2} J\left(\mathrm{P}_{\mathrm{A}}, \mathrm{P}_{\mathrm{B} \text { rrans }}\right)=405.4 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}_{\mathrm{A}}, \mathrm{P}_{\mathrm{X} c i s}\right)=20.4 \mathrm{~Hz}, \quad{ }^{2} J\left(\mathrm{P}_{\mathrm{B}}, \mathrm{P}_{\mathrm{X} c i s}\right)=$ $26.3 \mathrm{~Hz},{ }^{1} J\left(\mathrm{Pt}, \mathrm{P}_{\mathrm{A}}\right)=2223 \mathrm{~Hz},{ }^{1} J\left(\mathrm{Pt}, \mathrm{P}_{\mathrm{B}}\right)=2537 \mathrm{~Hz},{ }^{1} J\left(\mathrm{Pt}, \mathrm{P}_{\mathrm{x}}\right)=2713 \mathrm{~Hz}$; at $25^{\circ} \mathrm{C}, 75.45\left(\mathrm{t},{ }^{2} J\left(\mathrm{P}_{\mathrm{X}}, \mathrm{P}_{c i s}\right)=23.2 \mathrm{~Hz},{ }^{1} J\left(\mathrm{Pt}, \mathrm{P}_{\mathrm{X}}\right)=2696 \mathrm{~Hz}\right)$. Coalescence of δ_{A} and δ_{B} is observed at about $50^{\circ} \mathrm{C}\left(\Delta \mathrm{G}^{\ddagger} \sim 53.8 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$; IR $(\mathrm{KBr}) \tilde{v}=$ 960 (s), 932 (vs), 900 (sh), bands at 1027 (w) and $1000 \mathrm{~cm}^{-1}$ (w) are also observed (P-O); MS: m/z (\%): 881 (100) $[M]^{+}, 800(16)[M-\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu}]^{+}$, 598 (50) $\left[\mathrm{Pt}\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{2} \mathrm{H}\right]^{+}, 395$ (47) $\left[\mathrm{PtPPh}_{2} \mathrm{O}-\mathrm{H}\right]^{+} ; \mathrm{C}_{42} \mathrm{H}_{41} \mathrm{O}_{3} \mathrm{P}_{3} \mathrm{Pt}$ (881.8): calcd C 57.21, H 4.69; found C 57.27, H 4.05.

Data for $\boldsymbol{7} \boldsymbol{b}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: at $-50^{\circ} \mathrm{C}, \delta=16.53(\mathrm{br} ; \mathrm{O} \cdots H \cdots \mathrm{O}), 7.76$, $7.25,6.62(\mathrm{~m} ; \mathrm{Ph})$; at $25^{\circ} \mathrm{C}, 7.60,7.32,7.08,6.65(\mathrm{~m}, \mathrm{Ph}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: at $-50^{\circ} \mathrm{C}$, ABX pattern, $\delta \mathrm{P}_{\mathrm{A}}=84.91\left(\mathrm{PPh}_{2} \mathrm{O}^{-}\right), \delta \mathrm{P}_{\mathrm{B}}=70.35$ $\left(\mathrm{PPh}_{2} \mathrm{OH}\right), \delta \mathrm{P}_{\mathrm{x}}=75.66$ (P trans to $\mathrm{C} \equiv \mathrm{CPh}$), ${ }^{2} J\left(\mathrm{P}_{\mathrm{A}}, \mathrm{P}_{\mathrm{B} \text { rans }}\right)=405.3 \mathrm{~Hz}$, $\left.{ }^{l} J\left(\mathrm{Pt}, \mathrm{P}_{\mathrm{A}}\right)=2246 \mathrm{~Hz},{ }^{l} J\left(\mathrm{Pt}, \mathrm{P}_{\mathrm{B}}\right)=2512 \mathrm{~Hz},{ }^{l} J\left(\mathrm{Pt}, \mathrm{P}_{\mathrm{X}}\right)=2670 \mathrm{~Hz}\right)$; at $25^{\circ} \mathrm{C}$, $\delta=74.81\left(\mathrm{t},{ }^{2} J\left(\mathrm{P}_{\mathrm{X}}, \mathrm{P}_{c i s}\right)=23.7 \mathrm{~Hz},{ }^{1} J\left(\mathrm{Pt}, \mathrm{P}_{\mathrm{x}}\right)=2737 \mathrm{~Hz}\right)$. A similar pattern was seen at $45^{\circ} \mathrm{C} ;$ IR: $\tilde{v}=2120(\mathrm{w} ; \mathrm{C} \equiv \mathrm{C}), 964$ (vs), 919 (vs), 900 (sh), bands at $1028(\mathrm{w})$ and $1000 \mathrm{~cm}^{-1}(\mathrm{w})$ are also observed ($\mathrm{P}-\mathrm{O}$); MS: $\mathrm{m} / \mathrm{z}(\%): 901$ (100) $[M]^{+}, 797(20)\left[\mathrm{Pt}\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{3}-\mathrm{H}\right]^{+}, 699(22)\left[M-\mathrm{PPh}_{2} \mathrm{OH}\right]^{+}, 599$ (37) $\left[\mathrm{Pt}\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{2} \mathrm{H}+\mathrm{H}\right]^{+}, 395(52)\left[\mathrm{PtPPh}_{2} \mathrm{O}-\mathrm{H}\right]^{+} ; \mathrm{C}_{44} \mathrm{H}_{37} \mathrm{O}_{3} \mathrm{P}_{3} \mathrm{Pt}$ (901.8): calcd C 58.61, H 4.14; found C 58.31, H 3.86.

Preparation of $\left[\mathbf{P t}(\mathbf{C} \equiv \mathbf{C R})\left\{\left(\mathbf{P P h}_{\mathbf{2}} \mathbf{O}\right)_{\mathbf{2}} \mathbf{H}\right\} \mathbf{L}\right] \mathbf{8 - 1 0}$: These complexes were prepared using a common procedure. A typical preparation $(\mathrm{R}=t \mathrm{Bu}, \mathrm{L}=$ $\mathrm{PEt}_{3} \mathbf{8 a}$) was as follows: A suspension of $7 \mathbf{a}(0.15 \mathrm{~g}, 0.17 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(\sim 10 \mathrm{~mL})$ was treated with a stoichiometric amount of $\mathrm{PEt}_{3}(23 \mu \mathrm{~L}$, $0.17 \mathrm{mmol})$. The initial white suspension dissolved almost instantaneously. After stirring for about 5 min the solvent was removed in vacuum and the residue treated with several portions of diethyl ether, yielding $8 \mathbf{a}$ as a white microcrystalline solid ($0.06 \mathrm{~g}, 45 \%$ yield). Complexes $\mathbf{8 b}$ and $\mathbf{1 0}$ were obtained in a similar way starting from the corresponding complex 7 and the appropiate donor ligand. The following amounts were used: For $\mathbf{8 b}$ $\left(\mathrm{R}=\mathrm{Ph}, \mathrm{PEt}_{3}\right) 7 \mathbf{b}(0.200 \mathrm{~g}, 0.222 \mathrm{mmol})$ and $\mathrm{PEt}_{3}(3.01 \mu \mathrm{~L}, 0.222 \mathrm{mmol})$, yield $78 \% ; \mathbf{1 0} \mathbf{a}(\mathrm{R}=t \mathrm{Bu}, \mathrm{L}=\mathrm{CN} t \mathrm{Bu}) \mathbf{7 a}(0.200 \mathrm{~g}, 0.227 \mathrm{mmol})$ and $\mathrm{CN} t \mathrm{Bu}$ $(25.6 \mu \mathrm{~L}, 0.222 \mathrm{mmol})$, yield $88 \% ; \mathbf{1 0 b}(\mathrm{R}=\mathrm{Ph}, \mathrm{L}=\mathrm{CN} t \mathrm{Bu}) 7 \mathrm{~b}(0.200 \mathrm{~g}$, $0.222 \mathrm{mmol})$ and $(\mathrm{CN} t \mathrm{Bu} 25.1 \mu \mathrm{~L}, 0.222 \mathrm{mmol})$, yield 76%. For complex 9 a the final residue was treated with isopropanol and for complex 9b ($\mathrm{L}=$ $\mathrm{PPh}_{2} \mathrm{H}$) the reaction was carried out at ~-30 to $-40^{\circ} \mathrm{C}$ and the reaction mixture was stirred at low temperature for 45 min . The starting precursors used were: $7 \mathbf{a}(0.200 \mathrm{~g}, 0.227 \mathrm{mmol})$ with $\mathrm{PPh}_{2} \mathrm{H}(39.5 \mu \mathrm{~L}, 0.227 \mathrm{mmol})$ for complex $9 \mathbf{a}$ (yield 56%) and $\mathbf{7 b}(0.128 \mathrm{~g}, 0.142 \mathrm{mmol})$ with $\mathrm{PPh}_{2} \mathrm{H}$ $(24.7 \mu \mathrm{~L}, 0.142 \mathrm{mmol})$ for 9 b (yield 64%), respectively.
Data for 8a: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=7.89,7.68,7.33(\mathrm{Ph}), 1.55\left(\mathrm{~m} ; \mathrm{CH}_{2}\right.$, $\left.\mathrm{PEt}_{3}\right), 0.85\left(\mathrm{dt},{ }^{3} J(\mathrm{P}, \mathrm{H})=16 \mathrm{~Hz},{ }^{2} J(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz} ; \mathrm{CH}_{3}, \mathrm{PEt}_{3}\right), 0.85(\mathrm{~s} ; t \mathrm{Bu}$, $\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: AMX spin system, $\delta=79.41$ (t , ${ }^{2} J\left(\mathrm{P}_{\mathrm{X}}, \mathrm{P}_{\mathrm{M} c i s}\right)=27.4 \sim{ }^{2} J\left(\mathrm{P}_{\mathrm{X}}, \mathrm{P}_{\mathrm{Acis}}\right)=21.5 \mathrm{~Hz},{ }^{1} J\left(\mathrm{Pt}, \mathrm{P}_{\mathrm{X}}\right)=2699 \mathrm{~Hz} ; \mathrm{P}_{\mathrm{X}}, \mathrm{P}_{\text {trans }}$ to $\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu}), 72.49\left(\mathrm{dd},{ }^{2} J\left(\mathrm{P}_{\mathrm{A}}, \mathrm{P}_{\mathrm{M} t r a n s}\right)=389.9 \mathrm{~Hz},{ }^{1} J\left(\mathrm{Pt}, \mathrm{P}_{\mathrm{M}}\right)=2639.3 \mathrm{~Hz} ; \mathrm{P}_{\mathrm{M}}\right.$, $\mathrm{P}_{\text {trans }}$ to $\left.\mathrm{PEt}_{3}\right), 5.14\left(\mathrm{dd},{ }^{1} J\left(\mathrm{Pt}, \mathrm{P}_{\mathrm{A}}\right)=1968.2 \mathrm{~Hz} ; \mathrm{P}_{\mathrm{A}}, \mathrm{PEt}_{3}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=140.0\left(\mathrm{~d},{ }^{1} J(\mathrm{C}, \mathrm{P})=62.5 \mathrm{~Hz},{ }^{2} J(\mathrm{Pt}, \mathrm{C}) \sim 47 \mathrm{~Hz}\right), 139.99(\mathrm{dd}$, $\left.{ }^{1} J(\mathrm{C}, \mathrm{P})=69.5 \mathrm{~Hz},{ }^{3} J(\mathrm{C}, \mathrm{P})=6.9 \mathrm{~Hz},{ }^{2} J(\mathrm{Pt}, \mathrm{C}) \sim 31 \mathrm{~Hz} ; i-\mathrm{C}, \mathrm{PPh}_{2} \mathrm{O}^{-}\right), 132.5$ $\left(\mathrm{m} ; o-\mathrm{C}, \mathrm{PPh}_{2} \mathrm{O}^{-}\right), 130.39\left(\mathrm{~d},{ }^{4} J(\mathrm{C}, \mathrm{P})=1.7 \mathrm{~Hz}\right), 129.29\left(\mathrm{~d},{ }^{4} J(\mathrm{C}, \mathrm{P})=2.3 \mathrm{~Hz} ;\right.$ $\left.p-\mathrm{C}, \mathrm{PPh}_{2} \mathrm{O}^{-}\right), 127.86\left(\mathrm{~d},{ }^{3} J(\mathrm{C}, \mathrm{P})=10.5 \mathrm{~Hz}\right), 127.12\left(\mathrm{~d},{ }^{3} J(\mathrm{C}, \mathrm{P})=11.3 \mathrm{~Hz} ; m-\right.$ $\left.\mathrm{C}, \quad \mathrm{PPh}_{2} \mathrm{O}^{-}\right), \quad 121.04\left(\mathrm{dd},{ }^{3} J\left(\mathrm{C}_{\beta}, \mathrm{P}_{\text {trans }}\right)=30.5 \mathrm{~Hz},{ }^{3} J\left(\mathrm{C}_{\beta}, \mathrm{P}_{c i s}\right)=1.9 \mathrm{~Hz}\right.$, $\left.{ }^{2} J\left(\mathrm{Pt}, \mathrm{C}_{\beta}\right) \sim 235 \mathrm{~Hz} ; \mathrm{C}_{\beta}, \mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} t \mathrm{Bu}\right), 90.92\left(\mathrm{ddd},{ }^{2} J\left(\mathrm{C}_{\alpha}, \mathrm{P}_{\text {trans }}\right)=129.1 \mathrm{~Hz}\right.$, $\left.{ }^{2} J\left(\mathrm{C}_{\alpha}, \mathrm{P}_{c i s}\right)=20.6,16.8 \mathrm{~Hz},{ }^{1} J\left(\mathrm{Pt}, \mathrm{C}_{\alpha}\right) \sim 980 \mathrm{~Hz} ; \mathrm{C}_{\alpha}, \mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} t \mathrm{Bu}\right), 31.01$ (s; $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, t \mathrm{Bu}\right), 29.04\left(\mathrm{CMe}_{3}, t \mathrm{Bu}\right), 15.43\left(\mathrm{~d},{ }^{1} J(\mathrm{C}, \mathrm{P})=31.2 \mathrm{~Hz},{ }^{2} J(\mathrm{Pt}, \mathrm{C})=\right.$ $\left.27 \mathrm{~Hz} ; \mathrm{CH}_{2}, \mathrm{PEt}_{3}\right), 8.18\left(\mathrm{br},{ }^{3} J(\mathrm{Pt}, \mathrm{C})=19 \mathrm{~Hz} ; \mathrm{CH}_{3}, \mathrm{PEt}_{3}\right) ; \mathrm{IR}: \tilde{v}=1031(\mathrm{~s})$, 1008 (vs), $997 \mathrm{~cm}^{-1}$ (sh; P-O); MS: m / z (\%): 798 (70) $[M+\mathrm{H}]^{+}, 717$ (30) $\left.[M-\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu}+\mathrm{H}]^{+}, 598(25)\left[\mathrm{Pt}^{(} \mathrm{PPh}_{2} \mathrm{O}\right)_{2} \mathrm{H}\right]^{+} ; \mathrm{C}_{36} \mathrm{H}_{45} \mathrm{O}_{2} \mathrm{P}_{3} \mathrm{Pt}$ (797.8): calcd C 54.20, H 5.68; found C 53.83, H 5.64.

Data for $8 \boldsymbol{b}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta \sim 15.0(\mathrm{br} ; \mathrm{H} \cdots \mathrm{O} \cdots \mathrm{H}), 7.92,7.73,7.35$, $7.10,6.80(\mathrm{~m} ; \mathrm{Ph}), 1.63\left(\mathrm{~m} ; \mathrm{CH}_{2}, \mathrm{PEt}_{3}\right), 0.91\left(\mathrm{dt},{ }^{3} J(\mathrm{H}, \mathrm{P})=16.6 \mathrm{~Hz}\right.$, $\left.{ }^{2} J(\mathrm{H}, \mathrm{H})=7.2 \mathrm{~Hz} ; \mathrm{CH}_{3}, \mathrm{PEt}_{3}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: AMX spin system, $\delta=78.36 \quad\left(\mathrm{t}, \quad{ }^{2} J\left(\mathrm{P}_{\mathrm{X}}, \mathrm{P}_{\mathrm{A} c i s}\right)=21.5 \sim{ }^{2} J\left(\mathrm{P}_{\mathrm{X}}, \mathrm{P}_{\mathrm{Mcis}}\right)=27.1 \mathrm{~Hz}, \quad{ }^{1} J\left(\mathrm{Pt}, \mathrm{P}_{\mathrm{X}}\right)=\right.$ $2717 \mathrm{~Hz} ; \mathrm{P}_{\mathrm{X}}, \mathrm{P}_{\text {trans }}$ to $\left.\mathrm{C} \equiv \mathrm{CPh}\right), 71.52\left(\mathrm{dd},{ }^{2} J\left(\mathrm{P}_{\mathrm{M}}, \mathrm{P}_{\text {Atrans }}\right)=380.1 \mathrm{~Hz}\right.$, ${ }^{1} J\left(\mathrm{Pt}, \mathrm{P}_{\mathrm{M}}\right)=2591 \mathrm{~Hz} ; \mathrm{P}_{\mathrm{M}}, \mathrm{P}_{\text {trans }}$ to $\left.\mathrm{PEt}_{3}\right), 5.61\left(\mathrm{dd},{ }^{1} J\left(\mathrm{Pt}, \mathrm{P}_{\mathrm{A}}\right)=1950 \mathrm{~Hz} ; \mathrm{P}_{\mathrm{A}}\right.$, $\left.\mathrm{PEt}_{3}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=139.78\left(\mathrm{dd},{ }^{1} J(\mathrm{C}, \mathrm{P})=70.0 \mathrm{~Hz},{ }^{3} J(\mathrm{C}, \mathrm{P})=\right.$ $7.1 \mathrm{~Hz},{ }^{2} J(\mathrm{Pt}, \mathrm{C})=61.6 \mathrm{~Hz} ; i-\mathrm{C}, \mathrm{PPh}_{2} \mathrm{O}^{-}$trans to $\left.\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu}\right), 139.61$ (dd, ${ }^{1} J(\mathrm{C}, \mathrm{P})=63.2 \mathrm{~Hz},{ }^{3} J(\mathrm{C}, \mathrm{P})=1.3 \mathrm{~Hz},{ }^{2} J(\mathrm{Pt}, \mathrm{C})=48.5 \mathrm{~Hz} ; i-\mathrm{C}, \mathrm{PPh}_{2} \mathrm{O}^{-}$trans to $\left.\mathrm{PEt}_{3}\right), 132.4\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=13 \mathrm{~Hz},{ }^{3} J(\mathrm{Pt}, \mathrm{C})=13.1 \mathrm{~Hz}\right), 132.1 \quad(\mathrm{dd}$, $\left.{ }^{2} J(\mathrm{C}, \mathrm{P})=10.7 \mathrm{~Hz},{ }^{4} J(\mathrm{C}, \mathrm{P})=0.6 \mathrm{~Hz} ; o-\mathrm{C}, \mathrm{PPh}_{2} \mathrm{O}^{-}\right), 130.50(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=$ $2 \mathrm{~Hz}), 130.47(\mathrm{~d}, J=1.2 \mathrm{~Hz}), 129.47\left(\mathrm{~d}, J(\mathrm{C}, \mathrm{P})=2.5 \mathrm{~Hz} ; p-\mathrm{C}, \mathrm{PPh}_{2} \mathrm{O}^{-}\right.$and $o-\mathrm{C}, \mathrm{Ph}, \mathrm{C} \equiv \mathrm{CPh}), 127.96\left(\mathrm{~d},{ }^{3} J(\mathrm{C}, \mathrm{P})=10.7 \mathrm{~Hz}\right), 127.39\left(\mathrm{~d},{ }^{3} J(\mathrm{C}, \mathrm{P})=\right.$ $11.2 \mathrm{~Hz} ; m-\mathrm{C}, \mathrm{PPh}_{2} \mathrm{O}^{-}$), 127.46 (s; $m-\mathrm{C}, \mathrm{Ph}, \mathrm{C} \equiv \mathrm{CPh}$), 125.66 ($\mathrm{s} ; p-\mathrm{C}, \mathrm{Ph}$, $\mathrm{C} \equiv \mathrm{CPh}), 112.66$ (ddd, ${ }^{3} J\left(\mathrm{C}_{\beta}, \mathrm{P}_{\text {trans }}\right)=30.8 \mathrm{~Hz},{ }^{3} J\left(\mathrm{C}_{\beta}, \mathrm{P}_{\text {cis }}\right)=2.9$, 1.1 Hz , $\left.{ }^{2} J\left(\mathrm{Pt}, \mathrm{C}_{\beta}\right)=320.7 \mathrm{~Hz} ; \mathrm{C}_{\beta}, \mathrm{C}_{a} \equiv \mathrm{C}_{\beta} \mathrm{Ph}\right), 108.4\left(\mathrm{ddd},{ }^{2} J\left(\mathrm{C}_{\alpha}, \mathrm{P}_{\text {trans }}\right)=129.7 \mathrm{~Hz}\right.$, $\left.{ }^{2} J\left(\mathrm{C}_{\alpha}, \mathrm{P}_{c i s}\right)=20.5,17.0 \mathrm{~Hz},{ }^{1} J\left(\mathrm{Pt}, \mathrm{C}_{\alpha}\right) \sim 1010 \mathrm{~Hz} ; \mathrm{C}_{\alpha}, \mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Ph}\right), 15.57(\mathrm{dt}$, $\left.{ }^{1} J(\mathrm{C}, \mathrm{P})=31.1 \mathrm{~Hz},{ }^{2} J(\mathrm{Pt}, \mathrm{C})=26 \mathrm{~Hz} ; \mathrm{CH}_{2}, \mathrm{PEt}_{3}\right), 8.2\left(\mathrm{t},{ }^{2+4} J(\mathrm{C}, \mathrm{P})=3.8 \mathrm{~Hz} ;\right.$ $\mathrm{CH}_{3}, \mathrm{PEt}_{3}$) ; IR: $\tilde{v}=2121(\mathrm{~m} ; \mathrm{C} \equiv \mathrm{C}), 1027(\mathrm{~s}), 1007 \mathrm{~cm}^{-1}(\mathrm{vs} ; \mathrm{P}-\mathrm{O})$; ESMS(+): m / z (\%): 819 (60) $[M+2]^{+}, 716$ (95) $[M-\mathrm{C} \equiv \mathrm{CPh}]^{+}, 598$ (100) $\left[\mathrm{Pt}\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{2} \mathrm{H}\right]^{+} ; \mathrm{C}_{38} \mathrm{H}_{41} \mathrm{O}_{2} \mathrm{P}_{3} \mathrm{Pt}$ (817.8): calcd C 55.81, H 5.05; found C 55.88, H 4.84.

Data for 9a: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=7.99,7.52,7.29$, $(\mathrm{Ph}), 5.38$ (ddd, $\left.{ }^{1} J(\mathrm{H}, \mathrm{P})=364.9 \mathrm{~Hz},{ }^{3} J\left(\mathrm{H}, \mathrm{P}_{\text {trans }}\right)=14.4 \mathrm{~Hz},{ }^{3} J\left(\mathrm{H}, \mathrm{P}_{c i s}\right)=7.3 \mathrm{~Hz} ; \mathrm{PPh}_{2} H\right), 0.73$ $(\mathrm{s} ; t \mathrm{Bu}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: AMX spin system, $\delta=76.86\left(\mathrm{t},{ }^{2} J\left(\mathrm{P}_{\mathrm{x}}, \mathrm{P}_{\mathrm{Mcis}}\right)\right.$ $\sim 25.5 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}_{\mathrm{X}}, \mathrm{P}_{\mathrm{Acis}}\right)=21.9 \mathrm{~Hz},{ }^{1} J\left(\mathrm{Pt}, \mathrm{P}_{\mathrm{X}}\right)=2521 \mathrm{~Hz} ; \mathrm{P}_{\mathrm{X}}, \mathrm{P}_{\text {trans }}$ to $\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu}), 69.39\left(\mathrm{dd},{ }^{2} J\left(\mathrm{P}_{\mathrm{M}}, \mathrm{P}_{\mathrm{A} \text { trans }}\right)=404.7 \mathrm{~Hz},{ }^{1} J\left(\mathrm{Pt}, \mathrm{P}_{\mathrm{M}}\right)=2887 \mathrm{~Hz} ; \mathrm{P}_{\mathrm{M}}\right.$, $\mathrm{P}_{\text {trans }}$ to $\left.\mathrm{PPh}_{2} \mathrm{H}\right),-3.67\left(\mathrm{dd},{ }^{1} J\left(\mathrm{Pt}, \mathrm{P}_{\mathrm{A}}\right)=1982 \mathrm{~Hz} ; \mathrm{P}_{\mathrm{A}}, \mathrm{PPh}_{2} \mathrm{H}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=138.82\left(\mathrm{dd},{ }^{1} J(\mathrm{C}, \mathrm{P})=70.5 \mathrm{~Hz},{ }^{3} J(\mathrm{C}, \mathrm{P})=7.4 \mathrm{~Hz},{ }^{2} J(\mathrm{Pt}, \mathrm{C}) \sim\right.$ 65 Hz ; i-C, $\mathrm{PPh}_{2} \mathrm{O}^{-}$trans to $\left.\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu}\right), 137.81\left(\mathrm{dd},{ }^{1} J(\mathrm{C}, \mathrm{P})=66.2 \mathrm{~Hz}\right.$, ${ }^{3} J(\mathrm{C}, \mathrm{P})=1.8 \mathrm{~Hz},{ }^{2} J(\mathrm{Pt}, \mathrm{C})=42 \mathrm{~Hz} ; i$-C, $\mathrm{PPh}_{2} \mathrm{O}^{-}$trans to $\left.\mathrm{PPh}_{2} \mathrm{H}\right), 134.00$ $\left(\mathrm{d},{ }^{2} J(\mathrm{C}, \mathrm{P})=9.2 \mathrm{~Hz}\right), 132.24\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=11.5 \mathrm{~Hz}\right), 132.02\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=\right.$ $12.5 \mathrm{~Hz} ; o-\mathrm{C}), 130.62,130.54,129.8(p-\mathrm{C}), 128.12\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{C}, \mathrm{P})=10.6 \mathrm{~Hz}\right)$,
$127.31\left(\mathrm{~d},{ }^{3} J(\mathrm{C}, \mathrm{P})=11.3 \mathrm{~Hz} ; m-\mathrm{C}\right), \mathrm{C}_{\beta}$ not observed, 87.27 (ddd, ${ }^{2} J\left(\mathrm{C}_{\alpha}\right.$, Ptrans $)=124.3 \mathrm{~Hz},{ }^{2} J\left(\mathrm{C}_{\alpha}\right.$, Pcis $\left.)=21.16 \mathrm{~Hz} ; \mathrm{C}_{\alpha}, \mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} t \mathrm{Bu}\right), 30.81(\mathrm{~s} ;$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 28.96\left(\mathrm{~s} ; \mathrm{CMe}_{3}\right)$; IR: $\tilde{v}=2357(\mathrm{~m} ; \mathrm{P}-\mathrm{H}), 1029$ (s), 1011(vs), $997 \mathrm{~cm}^{-1}$ (sh; P-O); ES-MS (+): m/z (\%): 866 (100) [M+H]+; $\mathrm{C}_{42} \mathrm{H}_{41} \mathrm{O}_{2} \mathrm{P}_{3} \mathrm{Pt}$ (865.8): calcd C 58.27, H 4.77; found C 58.17, H 4.85.
Data for 9 b: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta=7.96,7.56,7.47,7.28,7.03,6.62(\mathrm{Ph}), 5.44$ ddd, $\quad{ }^{1} J(\mathrm{H}, \mathrm{P})=368.2 \mathrm{~Hz}, \quad{ }^{3} J\left(\mathrm{H}, \mathrm{P}_{\text {trans }}\right)=13.8 \mathrm{~Hz}, \quad{ }^{3} J\left(\mathrm{H}, \mathrm{P}_{\text {cis }}\right)=6.5 \mathrm{~Hz}$, $\left.{ }^{2} J(\mathrm{Pt}, \mathrm{H}) \sim 50 \mathrm{~Hz} ; \mathrm{PPh}_{2} H\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: AMX spin system, $\delta=75.68\left(\mathrm{t},{ }^{2} J\left(\mathrm{P}_{\mathrm{X}}, \mathrm{P}_{\mathrm{Mc} i \mathrm{~s}}\right)=24.7 \mathrm{~Hz} \sim{ }^{2} J\left(\mathrm{P}_{\mathrm{X}}, \mathrm{P}_{\mathrm{Acis}}\right)=21.9 \mathrm{~Hz},{ }^{1} J\left(\mathrm{Pt}, \mathrm{P}_{\mathrm{x}}\right)=\right.$ $2536 \mathrm{~Hz} ; \mathrm{P}_{\mathrm{X}}, \mathrm{P}_{\text {trans }}$ to $\left.\mathrm{C} \equiv \mathrm{CPh}\right), 69.19\left(\mathrm{dd},{ }^{2} J\left(\mathrm{P}_{\mathrm{M}}, \mathrm{P}_{\mathrm{A} \text { trans }}\right)=394.5 \mathrm{~Hz}\right.$, ${ }^{1} J\left(\mathrm{Pt}, \mathrm{P}_{\mathrm{M}}\right)=2843 \mathrm{~Hz} ; \mathrm{P}_{\mathrm{M}}, \mathrm{P}_{\text {trans }}$ to $\left.\mathrm{PPh}_{2} \mathrm{H}\right),-2.92\left(\mathrm{dd},{ }^{1} J\left(\mathrm{Pt}, \mathrm{P}_{\mathrm{A}}\right)=1960 \mathrm{~Hz}\right.$; $\left.\mathrm{P}_{\mathrm{A}}, \mathrm{PPh}_{2} \mathrm{H}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=138.8(\mathrm{~m}$; overlapping of i-C, $\left.\mathrm{PPh}_{2} \mathrm{O}^{-}, \mathrm{PPh}_{2} \mathrm{H}\right), 134.18\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=10.1 \mathrm{~Hz}\right), 132.23\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=8.2 \mathrm{~Hz}\right)$, 132.07 (d, $\left.{ }^{2} J(\mathrm{C}, \mathrm{P})=8.8 \mathrm{~Hz} ; o-\mathrm{C}, \mathrm{PPh}_{2} \mathrm{O}^{-}, \mathrm{PPh}_{2} \mathrm{H}\right), 130.84,129.94$ ($p-\mathrm{C}$, $\left.\mathrm{PPh}_{2} \mathrm{O}^{-}\right), 130.57(\mathrm{~s} ; o-\mathrm{C}, \mathrm{Ph}, \mathrm{C} \equiv \mathrm{CPh}), 128.47\left(\mathrm{~d},{ }^{3} J(\mathrm{C}, \mathrm{P})=11.8 \mathrm{~Hz}\right), 128.09$ $\left(\mathrm{d},{ }^{3} J(\mathrm{C}, \mathrm{P})=10.8 \mathrm{~Hz}\right), 127.59\left(\mathrm{~d},{ }^{3} J(\mathrm{C}, \mathrm{P})=11.3 \mathrm{~Hz} ; m-\mathrm{C}, \mathrm{PPh}_{2} \mathrm{O}^{-}, \mathrm{PPh}_{2} \mathrm{H}\right)$, 127.57 ($\mathrm{s} ; m-\mathrm{C}, \mathrm{Ph}, \mathrm{C} \equiv \mathrm{CPh}$), 126.42 ($i-\mathrm{C}, \mathrm{Ph}, \mathrm{C} \equiv \mathrm{CPh}$), 125.68 ($\mathrm{s} ; \mathrm{Ph}$, $\mathrm{C} \equiv \mathrm{CPh}$), $117.07\left(\mathrm{~d},{ }^{3} J\left(\mathrm{C}_{\beta}, \mathrm{P}_{\text {trans }}\right)=32 \mathrm{~Hz} ; \mathrm{C}_{\beta}, \mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Ph}\right.$), ~ 105.4 (poorly resolved signal as dm, $\left.{ }^{2} J\left(\mathrm{C}_{\alpha}, \mathrm{Ptrans}\right) \sim 120 \mathrm{~Hz} ; \mathrm{C}_{\alpha}\right)$; IR: $\tilde{v}=2351(\mathrm{w} ; \mathrm{P}-\mathrm{H})$, 2118 (m; C=C), 1030 (s), 1014 (vs), $997 \mathrm{~cm}^{-1}$ (m; P-O); ES-MS (+): m/z (\%): 887 (100) $[M+\mathrm{H}]^{+} ; \mathrm{C}_{44} \mathrm{H}_{37} \mathrm{O}_{2} \mathrm{P}_{3} \mathrm{Pt}$ (885.8): calcd C 59.66, H 4.21; found C 59.38, H 4.14.

Data for 10a: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=7.91,7.60,7.35,(\mathrm{~m} ; \mathrm{Ph}), 1.24(\mathrm{~s} ; t \mathrm{Bu}$, $\mathrm{CN} t \mathrm{Bu}), 1.01(\mathrm{~s} ; t \mathrm{Bu}, \mathrm{C}=\mathrm{C} t \mathrm{Bu}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=70.93$ (d, ${ }^{2} J\left(\mathrm{P}, \mathrm{P}_{c i s}\right)=25.4 \mathrm{~Hz},{ }^{1} J(\mathrm{Pt}, \mathrm{P})=2474 \mathrm{~Hz} ; \mathrm{P}_{\text {trans }}$ to $\left.\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu}\right)$, 60.95 (d , ${ }^{1} J(\mathrm{Pt}, \mathrm{P})=3071 \mathrm{~Hz} ; \mathrm{P}_{\text {trans }}$ to $\left.\mathrm{CN} t \mathrm{Bu}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: signal due to CN^{-}not observed, $\delta=140.44\left(\mathrm{~d},{ }^{1} J(\mathrm{C}, \mathrm{P})=66.1 \mathrm{~Hz},{ }^{2} J(\mathrm{Pt}, \mathrm{C})=41.8 \mathrm{~Hz} ; i-\mathrm{C}\right.$, $\mathrm{PPh}_{2} \mathrm{O}^{-}$trans to $\left.\mathrm{C}=\mathrm{C} t \mathrm{Bu}\right), 138.5\left(\mathrm{~d},{ }^{1} J(\mathrm{C}, \mathrm{P})=75.2 \mathrm{~Hz},{ }^{2} J(\mathrm{Pt}, \mathrm{C})=64.4 \mathrm{~Hz}\right.$; $i-\mathrm{C}, \mathrm{PPh}_{2} \mathrm{O}^{-}$trans to $\left.\mathrm{CN} t \mathrm{Bu}\right), 132.31\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=11.5 \mathrm{~Hz},{ }^{3} J(\mathrm{Pt}, \mathrm{C})=\right.$ $16.4 \mathrm{~Hz}), 131.64\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=12.5 \mathrm{~Hz},{ }^{3} J(\mathrm{Pt}, \mathrm{C})=13.9 \mathrm{~Hz}\right)\left(o-\mathrm{C}, \mathrm{PPh}_{2} \mathrm{O}^{-}\right)$, $130.32\left(\mathrm{~d},{ }^{4} J(\mathrm{C}, \mathrm{P})=2.04 \mathrm{~Hz}\right), 129.00\left(\mathrm{~d},{ }^{4} J(\mathrm{C}, \mathrm{P})=2.49 \mathrm{~Hz} ; p-\mathrm{C}, \mathrm{PPh}_{2} \mathrm{O}^{-}\right)$, $127.90\left(\mathrm{~d},{ }^{3} J(\mathrm{C}, \mathrm{P})=10.9 \mathrm{~Hz}\right), 127.54\left(\mathrm{~d},{ }^{3} J(\mathrm{C}, \mathrm{P})=11.6 \mathrm{~Hz} ; m-\mathrm{C}, \mathrm{PPh}_{2} \mathrm{O}^{-}\right)$, $121.83\left(\mathrm{~d},{ }^{3} J\left(\mathrm{C}_{\beta}, \mathrm{P}_{\text {trans }}\right)=29.7 \mathrm{~Hz} ; \mathrm{C}_{\beta}, \mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} t \mathrm{Bu}\right), 85.38\left(\mathrm{dd},{ }^{2} J\left(\mathrm{C}_{\alpha}, \mathrm{P}_{\text {trans }}\right)=\right.$ $\left.127.9 \mathrm{~Hz},{ }^{2} J\left(\mathrm{C}_{\alpha}, \mathrm{P}_{c i s}\right)=16.7 \mathrm{~Hz} ; \mathrm{C}_{\alpha}, \mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} t \mathrm{Bu}\right)$, $58.04\left(\mathrm{~s} ; \mathrm{CMe}_{3}, \mathrm{CN} t \mathrm{Bu}\right)$, 31.7 (s; $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{C} \equiv \mathrm{CtBu}\right), 29.29$ (s; $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{CN} t \mathrm{Bu}\right), 28.99$ (s; CMe_{3}, $\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu}) ; \mathrm{IR}: \tilde{v}=2216(\mathrm{~s})(\mathrm{C} \equiv \mathrm{N}),((\mathrm{C} \equiv \mathrm{C})$ not observed $), 1019(\mathrm{~s}), 998(\mathrm{sh})$, $978 \mathrm{~cm}^{-1}$ (sh; P-O); ES-MS (+): m/z (\%): 764 (100) [M+H] ${ }^{+}$; $\mathrm{C}_{35} \mathrm{H}_{39} \mathrm{NO}_{2} \mathrm{P}_{2} \mathrm{Pt}$ (762.7): calcd N 1.84, C 55.12 , H 5.15; found N 1.87 , C 54.85, H 5.35.

Data for $10 \boldsymbol{b}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta=7.92,7.66,7.37,7.12,6.98(\mathrm{~m} ; \mathrm{Ph}), 1.23$ (s; $t \mathrm{Bu}, \mathrm{CN} t \mathrm{Bu}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=69.85\left(\mathrm{~d},{ }^{2} J\left(\mathrm{P}, \mathrm{P}_{c i s}\right)=24.8 \mathrm{~Hz}\right.$, $J(\mathrm{Pt}, \mathrm{P})=2491.5 \mathrm{~Hz} ; \mathrm{P}_{\text {trans }}$ to $\left.\mathrm{C}=\mathrm{CPh}\right), 61.1\left(\mathrm{~d},{ }^{1} J(\mathrm{Pt}, \mathrm{P})=3045 \mathrm{~Hz} ; \mathrm{P}_{\text {trans }}\right.$ to $\mathrm{CN} t \mathrm{Bu}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: CN^{-}not observed, $\delta=139.97$ (d, $J(\mathrm{C}, \mathrm{P})=67 \mathrm{~Hz},{ }^{2} J(\mathrm{Pt}, \mathrm{C})=42 \mathrm{~Hz} ; i-\mathrm{C}, \mathrm{PPh}_{2} \mathrm{O}^{-}$trans to $\left.\mathrm{C} \equiv \mathrm{CPh}\right), 138.26$ (d, ${ }^{1} J(\mathrm{C}, \mathrm{P})=75.9 \mathrm{~Hz},{ }^{2} J(\mathrm{Pt}, \mathrm{C})=62.6 \mathrm{~Hz} ; i-\mathrm{C}, \mathrm{PPh}_{2} \mathrm{O}^{-}$trans to $\left.\mathrm{CN} t \mathrm{Bu}\right)$, $132.19\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=11.7 \mathrm{~Hz},{ }^{3} J(\mathrm{Pt}, \mathrm{C})=16.3 \mathrm{~Hz}\right), 131.35 \quad\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=\right.$ $\left.2.5 \mathrm{~Hz},{ }^{3} J(\mathrm{Pt}, \mathrm{C})=13.0 \mathrm{~Hz} ; o-\mathrm{C}, \mathrm{Ph}, \mathrm{PPh}_{2}\right), 131.07\left(\mathrm{~s} ; o-\mathrm{C}, \mathrm{PPh}_{2} \mathrm{O}^{-}\right.$, $\mathrm{C} \equiv \mathrm{CPh}), 130.49\left(\mathrm{~d},{ }^{4} J(\mathrm{C}, \mathrm{P})=1.9 \mathrm{~Hz}\right), 130.18\left(\mathrm{~d},{ }^{4} J(\mathrm{C}, \mathrm{P})=2.26 \mathrm{~Hz} ; p-\mathrm{C}\right.$, $\left.\mathrm{Ph}, \mathrm{PPh}_{2} \mathrm{O}^{-}\right), 128.01\left(\mathrm{~d},{ }^{3} J(\mathrm{C}, \mathrm{P})=11 \mathrm{~Hz}\right), 127.70\left(\mathrm{~d},{ }^{3} J(\mathrm{C}, \mathrm{P})=11.6 \mathrm{~Hz} ; m-\mathrm{C}\right.$, $\mathrm{Ph}, \mathrm{PPh}_{2} \mathrm{O}^{-}$), 127.67 (s; $\left.m-\mathrm{C}, \mathrm{C} \equiv \mathrm{CPh}\right), 126.72$ (d, ${ }^{4} J(\mathrm{C}, \mathrm{P}) \sim 2.34,{ }^{3} \mathrm{~J}(\mathrm{Pt}, \mathrm{C}) \sim$ 23 Hz ; $i-\mathrm{C}, \mathrm{Ph}, \mathrm{C} \equiv \mathrm{CPh}$), 125.97 ($\mathrm{s} ; p-\mathrm{C}, \mathrm{Ph}, \mathrm{C} \equiv \mathrm{CPh}$), 112.43 (d, $\left.{ }^{3} J\left(\mathrm{C}_{\beta}, \mathrm{P}_{\text {trans }}\right)=30.6 \mathrm{~Hz}, \quad{ }^{2} J\left(\mathrm{Pt}, \mathrm{C}_{\beta}\right)=260 \mathrm{~Hz} ; \quad \mathrm{C}_{\beta}, \quad \mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Ph}\right)$, $102.6 \quad(\mathrm{dd}$, $\left.{ }^{2} J\left(\mathrm{C}_{\alpha}, \mathrm{P}_{\text {trans }}\right)=128.5 \mathrm{~Hz}, \quad{ }^{2} J\left(\mathrm{C}_{\alpha}, \mathrm{P}_{c i s}\right)=16.6 \mathrm{~Hz} ; \mathrm{C}_{\alpha}, \mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Ph}\right), 58.34 \quad(\mathrm{~s} ;$ $\left.C \mathrm{Me}_{3}, \mathrm{CN} t \mathrm{Bu}\right), 29.27\left(\mathrm{~s} ; \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{CN} t \mathrm{Bu}\right) ; \mathrm{IR}: \tilde{v}=2215(\mathrm{vs})(\mathrm{C}=\mathrm{N})$, 2122 (w) (C $=\mathrm{C}$) , 1029 (s), 1015 (vs), $997 \mathrm{~cm}^{-1}$ (s; P-O); MS : m/z (\%): 783 (40) $[M+\mathrm{H}]^{+}, 681(38)[M-\mathrm{C} \equiv \mathrm{CPh}]^{+}, 598(100)\left[\mathrm{Pt}\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{2} \mathrm{H}\right]^{+}, 396$ (65) $\left[\mathrm{Pt}\left(\mathrm{PPh}_{2} \mathrm{O}\right)\right]^{+} ; \mathrm{C}_{37} \mathrm{H}_{35} \mathrm{NO}_{2} \mathrm{P}_{2} \mathrm{Pt}$ (782.7): calcd N 1.79, C 56.78, H 4.51; found N 1.82, C 56.18, H 4.54.
Preparation of $\left(\mathbf{N B u}_{4}\right)\left[\mathbf{P t}(\mathbf{C}=\mathbf{C R})(\mathbf{C N})\left\{\left(\mathbf{P P h}_{2} \mathbf{O}\right)_{2} \mathbf{H}\right\}\right](\mathbf{R}=\boldsymbol{t B u} 11 \mathbf{a}, \mathbf{R}=$ $\mathbf{P h}, \mathbf{1 1 b}):\left(\mathrm{NBu}_{4}\right) \mathrm{CN}(0.063 \mathrm{~g}, 0.227 \mathrm{mmol})$ was added to a suspension of $\mathbf{7 a}$ $(0.200 \mathrm{~g}, 0.227 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, immediately giving a colourless solution. The mixture was stirred for 2 min and then the solvent was removed under vacuum, yielding an oily residue, which was treated with diethyl ether. The resulting white solid (11a) was filtered and washed with several portions of diethyl ether (86.5% yield). Complex $\mathbf{1 1 b}$ was prepared in a similar way, starting from $7 \mathbf{b b}(0.25 \mathrm{~g}, 0.277 \mathrm{mmol})$ and $\left(\mathrm{NBu}_{4}\right) \mathrm{CN}$ $(0.078 \mathrm{~g}, 0.277 \mathrm{mmol})$, yield 76%

Data for $11 a:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=17.2(\mathrm{br} ; \mathrm{O} \cdots \mathrm{H} \cdots \mathrm{O}), 7.97,7.88,7.26$, $(\mathrm{m} ; \mathrm{Ph}), 2.92\left(\mathrm{~m} ; \mathrm{N}-\mathrm{CH}_{2}, \mathrm{NBu}_{4}\right), 1.26\left(\mathrm{~m} ; \mathrm{CH}_{2}, \mathrm{NBu}_{4}\right), 1.44\left(\mathrm{~m} ; \mathrm{CH}_{2}\right), 0.90$ $(\mathrm{s} ; t \mathrm{Bu}), 0.80\left(\mathrm{t} ;-\mathrm{CH}_{3}, \mathrm{NBu}_{4}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=70.88(\mathrm{~d}$,
${ }^{2} J\left(\mathrm{P}, \mathrm{P}_{\text {cis }}\right)=24.7 \mathrm{~Hz}, \quad{ }^{1} J(\mathrm{Pt}, \mathrm{P})=2506 \mathrm{~Hz} ; \quad \mathrm{P}_{\text {trans }}$ to $\left.\mathrm{C} \equiv \mathrm{CtBu}\right), 66.11 \quad(\mathrm{~d}$, ${ }^{1} J(\mathrm{Pt}, \mathrm{P})=2844.2 \mathrm{~Hz} ; \mathrm{P}_{\text {trans }}$ to CN$) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=141.7$ (d, $\left.{ }^{1} J(\mathrm{C}, \mathrm{P})=62.5 \mathrm{~Hz},{ }^{2} J(\mathrm{Pt}, \mathrm{C})=45 \mathrm{~Hz}\right), 140.7\left(\mathrm{~d},{ }^{1} J(\mathrm{C}, \mathrm{P})=68.2 \mathrm{~Hz},{ }^{2} J(\mathrm{Pt}, \mathrm{C})\right.$ $\left.\sim 57 \mathrm{~Hz} ; i-\mathrm{C}, \mathrm{PPh}_{2} \mathrm{O}^{-}\right), 132.36\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=11.5 \mathrm{~Hz}\right), 131.78\left[\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=\right.$ $\left.12 \mathrm{~Hz} ; o-\mathrm{C}, \mathrm{PPh}_{2} \mathrm{O}^{-}\right), 128.95\left(\mathrm{~s} ; p-\mathrm{C}, \mathrm{PPh}_{2} \mathrm{O}^{-}\right), 127.07\left(\mathrm{~d},{ }^{3} J(\mathrm{C}, \mathrm{P})=10.6 \mathrm{~Hz}\right)$, $126.76\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{C}, \mathrm{P})=10.9 \mathrm{~Hz} ; m-\mathrm{C}, \mathrm{PPh}_{2} \mathrm{O}^{-}\right), 118.67\left(\mathrm{dd},{ }^{3} J\left(\mathrm{C}_{\beta}, \mathrm{P}_{\text {trans }}\right)=\right.$ $\left.32.3 \mathrm{~Hz},{ }^{3} J\left(\mathrm{C}_{\beta}, \mathrm{P}_{c i s}\right)=1.7 \mathrm{~Hz},{ }^{2} J\left(\mathrm{Pt}, \mathrm{C}_{\beta}\right)=269 \mathrm{~Hz} ; \mathrm{C}_{\beta}, \mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} t \mathrm{Bu}\right), 89.5(\mathrm{dd}$, ${ }^{2} J\left(\mathrm{C}_{\alpha}, \mathrm{P}_{\text {trans }}\right)=139.6 \mathrm{~Hz},{ }^{2} J\left(\mathrm{C}_{\alpha}, \mathrm{P}_{c i s}\right)=16.9 \mathrm{~Hz},{ }^{1} J\left(\mathrm{Pt}, \mathrm{C}_{\alpha}\right) \sim 1000 \mathrm{~Hz} ; \mathrm{C}_{\alpha}$, $\left.\mathrm{C}_{a} \equiv \mathrm{C}_{\beta} t \mathrm{Bu}\right)$, $57.72\left(\mathrm{~N}-\mathrm{CH}_{2}, n \mathrm{Bu}\right)$, $31.6\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, t \mathrm{Bu}\right)$, $23.39\left(-\mathrm{CH}_{2}\right.$, $n \mathrm{Bu}), 19.15\left(\mathrm{CH}_{2}, n \mathrm{Bu}\right), 28.6\left(\mathrm{~m} ; \mathrm{CMe}_{3}, t \mathrm{Bu}\right), 13.39\left(\mathrm{CH}_{3}, n \mathrm{Bu}\right) ; \mathrm{IR}(\mathrm{KBr})$: $\tilde{v}=2127(\mathrm{~s} ; \mathrm{C} \equiv \mathrm{C}$ or $\mathrm{C} \equiv \mathrm{N}), 1029.5(\mathrm{~s}), 1006(\mathrm{~s}), 993 \mathrm{~cm}^{-1}(\mathrm{~s} ; \mathrm{P}-\mathrm{O}) ;$ ES-MS $\left.(-): m / z(\%): 705(100)\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu})(\mathrm{CN})\left\{\mathrm{PPh}_{2} \mathrm{O}\right)_{2} \mathrm{H}\right\}\right]^{-}=[M]^{-}, 623$ (13) $[M-(\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu})]^{-} ; \mathrm{C}_{47} \mathrm{H}_{66} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Pt}$ (948.1): calcd N 2.95, C 59.54, H 7.02; found N 3.10, C 59.16, H 7.18.

Data for $11 \boldsymbol{b}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=17.28(\mathrm{br} ; \mathrm{O} \cdots \mathrm{H} \cdots \mathrm{O}), 7.91,7.27,7.06$, $6.94(\mathrm{~m} ; \mathrm{Ph}), 2.94\left(\mathrm{~m} ; \mathrm{N}-\mathrm{CH}_{2}, \mathrm{NBu}_{4}\right), 1.23\left(\mathrm{~m} ; \mathrm{CH}_{2}, \mathrm{NBu}_{4}\right), 1.12\left(\mathrm{~m} ; \mathrm{CH}_{2}\right)$, $0.78\left(\mathrm{~m} ;-\mathrm{CH}_{3}, \mathrm{NBu}_{4}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=70.20\left(\mathrm{~d},{ }^{2} J\left(\mathrm{P}, \mathrm{P}_{c i s}\right)=\right.$ $24.43 \mathrm{~Hz},{ }^{1} J(\mathrm{Pt}, \mathrm{P})=2540 \mathrm{~Hz} ; \mathrm{P}_{\text {trans }}$ to $\left.\mathrm{C}=\mathrm{CPh}\right), 64.81\left(\mathrm{~d},{ }^{1} J(\mathrm{Pt}, \mathrm{P})=2816 \mathrm{~Hz}\right.$; $\mathrm{P}_{\text {trans }}$ to CN$) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=141.36\left(\mathrm{~d},{ }^{1} J(\mathrm{C}, \mathrm{P})=64.08 \mathrm{~Hz}\right)$, $140.86\left(\mathrm{~d},{ }^{1} J(\mathrm{C}, \mathrm{P})=68.6 \mathrm{~Hz} ; i-\mathrm{C}, \mathrm{PPh}_{2} \mathrm{O}^{-}\right), 132.2\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=11.5 \mathrm{~Hz}\right)$, $131.9\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=12 \mathrm{~Hz} ; o-\mathrm{C}, \mathrm{PPh}_{2} \mathrm{O}^{-}\right), 130.6(\mathrm{~s} ; o-\mathrm{C}, \mathrm{Ph}, \mathrm{C} \equiv \mathrm{CPh}), 129.31$ (d), $129.2\left(\mathrm{~d},{ }^{4} J(\mathrm{C}, \mathrm{P})=1.9 \mathrm{~Hz}, p-\mathrm{C}, \mathrm{PPh}_{2} \mathrm{O}^{-}\right), 127.5\left(\mathrm{~d},{ }^{3} J(\mathrm{C}, \mathrm{P})=17 \mathrm{~Hz}\right)$, $127.15\left(\mathrm{~d},{ }^{3} J(\mathrm{C}, \mathrm{P})=16.6 \mathrm{~Hz} ; m-\mathrm{C}, \mathrm{PPh}_{2} \mathrm{O}^{-}\right), 127.16$ ($\left.\mathrm{s} ; m-\mathrm{C}, \mathrm{Ph}, \mathrm{C} \equiv \mathrm{CPh}\right)$, 125.08 ($\mathrm{s} ; p-\mathrm{C}, \mathrm{Ph}, \mathrm{C} \equiv \mathrm{CPh}$), $110.6\left(\mathrm{dd},{ }^{3} J\left(\mathrm{C}_{\beta}, \mathrm{P}_{\text {trans }}\right)=33 \mathrm{~Hz},{ }^{3} J\left(\mathrm{C}_{\beta}, \mathrm{P}_{c i s}\right)=\right.$ $\left.1.4 \mathrm{~Hz} ; \mathrm{C}_{\beta}, \mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Ph}\right), 109.28\left(\mathrm{dd},{ }^{2} J\left(\mathrm{C}_{\alpha}, \mathrm{P}_{\text {trans }}\right)=139.6 \mathrm{~Hz},{ }^{2} J\left(\mathrm{C}_{\alpha}, \mathrm{P}_{\text {cis }}\right)=\right.$ $\left.16.7 \mathrm{~Hz} ; \mathrm{C}_{a}, \mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta} \mathrm{Ph}\right), 57.9\left(\mathrm{~N}-\mathrm{CH}_{2}, n \mathrm{Bu}\right), 23.4\left({ }_{\left(-\mathrm{CH}_{2}, n \mathrm{Bu}\right), 19.3}\right.$ $\left(\mathrm{CH}_{2}, n \mathrm{Bu}\right), 13.50\left(\mathrm{CH}_{3}, n \mathrm{Bu}\right)$; IR (KBr): $\tilde{v}=2127(\mathrm{~m}), 2109(\mathrm{~s} ; \mathrm{C}=\mathrm{C}$, $\mathrm{C} \equiv \mathrm{N}$), $1028.5(\mathrm{~s}), 1006(\mathrm{vs}), 993 \mathrm{~cm}^{-1}(\mathrm{vs} ; \mathrm{P}-\mathrm{O}) ;$ ES-MS $(-): m / z(\%): 725$ (100) $[M]^{-} ; \mathrm{C}_{49} \mathrm{H}_{62} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Pt}$ (968.1): calcd N 2.89, C 60.80, H 6.45; found N 2.90, C 60.76, H 6.45 .

Reactions of 7a and 7b with LiOH: preparation of $[\{\mathbf{P t}(\mathbf{C} \equiv \mathbf{C R})$ $\left.\left.\left(\mathbf{P P h}_{2} \mathbf{O}\right)_{3} \mathbf{L i}_{2} \mathbf{(t h f)}\left(\mathbf{H}_{2} \mathbf{O}\right)\right\}_{2}\right](\mathbf{R}=\boldsymbol{t} \mathbf{B u} \mathbf{3 a} ; \mathbf{R}=\mathbf{P h} \mathbf{3 b}): \mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.013 \mathrm{~g}$,
0.305 mmol) was added to a white suspension of complex $7 \mathbf{b}$ (0.125 g , 0.139 mmol) in THF (20 mL). The initial suspension dissolved slowly and after 90 min the resulting yellow solution was filtered over Celite and evaporated to small volume. After addition of n-hexane (10 mL), the complex $\mathbf{3 b}$ precipitated as a yellow solid $(0.105 \mathrm{~g}, 75 \%$ yield). Compound 3a was obtained similarly by this second method, using the complex 7a and with four hours of stirring (70% yield).
$\left[\left\{P t(C \equiv C P h)\left(P P h_{2} O\right)_{3} L i_{2}(t h f)\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}_{2}\right](\mathbf{3} \boldsymbol{b}):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=7.96$, $7.52,7.21,6.88,6.69,6.41(\mathrm{~m} ; \mathrm{Ph}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=73.20(\mathrm{~d}$, $\left.{ }^{1} J(\mathrm{Pt}, \mathrm{P})=2679 \mathrm{~Hz}, 2 \mathrm{P}\right), 58.8\left(\mathrm{t},{ }^{1} J(\mathrm{Pt}, \mathrm{P})=2704 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}, \mathrm{P}_{\text {cis }}\right)=29.02 \mathrm{~Hz}\right.$, $1 \mathrm{P}) ;{ }^{7} \mathrm{Li}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: at $20^{\circ} \mathrm{C}, \delta=-0.89(\mathrm{~s})$; at $0^{\circ} \mathrm{C}, \delta=-0.1$ (brs), -1.8 (brs); at $-20^{\circ} \mathrm{C}, \delta=-0.23$ (brs), -1.96 (s); IR: $\tilde{v}=3615$ (br), 3362 (br; OH), $2109\left(\mathrm{~m} ; \mathrm{C} \equiv \mathrm{C}\right.$), 1037 (s), $1025(\mathrm{~m}), 998 \mathrm{~cm}^{-1}(\mathrm{w} ; \mathrm{P}-\mathrm{O}) ; \mathrm{MS}: m / z$ (\%): 1826 (10) $\left[\mathrm{Pt}_{2}(\mathrm{C}=\mathrm{CPh})_{2}\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{6} \mathrm{Li}_{4}\right]^{+}$, 1726 (5) $\left[\mathrm{Pt}_{2}(\mathrm{C} \equiv \mathrm{CPh})-\right.$ $\left.\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{6} \mathrm{Li}_{4}\right]^{+}, \quad 907$ (40) $\quad\left[\mathrm{Pt}(\mathrm{C}=\mathrm{CPh})\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{3} \mathrm{Li}\right]^{+}, \quad 806 \quad$ (10) $\left[\mathrm{Pt}\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{3} \mathrm{Li}\right]^{+}, 604$ (58) $\left[\mathrm{Pt}\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{2} \mathrm{Li}\right]^{+}, 401$ (35) $\left[\mathrm{Pt}\left(\mathrm{PPh}_{2} \mathrm{O}\right) \mathrm{Li}-\right.$ $2 \mathrm{H}]^{+} ; \mathrm{C}_{96} \mathrm{H}_{90} \mathrm{Li}_{4} \mathrm{O}_{10} \mathrm{P}_{6} \mathrm{Pt}_{2}$ (2007.6): calcd C 57.44, H 4.52; found C 57.22, H 4.62.

X-ray crystal structure determinations: Details of the crystal structure determinations are collected in Table 4. Suitable crystals of $\mathbf{3 a} \cdot 1.75 \mathrm{Et}_{2} \mathrm{O}$ were grown by slow diffusion of diethyl ether into a THF solution of $\mathbf{3} \mathbf{a}$. Suitable crystals of $\mathbf{4 b}$ were grown by slow diffusion of n-hexane into a tetrahydrofuran solution of $\mathbf{4 b}$. Suitable crystals of $\mathbf{6 a}$ were grown by slow diffusion of n-hexane into a chloroform solution of $\mathbf{6 a}$. All diffraction measurements were made on an Enraf-Nonius CAD4 diffractometer. Lorentz and polarization corrections were applied. The structures were solved by Patterson and Fourier methods. All non-hydrogen atoms were refined with anisotropic displacement parameters. The hydrogen atoms were constrained to idealised geometries and assigned isotropic displacement parameters of 1.2 times the $U_{\text {iso }}$ values of their respective parent atoms. For the structure of $\mathbf{3 a} \cdot 1.75 \mathrm{Et}_{2} \mathrm{O}$, the methyl groups of one of the tert-butyl acetylide ligands [C(4), C(5), and C(6)] were disordered over two

Table 4. Details of the crystal structure determinations of the complexes $\left[\left\{\mathrm{Pt}(\mathrm{C} \equiv \mathrm{Ct} t \mathrm{Bu})\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{3} \mathrm{Li}_{2}\left(\mathrm{thf}^{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}_{2}\right] \cdot 1.75 \mathrm{Et}_{2} \mathrm{O} \quad\left(\mathbf{3 a} \cdot 1.75 \mathrm{Et}_{2} \mathrm{O}\right)$, $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CPh})_{2}\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{CHPh})\left(\mathrm{CH}_{2}\right) \mathrm{PPh}_{2}\right\}\right](\mathbf{4 b})$, and $\left[\mathrm{Pt}_{2}\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{C} \equiv \mathrm{C} t \mathrm{Bu})_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{2}\right](6 \mathbf{a})$.

sets of positions and refined with partial occupancy of 0.50 each. The thermal parameters of the opposite methyl groups of each set were constrained to be the same. In the final phases of the refinement the presence of several diethyl ether molecules, one of the solvents used in the obtention of the crystals, was discovered. One of these [O(11) to C(96)] was refined with full occupancy and no constraints. However, the other two sites were very disordered and, of the several models tested, the one that gave the best results was as follows: One molecule [O(12) to C(100)] was refined with occupancy 0.50 , the distances and angles were restrained to sensible geometries, and the thermal parameters of all the carbon atoms were constrained to be the same. The final molecule [$\mathrm{O}(13)$ to $\mathrm{C}(103)$] was found to lie near an inversion center, and thus only partial occupancy was appropiate. These atoms were refined with a partial occupancy of 0.25 , the distances and angles were restrained to sensible geometries, and the thermal parameters of all of the carbon atoms were constrained to be the same. No hydrogen atoms were included for this molecule, nor for the water molecules present in the complex. For the structure of $\mathbf{4 b}$, the geometry of the phenyl ring $\mathrm{C}(3)$ to $\mathrm{C}(8)$ was constrained to be a hexagon, and all its carbon atoms were refined with a common set of anistropic thermal parameters. The hydrogen atoms of this phenyl group were not included in the final model. Full-matrix least-squares refinement of these models against F^{2} converged to the final residual indices given in Table 4. All calculations were carried out using the program SHELXL-93. ${ }^{[41]}$ Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-102057 (3a), $102058(\mathbf{4 b})$, and $102059(\mathbf{6 a})$. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+44) 1223-336-033; e-mail: deposit@ccdc.cam.ac.uk).

Acknowledgements

We thank the Dirección General de Investigación Científica y Técnica (Spain; Projects PB95-0003-C02-01-02 and PB95-0792) and the University of La Rioja (Project API-98/B16 and a grant for J.G.) for financial support.
[1] a) R. Nast, Coord. Chem. Rev. 1982, 47, 89; b) J. Forniés, E. Lalinde, J. Chem. Soc. Dalton Trans. 1996, 2587; c) J. Manna, K. D. John, M. D. Hopkins, Adv. Organomet. Chem. 1995, 38, 79; d) M. I. Bruce, Pure Appl. Chem. 1986, 58, 553.
[2] a) M. I. Bruce, Chem. Rev. 1991, 91, 197; b) S. G. Davies, J. P. McNally, A. J. Smallridge, Adv. Organomet. Chem. 1990, 30, 1; c) S. Doherty, J. F. Corrigan, A. J. Carty, Adv. Organomet. Chem. 1995, 37, 39; d) H. E. Amouri, M. Gruselle, Chem. Rev. 1996, 96, 1077; e) H. Werner, Chem. Commun. 1997, 903.
[3] a) Inorganic Materials (Eds.: D. W. Bruce, D. O'Hare), Wiley, 2nd ed., 1996, p. 460 ; b) W. Beck, B. Niemer, M. Weiser, Angew. Chem. 1993, 105, 969; Angew. Chem. Int. Ed. Engl. 1993, 32, 923; c) N. J. Long, Angew. Chem. 1995, 107, 37; Angew. Chem. Int. Ed. Engl. 1995, 34, 21; d) R. Faust, F. Diederich, V. Gramlich, P. Seiler, Chem. Eur. J. 1995, 1,111 ; e) A good selection of references is given by K. D. John, T. C. Stoner, M. D. Hopkins, Organometallics 1997, 16, 4948.
[4] The most general synthetic routes are based on the treatment of transition metal halides directly with alk-1-ynes in presence of base (in many cases in presence of CuI as catalyst), or with metal acetylide reagents (lithium, tin, silver, etc). When this paper was in press, the synthesis of trans-[$\left.\mathrm{Os}\left(\mathrm{PiPr}_{3}\right)_{2}(\mathrm{CO})\left(\mathrm{PPh}_{2} \mathrm{H}\right) \mathrm{H}(\mathrm{CCPh})\right]$ was described: M. L. Buil, M. A. Esteruelas, E. Oñate, N. Ruiz, Organometallics 1998, 17, 3346.
[5] a) P. A. Chaloner, Handbook of Coordination Catalysis in Organic Chemistry, Butterworth, London, 1986, chapter 4; b) J. P. Collman, L. S. Hegedus, J. R. Norton, R. G. Finke, Principles and Applications of Organotransition Metal Chemistry, University Science Books, Hill Valley, CA, 1987; c) Comprehensive Organic Synthesis, Vol. 8 (Ed.: B. M. Trost), Pergamon, Oxford, (UK) 1991, pp. 667-792.
[6] a) L. B. Han, N. Choi, M. Tanaka, Organometallics 1996, 15, 3259; b) L. B. Han, M. Tanaka, J. Am. Chem. Soc. 1996, 118, 1571; c) L. B.

Han, R. Hua, M. Tanaka, Angew. Chem. 1998, 110, 98; Angew. Chem. Int. Ed. 1998, 37, 94.
[7] a) A. J. Carty, G. Ferguson, M. A. Khan, G. N. Mott, P. J. Roberts, N. J. Taylor, J. Organomet. Chem. 1978, 149, 345; b) K. E. Lee, K. T. Higa, R. A. Nissan, R. J. Butcher, Organometallics 1992, 11, 2816.
[8] a) R. G. Doel, N. D. Feasey, S. A. R. Knox, A. G. Orpen, J. Webster, J. Chem. Soc. Chem. Commun. 1986, 542; b) A. Martín, M. J. Mays, P. R. Raithby, G. A. Solan, J. Chem. Soc. Dalton Trans. 1993, 1431; c) S. V. Hoskins, A. P. James, J. C. Jeffery, F. G. A. Stone, J. Chem. Soc. Dalton Trans. 1986, 1709; d) S. A. Brew, S. J. Dossett, J. C. Jeffery, F. G. A. Stone, J. Chem. Soc. Dalton Trans. 1990, 3709; e) G. A. Acum, M. J. Mays, P. R. Raithby, H. R. Powell, G. A. Solan, J. Chem. Soc. Dalton Trans. 1997, 3427; f) R. Regragui, P. H. Dixneuf, N. J. Taylor, A. J. Carty, Organometallics 1984, 3, 814; R. Regragui, P. H. Dixneuf, N. J. Taylor, A. J. Carty, Organometallics 1990, 9, 2234; g) P. Dunn, J. C. Jeffery, P. Sherwood, J. Organomet. Chem. 1986, 311, C55; h) P. M. Treichel, W. K. Wong, J. Organomet. Chem. 1978, 157, C5; i) P. M. Treichel, W. K. Wong, J. C. Calabrese, J. Organomet. Chem. 1978, 159, C20; j) H. Adams, N. A. Bailey, P. Blenkiron, M. J. Morris, J. Organomet. Chem. 1993, 460, 73.
[9] a) A. J. Carty, Pure Appl. Chem. 1982, 54, 113; b) A. A. Cherkas, L. H. Randall, S. A. MacLaughlin, G. N. Mott, N. J. Taylor, A. J. Carty, Organometallics 1988, 7, 969; c) A. A. Cherkas, S. Doherty, M. Cleroux, G. Hogarth, L. H. Randall, S. M. Breckenridge, N. J. Taylor, A. J. Carty, Organometallics 1992, 11, 1701, and references therein.
[10] a) J. Forniés, M. A. Gómez-Saso, E. Lalinde, F. Martínez, M. T. Moreno, Organometallics 1992, 2873; b) J. R. Berenguer, J. Forniés, F. Martínez, J. C. Cubero, E. Lalinde, M. T. Moreno, A. J. Welch, Polyhedron 1993, 12, 1797; c) J. Forniés, E. Lalinde, A. Martín, M. T. Moreno, J. Chem. Soc. Dalton Trans. 1994, 135.
[11] a) J. Forniés, E. Lalinde, A. Martín, M. T. Moreno, A. J. Welch, J. Chem. Soc. Dalton Trans. 1995, 1333; b) I. Ara, S. Fernández, J. Forniés, E. Lalinde, A. Martín, M. T. Moreno, Organometallics 1997, 16, 5923.
[12] a) P. Braunstein, E. de Jesús, A. Dedieu, M. Lanfranchi, A. Tiripicchio, Inorg. Chem. 1992, 31, 399, and references therein; b) J. Powell, E. Fuchs, M. R. Gregg, J. Phillips, M. V. R. Stainer, Organometallics 1990, 9, 387, and references therein; c) P. Leoni, S. Manetti, M. Pasquali, Inorg. Chem. 1995, 34, 749; d) A. J. Deeming, B. R. Cockerton, S. Doherty, Polyhedron 1997, 16, 1945; e) J. Forniés, C. Fortuño, R. Navarro, F. Martínez, A. J. Welch, J. Organomet. Chem. 1990, 394, 643; f) J. B. Bonanno, P. T. Wolczanski, E. B. Lobkovky, J. Am. Chem. Soc. 1994, 116, 11156.
[13] P. Espinet, J. Forniés, F. Martínez, M. Sotés, E. Lalinde, M. T. Moreno, A. Ruiz, A. J. Welch, J. Organomet. Chem. 1991, 403, 253.
[14] J. Forniés, E. Lalinde, A. Martín, M. T. Moreno, J. Sacristán, Chem. Commun. 1998, 141.
[15] a) A. -M. Sapse, P. von R. Schleyer, Lithium Chemistry. A Theoretical and Experimental Overview. Wiley Interscience, 1995; b) M. A. Beswick, D. S. Wright, Comprehensive Organometallic Chemistry II, Vol 1(Eds.: E. W. Abel, F. G. A. Stone, G. Wilkinson), Pergamon, 1995, pp. 1-34; c) K. Gregory, P. von R. Schleyer, R. Snaith, Adv. Inorg. Chem. 1994, 37, 47; d) E. Weiss, Angew. Chem. 1993, 105, 1565; Angew. Chem. Int. Ed. Engl. 1993, 32, 1501; e) R. E. Molvey, Chem. Soc. Rev. 1991, 20, 167; f) D. Seebach, Angew. Chem. 1988, 100, 1685; Angew. Chem. Int. Ed. Engl. 1988, 27, 1624.
[16] M. G. Walawalkar, R. Murugavel, A. Voigt, H. W. Roesky, H.-G. Schmidt, J. Am. Chem. Soc. 1997, 119, 4656.
[17] a) B. Walther, Coord. Chem. Rev. 1984, 60, 67; for recent work see: b) M. Bown, X. L. R. Fontaine, N. N. Greenwood, J. D. Kennedy, M. Thornton-Pett, Organometallics 1987, 6, 2254; c) P. M. Veitch, J. R. Allan, A. J. Blake, M. Schröder, J. Chem. Soc. Dalton Trans. 1987, 2853 ; d) N. W. Alcock, P. Bergamini, T. M. Gomes-Carniero, R. D. Jackson, J. Nicholls, A. G. Orpen, P. G. Pringle, S. Sostero, O. Traverso, J. Chem. Soc. Chem. Commun. 1990, 981; e) N. W. Alcock, P. Bergamini, T. J. Kemp, P. G. Pringle, S. Sostero, O. Traverso, Inorg. Chem. 1991, 30, 1594; f) J. Vicente, M. T. Chicote, P. G. Jones, Inorg. Chem. 1993, 32, 4960; g) V. Riera, M. A. Ruiz, F. Villafañe, C. Bois, Y. Jeannin, Organometallics 1993, 12, 124; h) C. Hollatz, A. Schier, H. Schmidbaur, J. Am. Chem. Soc. 1997, 119, 8115; C. Hollatz, A. Schier, H. Schmidbaur, Chem. Ber. 1997, 1333.
[18] M. A. Beswick, N. L. Cromhout, C. N. Harmer, J. S. Palmer, P. R. Raithby, A. Steiner, K. L. Verhorevoort, D. S. Wright, Chem. Commun. 1997, 583.
[19] G. Bandoli, G. Bortolozzo, D. A. Clemente, U. Croatto, C. Panattoni, J. Chem. Soc. A. 1970, 2778; A. L. Spek, Acta Crystallogr. Sect. C. 1987, 43, 1233.
[20] C. Lambert, P. von R. Schleyer, Angew. Chem. 1994, 106, 1187; Angew. Chem. Int. Ed. Engl. 1994, 33, 1129.
[21] a) R. J. Forder, I. S. Mitchell, G. Reid, R. Simpson, Polyhedron 1994, 13, 2129; b) I. V. Kourkine, S. V. Maslennikov, R. Ditchfield, D. S. Gluek, G. P. A. Yap, L. M. Liable-Sands, A. L. Rheingold, Inorg. Chem. 1996, 35, 6708.
[22] a) P. S. Pregosin, R. W. Kunz, ${ }^{31} P$ and ${ }^{13} \mathrm{C}$ NMR of Transition Metal Phosphine Complexes, Springer, New York. 1997; b) A. Sebald, B. Wrackmeyer, W. Beck, Z. Naturforsh. B 1983, 38, 45.
[23] Two-bond coupling between lithium and phosphorus has been observed previously ; see for example: a) P. R. Raithby, D. Reed, R. Snaith, S. D. Wright, Angew. Chem. 1991, 103, 1040; Angew. Chem. Int. Ed. Engl. 1991, 30, 1011; b) S. E. Denmark, P. C. Miller, S. R. Wilson, J. Am. Chem. Soc. 1991, 113, 1468; ${ }^{7} \mathrm{Li}-{ }^{195} \mathrm{Pt}$ coupling has been also reported in $\left[\mathrm{Pt}_{2}(\mathrm{C} \equiv \mathrm{CPh})_{4}\left(\mathrm{PEt}_{3}\right)_{2}(n \mathrm{Bu})_{2}(\mu-\mathrm{Li})_{2}\right]$: c) A. Sebald, B. Wrackmeyer, C. R. Theocharis, W. Jones, J. Chem. Soc. Dalton Trans. 1984, 747.
[24] R. J. Cross, M. F. Davidson, J. Chem. Soc. Dalton Trans. 1986, 1987.
[25] a) J. G. Verkade, J. A. Mosbo, in Phosphorus-31 NMR Spectroscopy in Stereochemical Analysis (Eds.: J. G. Verkade, L. D. Quin), VCH, Deerfield Beach, FL 1987 pp. 425-463; b) see also R. S. Drago, Organometallics 1995, 14, 3408.
[26] J. R. Berenguer, J. Forniés, E. Lalinde, F. Martínez, Organometallics 1996, $15,4537$.
[27] a) J. B. Brandon, K. R. Dixon, Can. J. Chem. 1981, 59, 1188; b) L. R.Falvello, J.Fornies, C. Fortuño, F. Martinez, Inorg. Chem. 1994, 33, 6242; c) E. Alonso, J. Forniés, C. Fortuño, M. Tomás, J. Chem. Soc. Dalton Trans. 1995, 3777; d) I. V. Kourkine, M. B. Chapman, D. S. Glueck, K. Eichele, R. E. Wasylishen, G. P. A. Yap, L. M. LiableSands, A. L. Rheingold, Inorg. Chem. 1996, 35, 1478, and references therein.
[28] See ref. [25a], chapter 16
[29] A. J. Carty, F. Hartstock, N. J. Taylor, Inorg. Chem. 1982, 21, 1349.
[30] a) D. M. Roundhill, R. P. Sperline, W. B. Beaulieu, Coord. Chem. Rev. 1978, 26, 263; b) P.-C. Kong, D. M. Rhoundhill, J. Chem. Soc. Dalton Trans. 1974, 187; c) W. B. Beaulieu, T. B. Rauchfuss, D. M. Roundhill, Inorg. Chem. 1975, 14, 1732; d) A. J. Carty, S. E. Jacobson, R. T. Simpson, N. J. Taylor, Inorg. Chem. 1975, 7254; e) K. R. Dixon, A. D. Rattray, Can. J. Chem. 1971, 49, 3997; f) M. C. Cornock, R. O. Gould, C. L. Jones, T. A. Stephenson, J. Chem. Soc. 1977, 1307; g) M. J. Pilkington, A. M. Z. Slawin, D. J. Willians, J. D. Woollins, J. Chem. Soc. Dalton Trans. 1992, 2425; h) H. Alper, M. Sommovigo,

Tetrahedron Lett. 1993, 59; i) P. Leoni, F. Marchetti, M. Pasquali, J. Organomet. Chem. 1993, 451, C25; j) J. Powell, M. J. Horvath, A. Lough, J. Chem. Soc. Dalton Trans. 1995, 2975.
[31] R. F. See, C. J. Curtis, K. W. McConnell, S. Santhanam, W. M. Strub, J. W. Ziller, Inorg. Chem. 1997, 36, 4151, and references therein.
[32] a) P. W. N. M. Van Leeuwen, C. F. Roobeek, R. L. Wife, J. H. G. Frijns, J. Chem. Soc. Chem. Commun. 1986, 31; b) P. W. N. M. Van Leeuwen, C. F. Roobeek, J. H. G. Frijns, A. G. Orpen, Organometallics 1990, 9, 1211; c) P. W. N. Van Leeuwen, C. F. Roobeek, A. G. Orpen, Organometallics 1990, 9, 2179.
[33] Similar solubility properties have previously been noted for related $\left[\mathrm{PtX}\left\{\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{2} \mathrm{H}\right\}\left(\mathrm{PPh}_{2} \mathrm{OH}\right)\right] \quad(\mathrm{X}=\mathrm{H}, \mathrm{Cl}),{ }^{[30 e, 32 \mathrm{bb}]}$ which could be tentatively attributed to the presence of intermolecular hydrogen bonding as we have recently found in the crystal structure of $\left[\left\{\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left\{\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{2} \mathrm{H}\right\}\left(\mathrm{PPh}_{2} \mathrm{OH}\right)\right\}_{n}\right]$ (unpublished results).
[34] W. C. Hamilton, J. A. Ibers, Hydrogen Bonding, Benjamín, New York, 1968.
[35] R. L. Schowen, Angew. Chem. 1997, 109, 1502; Angew. Chem. Int. Ed. Engl. 1997, 36, 1434.
[36] For some examples see: a) R. G. Hayter, J. Am. Chem. Soc. 1962, 84, 3046; b) V. D. Bianco, S. Doronzo, J. Organomet. Chem. 1971, 30, 431; c) S. P. Anand, H. Goldwhite, J. R. Spielman, Transition Metal Chem. 1977, 2, 158; d) H. Goldwhite, A. S. Hirschou, Transition Metal Chem. 1977, 2, 144.
[37] For some recent examples see: a) T. Adatia, M. McPartlin, M. J. Mays, M. J. Morris, P. R. Raithby, J. Chem. Soc. Dalton Trans. 1989, 1555; b) P. Leoni, M. Sommovigo, M. Pasquali, P. Sabatino, D. Braga, J. Organomet. Chem. 1992, 423, 263; c) R. T. Baker, W. C. Fultz, T. B. Marder, I. D. Williams, Organometallics 1990, 9, 2357; d) M. P. Brown, J. Buckett, M. M. Harding, R. M. Lynden-Bell, M. J. Mays, K. W. Woulfe, J. Chem. Soc. Dalton Trans. 1991, 3097; e) P. Leoni, S. Maneti, M. Pasquali, A. Albinati, Inorg. Chem. 1996, 35, 6045; f) S. V. Maslennikov, D. S. Gluek, G. P. A. Yap, A. L. Rheingold, Organometallics 1996, 15, 2583; g) R. Giannandrea, P. Mastrorilli, C. F. Nobile, U. Englert, J. Chem. Soc. Dalton Trans. 1997, 1355.
[38] The first example was trans- $\left[\left\{(t \mathrm{Bu})\left(\mathrm{Me}_{3} \mathrm{SiC}=\mathrm{C}\right) \mathrm{Ga}\left(\mu-\mathrm{PEt}_{3}\right)_{2}\right\}_{2}\right.$; see ref. [7b].
[39] For some recent examples see: a) P. Blenkiron, J. F. Corrigan, D. Pilette, N. J. Taylor, A. J. Carty, Can. J. Chem. 1996, 74, 2349; b) S. Pulst, P. Arndt, W. Baumann, A. Tillack, R. Kempe, U. Rosenthal, J. Chem. Soc. Chem. Commun. 1995, 1753.
[40] R. Usón, J. Forniés, F. Martínez, M. Tomás, J. Chem. Soc. Dalton Trans. 1980, 888.
[41] SHELXL-93, G. M. Sheldrick, University of Göttingen, Germany, 1993.

[^0]: [a] Prof. J. Forniés, Prof. L. R. Falvello, Dr. A. Martín Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza
 Consejo Superior de Investigaciones Científicas
 E-50009 Zaragoza (Spain)
 Fax: (+34) 976-761187
 E-mail: juan.fornies@posta.unizar.es
 [b] Dr. E. Lalinde, J. Gómez, Dr. M. T. Moreno, J. Sacristán Departamento de Química, Universidad de La Rioja E-26001 Logroño (Spain)

[^1]: Abstract in Spanish: Se han estudiado las reacciones de $L i_{2}\left[P t(C \equiv C R)_{4}\right]$ y cis $-\left[\operatorname{Pt}(\mathrm{C} \equiv \mathrm{CR})_{2} \mathrm{COD}\right](\mathrm{R}=t B u \boldsymbol{a}, \mathrm{Ph} \boldsymbol{b})$ con $\mathrm{PPh}_{2} \mathrm{H}$ y $\mathrm{PPh}_{2}(\mathrm{O}) \mathrm{H}$. El transcurso de la reacción de $\mathrm{Li}_{2}\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})_{4}\right]$ con $\mathrm{PPh}_{2} \mathrm{H}$ depende no solo de las condiciones de reacción usadas, sino también del sustituyente R del alquino. Así, el tratamiento de $\mathrm{Li}_{2}\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CtBu})_{4}\right]$ con $\mathrm{PPh}_{2} \mathrm{H}$ (1:3) en acetona/etanol da lugar a la formación de trans$\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CtBu})_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{2}\right] \quad 1 \boldsymbol{a}$ junto con las especies $\left[\left\{P t(\mathrm{C} \equiv \mathrm{CtBu})_{2-x}\left(P \mathrm{Ph}_{2} \mathrm{O}\right)_{2+x} \mathrm{Li}_{2} \mathrm{~S}_{n}\right\}_{2}\right] \quad\left[x=0, S_{n}=\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathbf{2}^{\mathbf{\prime}} \boldsymbol{a}\right.$; $\left.x=1, S_{n}=\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathbf{3}^{\prime} \boldsymbol{a}\right]$ que se obtienen en bajo rendimiento. $\left[\left\{\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CtBu})_{2}\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{2} \mathrm{Li}_{2}\left(\mu-\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{Me}_{2} \mathrm{CO}\right)_{2}\right\}_{2}\right] \quad 2 \boldsymbol{a}$ y $\left[\left\{\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CtBu})\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{3} \mathrm{Li}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)(\text { thf })\right\}_{2}\right] \mathbf{3} \boldsymbol{a}$ han sido caracterizados por difracción de rayos X. Por otro lado, el tratamiento de $\mathrm{Li}_{2}\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CPh})_{4}\right]$ con $\mathrm{PPh}_{2} \mathrm{H}$ (relación molar 1:3) permite preparar no solo los derivados análogos $\mathbf{1} \boldsymbol{b}$ y $\mathbf{2}^{\prime} \boldsymbol{b}$, sino también el compuesto mononuclear $\left[\operatorname{Pt}(C \equiv C P h)_{2}\right.$ $\left.\left(\mathrm{PPh}_{2} \mathrm{CHPhCH}_{2} \mathrm{PPh}_{2}\right)\right] \mathbf{4 b}$, caracterizado por difracción de rayos X y que contiene el nuevo ligando 1-fenil-1,2-bis(difenilfosfino)etano. Los complejos del tipo cis-[Pt $(C \equiv C R)_{2}-$ $\left.\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{2}\right] 5$ se preparan fácilmente a partir del correspondiente cis-[Pt $\left.(\mathrm{C} \equiv \mathrm{CR}){ }_{2} \mathrm{COD}\right]$ por desplazamiento del ligando COD con $\mathrm{PPh}_{2} \mathrm{H}$ a baja temperatura $\left(-30^{\circ} \mathrm{C}\right)$. El complejo dinuclear $\left[\left\{P t(C \equiv C t B u)\left(\mu-P P h_{2}\right)\left(P P h_{2} H\right)\right\}_{2}\right]$ 6a, caracterizado por difracción de rayos X, se forma también (2% rendimiento) en el proceso de síntesis de 5 a. cis[$\left.\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})_{2} \mathrm{COD}\right]$ reacciona con $\mathrm{PPh}_{2}(\mathrm{O}) \mathrm{H}$ en $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(-40^{\circ} \mathrm{C}\right)$, tanto en relación molar 1:2 como 1:3, para formar el complejo [$\left.\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})\left\{\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{2} \mathrm{H}\right\}\left(\mathrm{PPh}_{2} \mathrm{OH}\right)\right] 7$, precursor de los derivados neutros $\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CR})\left\{\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{2} \mathrm{H}\right\} L\right] \quad(L=$ $P E t_{3}, P P h_{2} H, C N t B u \quad 8$-10) o aniónico $\left[N B u_{4}\right][P t(C \equiv C R)$ $\left.(\mathrm{CN})\left\{\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{2} \mathrm{H}\right\}\right] 11$ relacionados. Los complejos del tipo 7 pueden ser doblemente desprotonados con LiOH para formar los derivados de tipo 3, siendo este el camino más conveniente para preparar 3 a, y el único para $\mathbf{3}$ b.

