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New Multiobjective Tabu Search Algorithm for Fuzzy
Optimal Planning of Power Distribution Systems
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Abstract—This paper presents a new multiobjective Tabu
search (NMTS) algorithm to solve a multiobjective fuzzy model
for optimal planning of distribution systems. This algorithm
obtains multiobjective nondominated solutions to three objective
functions: fuzzy economic cost, level of fuzzy reliability, and
exposure (maximization of robustness), also including optimal
size and location of reserve feeders to be built for maximizing the
level of reliability at the lowest economic cost (for a given level
of robustness). The main characteristics of the NMTS algorithm
are: search of planning solutions using several objective functions
simultaneously; partition of the space of solutions to diversify
the search; intensification of the search by ranking lists of the
best network nodes of the distribution system; and an elaborated
Tabu list that stores visited network nodes, avoiding unwanted
movements. The NMTS algorithm has been intensively tested in
real distribution systems, proving its practical application in large
power distribution systems.

Index Terms—Fuzzy sets, multiobjective optimization, planning,
power distribution systems, Tabu search.

I. INTRODUCTION

E SSENTIALLY, in classical optimal planning of power
distribution systems [1]–[6], single objective determin-

istic models minimize system expansion economical cost for
deterministic demands of the system nodes, in a single-stage
or in a multistage context subject to technical constraints [6]
(power capacity limits of the substations and feeders, voltage
drop limits at the system nodes, and radiality conditions of
system operation). These models used diverse algorithms:
mathematical algorithms such as “simplex” [1], “branch and
bound” [2], “quadratic programming” [3], “Lagrange” methods
[4], and heuristic algorithms such as “branch exchange” [5] and
genetic algorithms [6].

A multiobjective deterministic model [7] simultaneously
minimizes system expansion cost and maximizes network
reliability to obtain the set of multiobjective nondominated
solutions, using an evolutionary algorithm. Some other deter-
ministic models have used only a single objective corresponding
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to the linear combination of a reliability cost function and the
expansion cost [8], [9], using genetic algorithms [8], or other
heuristic specialized algorithms [9].

Fuzzy models [10]–[12] provide a more realistic representa-
tion of the distribution system nodes demands since the intrinsic
uncertainty of future demands is included in such models via
suitable fuzzy variables. Multiobjective fuzzy models consider
several fuzzy objective functions. Thus, in [10], a utility ob-
jective function is built (from such fuzzy functions) that is
optimized using a genetic algorithm; in [11], various fuzzy
objective functions are optimized using a simulated annealing
algorithm.

This paper presents a new multiobjective Tabu search
(NMTS) algorithm to solve the multiobjective fuzzy model of
[12] as well as the corresponding multiobjective deterministic
model for optimal planning of power distribution system.
Thus, the present paper supplements [12], which described the
multiobjective fuzzy model in detail, whereas the present paper
describes the new Tabu search algorithm in detail.

The NMTS algorithm presents numerous original character-
istics that allow it to obtain the multiobjective nondominated
planning solutions resulting from a true simultaneous minimiza-
tion of the fuzzy economic cost, maximization of the fuzzy reli-
ability, and minimization the risk (exposure) of the system and
also determining the optimal size and location of reserve feeders
(feeders not usually operative except for failures in radial oper-
ating states of the system), that is, reserve feeders to be built
for maximizing network reliability at the lowest economic cost
(for a given level of risk). The solutions from the NMTS al-
gorithm minimize the risk of surpassing the permitted lowest
voltage limits at the network nodes as well as the risk of over-
loads in feeders and substations, which improves the system “ro-
bustness” for proper levels of electric service quality and secu-
rity in the future.

Furthermore, the NMTS algorithm also obtains the multiob-
jective nondominated solutions of the above-mentioned deter-
ministic model to minimize the deterministic economic cost and
the deterministic reliability of the system (also obtaining the
best sizing and locating of reserve feeders).

Intensive testing of the NMTS algorithm has been carried
out with both complex multiobjective (fuzzy and deterministic)
models in real distribution systems, thus demonstrating its prac-
tical applicability to large power distribution systems.

The NMTS algorithm could also be adapted to solve other
multiobjective models for optimal planning of distribution
systems.
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Fig. 1. Power flow transported by a feeder.

II. SUMMARY OF THE FUZZY MODEL OF MULTIOBJECTIVE

OPTIMAL PLANNING

First, this section summarizes the basic concepts of fuzzy sets
used for the fuzzy model; it then offers a brief presentation of
this multiobjective fuzzy model (also referred to as possibilistic
model) [12], as well as the corresponding multiobjective deter-
ministic one; lastly, essentials of the technique for solving the
multiobjective fuzzy model are indicated.

A. Basic Fuzzy Power Variables for Optimal Planning of
Power Distribution Networks

These basic fuzzy power variables are fuzzy power de-
mands at the distribution network nodes and fuzzy power flows
throughout the distribution feeders. They are represented by
triangular fuzzy numbers [13], [14], where a triangular fuzzy
number is represented as . A fuzzy power
demand represents simultaneously a large set of possible values
of the power demand in the future, at a given node on the dis-
tribution network, describing the intrinsic uncertainty of such
future demand; a value of a membership function is
also associated to each value of this set of power demands of
the triangular fuzzy number [13], [14].

Fuzzy power flows (also represented by fuzzy triangular num-
bers) are transmitted by the lines of the distribution network to
supply the fuzzy power demands of the nodes. Such fuzzy power
flows (and the fuzzy voltages at nodes) are calculated, in radial
network operating states, by an iterative version of the algorithm
of power flows, as in [15] and [16].

Fuzzy power flows in feeders (and in substations), (and fuzzy
voltages at nodes) are subject to technical constraints of power
capacity limits of feeders (and of substations), (and technical
constraints of maximum allowable voltages drops at nodes). For
example, in Fig. 1, the fuzzy power flow
kVA is transported by a feeder with a power capacity limit of
200 kVA. Thus, above the degree of possibility 0,71 in Fig. 1,

surpasses the 200-kVA limit, and then, from fuzzy set theory
[13], [17], is “lower” than (or “equal” to) 200 kVA until degree
of possibility of 0.71. Thus, .

Therefore, a classical technical constraint of feeder (or
substations) power capacity limit in optimal power distribution
planning is usually met for a given “degree of possibility” from
the standpoint of fuzzy power flows (or voltage drop constrains
from the standpoint of fuzzy voltages). Thus, above a given
degree of possibility, there is a risk that the power capacity
limit constraint of a feeder (or substation) will not be met; this
is known as “exposure” [13] (similar ideas can be presented for
exposure referring to fuzzy voltages). Thus, the exposure EX
associated with the power flow of the th feeder is the lowest

-level at which the fuzzy power flow of the feeder is
“lower” than (or “equal” to) the power capacity limit of
the feeder. Then

EX (1)

where is the minimum of the values [17].
In Fig. 1, feeder exposure is 0.71. The corresponding robust-

ness is , with robustness for the feeder capacity
limit being a measure of the possibility of the feeder not being
overloaded [13].

The exposure EX associated with the power flow in the
th substation is the lowest -level at which the fuzzy power

flow in the substation is “lower” than (or “equal” to) the
power capacity limit of the substation. Then

EX (2)

The exposure EX associated with the voltage of the th
node is the lowest -level at which the fuzzy voltage of
the node is “higher” than (or “equal” to) the allowable lowest
voltage limit . Then

EX (3)

The exposure EX of a considered distribution feeders
network (composed by the set of feeders) is

EX EX (4)

Similar concepts can be established for exposure EX
for substations and EX for voltages of a considered
power distribution network. Thus

EX EX

EX (5)

where and are, respectively, the sets of substations and
nodes of the distribution network (the one that is being evalu-
ated).

Then, the exposure EX of the considered network is

EX EX EX EX (6)

where operator represents the maximum [17] of the values
of the set EX EX EX .

Further details about distribution system exposure and robust-
ness concepts can be found in [12]–[14].

B. Other Fuzzy Values for Optimal Planning of Power
Distribution Networks

Other triangular fuzzy variables are used in optimal planning
for distribution systems to represent the economic cost associ-
ated with the distribution system expansion and failure rate and
repair rate (for the reliability evaluation) used for the “expected
nonsupplied energy” evaluations. This fuzzy “expected nonsup-
plied energy” can be obtained by an enumerative algorithm that
simulates successive feeder failures and calculates their contri-
bution to the “expected nonsupplied energy” of the system, as
in [18].
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C. Ranking Function “Removal”

The multiobjective fuzzy model considers the objective func-
tions of economic cost and reliability (expected nonsupplied
energy). Thus, corresponding triangular fuzzy values of these
functions have to be compared and ranked to analyze diverse
planning solutions (distribution networks patterns). The ranking
function “removal” [14], [18]–[21] has been used for this, with
the removal of a triangular fuzzy number
being the value .

D. Fuzzy Model for Multiobjective Optimal Planning

Our multiobjective deterministic model for optimal planning
of distribution systems contains integer variables (decision
variables to build and size up new proposed feeders and substa-
tions) and continuous variables (power flows and voltages).
Thus, a multiobjective optimization of the system-expansion
economic cost and the expected nonsupplied energy

is carried out subject to the usual technical constraints
representing the first and second of Kirch-

hoff’s laws, the feeders and substations’ power capacity limits,
and the allowed voltage drop limits at the nodes (as well as the
condition of power flows radiality in these systems). Then, this
model is stated as [12]

Min

Such that:

(7)

where represents the set of the above-mentioned tech-
nical constraints ( refers to the th constraint), and
Min represents the multiobjective deterministic
minimization to obtain the nondominated solutions using the
Pareto optimality [22] with the simultaneous maximization of
objectives and .

Similarly, our multiobjective fuzzy model uses integer vari-
ables and fuzzy continuous variables in the multiob-
jective optimization of fuzzy planning cost , fuzzy ex-
pected nonsupplied energy , and exposure EX, subject to
the fuzzy technical constraints . Then, this
fuzzy model is stated as [12]

Min EX

Such that:

(8)

where is the set of the fuzzy technical constraints, and Min
EX represents the multiobjective fuzzy min-

imization to obtain nondominated solutions using the -Pareto
optimality [17], [23], with a simultaneous minimization of ob-
jectives and EX.

E. Technique for Solving the Multiobjective Fuzzy Model
When Using the NMTS Algorithm

A parametric technique (nondominated solutions generation
method [17], [23]) has been used to solve the multiobjective
fuzzy model, thus obtaining the set of nondominated solutions

[23]–[25], with respect to the objective functions of fuzzy eco-
nomic cost, fuzzy expected nonsupplied energy, and exposure.
Therefore, a partition of the space of planning solutions is per-
formed (to search this set of solutions) by including mathemat-
ical constraints in the aforementioned objective functions (using

, the removal function) that enables the achievement of sys-
tematically successive planning solutions [22].

Let us define as an element of the partition of the space of
solutions. Thus

EX EX EX (9)

where values EX EX are
values defined uniformly in the space of solutions.

To summarize, suitable optimizations are carried out for
each element of the partition, by successive minimizations
of , and EX, in order to find proper plan-
ning solutions, subject to the above-mentioned mathematical
constraints (

, and EX EX ). The search for planning
solutions is performed systematically in all elements of the
partition and the obtained planning solutions compared among
them in order to determine a set of nondominated solutions (as
explained in more detail in Section III-C). Similar ideas can
be affirmed for solving the multiobjective deterministic model
(for two objective functions) when using the new Tabu search
algorithm described in this paper.

III. NEW TABU SEARCH ALGORITHM FOR MULTIBOBJECTIVE

OPTIMAL PLANNING

This section introduces the basic concepts of Tabu search
[26]; afterward, fundamental concepts for the new Tabu search
algorithm and this algorithm for multiobjective optimal plan-
ning of power distribution systems are described.

A. Basic Ideas of Tabu Search

A fundamental concept of the heuristic search is the local
search. In this context, a solution is referred to as , the set of
solutions as , and the objective function as . Each solution

is associated with a set of neighboring solutions
, called the neighborhood of . Each solution may

be reached directly from by means of an operation called a
“movement.”

Tabu search [26] modifies the local search by introducing a
memory mechanism that exploits the advantages deriving from
the historical record or development of the search. Thus, Tabu
search prohibits revisiting solutions stored in a Tabu list TL and
that belong to . In this way, searches are only performed in
the set ) (whose solutions are those of but having
eliminated those stored in ). Tabu search has the following
characteristics: 1) a short-term memory (“Tabu list”), which en-
ables previously visited solutions to be avoided and local op-
timums to be exited, in order to intensify the search and 2) a
long-term memory, which allows to visit zones that are distant
and promising for diversifying the search.
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TABLE I
TABU SEARCH METHOD

The basic algorithm of Tabu search can be followed in Table I.
The search begins with a solution (stored in ), and the
best solution that is found at each moment (stored in ) is

. In each iteration, one solution is selected
(stored in Candidate- corresponding to
the most promising subset of . TL is gradually
updated.

B. Fundamental Concepts in the New Tabu Search Algorithm
for Power Distribution Optimal Planning

The NMTS algorithm for power distribution optimal plan-
ning uses basic ideas described in the previous Subsection A.
We must now clarify some terms that are used to describe the
algorithm. First, a feasible planning solution will be defined for
distribution systems optimal planning. Then, we will describe
the obtainment of the initial acceptable solution of the new Tabu
search algorithm of this paper as well as the “movements” from
a solution to another one. This will be followed by an explana-
tion of the search process, the selection of the best movements
to be performed, the treatment of the TL, and the acceptance
criterion and stop criterion of the algorithm.

1) Structure of an Optimal Planning Solution: In the op-
timal planning of distribution systems, a search is performed for
the best topology of feeders and substations (planning solution)
in order to supply the power demanded by the demand nodes
and to minimize one or more specified objectives: minimiza-
tion of deterministic expected nonsupplied energy and mini-
mization of deterministic economic cost (multiobjective deter-
ministic model [12]); minimization of the removal of fuzzy
economic cost, removal of fuzzy expected nonsupplied energy,
and exposure (multiobjective fuzzy model [12]). These objec-
tive functions are subject to the technical constraint mentioned
in Section II-D. Hence, in these multiobjective models, a fea-
sible planning solution is formed by: 1) the localization and

size of the selected feeders to be built; 2) the localization and
size of the selected substations to be built; and 3) the optimal
reserve feeders of the distribution system that maximize the
reliability of the distribution network with minimal economic
costs.

2) Initial Solution: A good acceptable initial solution (of the
NMTS algorithm) is the one that minimizes the total length of
the feeders (in the first instance, with only one size of feeder),
which may be determined easily using the minimum spanning
tree algorithm [27] modified accordingly (for various supply
nodes). This solution fulfils the condition of radiality. Initially, it
is accepted that feeder and substation power capacity limits and
maximum voltage drop limits may be exceeded (these types of
solutions are initially acceptable, despite being unfeasible, since
new solutions without unfeasibilities are obtained in the opti-
mization process).

3) Evaluation of A Planning Solution: In the multiobjective
deterministic model, the objective functions are
obtained, and the technical constraints are analyzed by verifying
whether or not they have been fulfilled. In the multiobjective
fuzzy model, the objective functions , and
EX are obtained.

The Tabu search algorithm uses integer variables to define
the network topology (planning solution). Then, a power flow
for radial distribution networks (deterministic [28] or fuzzy
[15], [16]) enables to obtain the feeder flows, the voltages
at the nodes, and the economic costs as well as to check the
constraints (exposure for the fuzzy model). Also, the expected
nonsupplied energy can be calculated, taking into account the
reserve feeders (deterministic [29] or fuzzy [18]).

4) Neighborhood of A Solution: In a planning solution,
neighboring solutions of the aforementioned solution are those
that may be obtained from it by specific operations called
“movements.” The set of solutions (planning solutions) that
are neighbors of another solution is referred to as a “neighbor-
hood.” Hence, the definition of the movements determines the
corresponding neighborhood. We have defined the following as
the simplest movements for modifying a solution.

a) Eliminate a substation in a network node.
b) Add a substation in a network node.
c) Change the size of a substation in a network node.
d) Eliminate a feeder that supplies power to a network node.
e) Add a feeder that supplies power to a network node.
f) Change the size of a feeder that supplies power to a net-

work node.
The operations of eliminating, adding, and changing the size

of a feeder can also be applied to reserve feeders that connect
two network nodes. All the movements are associated with one
network node, except movements on reserve feeders that are
associated with two network nodes.

As indicated previously, we start from an initial radial distri-
bution network. In order to maintain the radiality of the solutions
obtained, a simple strategy was employed that consisted of elim-
inating first one feeder and then adding another feeder (which
enabled this radiality to be maintained). The feeder that is elim-
inated (except when this is a reserve feeder) must be the feeder
that supplies power to the node of the distribution network (net-
work node). The feeder that is added has the same function, i.e.,
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Fig. 2. Method for maintaining radiality.

it supplies power to the network node. Fig. 2 shows the method
used for the exchange of a feeder.

Fig. 2(a) presents a radial solution of a distribution system
formed by a substation on network node 1, various network
nodes (nodes 2 to 9) with power demands and feeders that
are represented by continuous segments. Fig. 2(a) shows the
feeder (1, 2) that is to be eliminated. Fig. 2(b) shows that
feeder (1, 2) has been eliminated, and it also shows (by dashed
segments) other feeders (2, 8), (2, 4), (2, 5), and (2, 6) that can
be connected to the network node 2. The feeder (2, 4) does
not allow to supply power to all the network nodes; hence, it
is the first one to fall from the candidate list. Fig. 2(c) shows
that the final choice was feeder (2, 8), which maintains the
radiality and connectivity of the network. The choice of one
feeder or another is performed using an evaluation function
(named “prospecting function,” as described later), which can
be different in each case, according to the objective function
that we wish to study (minimize cost, minimize exposure, or
improve reliability). The conductor size of the feeder that has
been added will be the same as the size of the conductor of the
eliminated feeder, since another movement is required in order
to change the size of the conductor.

Another condition that must be imposed on the movements,
in order to maintain radiality and connectivity, is that the elim-
ination of a substation entails the elimination of all the feeders
that leave the substation and the addition of feeders to supply
the power demands of the nodes that are no longer able to be
supplied from the eliminated substation.

Note that the conditions imposed on the movements achieve
two effects: 1) the reduction of the memory that must be used to
store completed movements (only the network node associated
with the movement has to be stored); and 2) the maintenance of
the condition of radiality (for all the movements performed).

5) Tabu List: The purpose of the TL is to prevent the search
process from entering repetitive cycles that lead to the same so-
lution. TL stores the network nodes on which movements have
recently been performed; in this way, movements on network
nodes, stored in TL, are forbidden; this avoids to visit nodes
(that leads to solutions) explored recently (the longitude of TL
is the closest integer to the square root of the number of network
nodes).

6) Selection of “Elite Candidates”: The evaluation of all the
movements that can be performed in a network (planning solu-
tion) requires a prohibitive amount of time for the algorithm to
be a success; therefore, a set of elite candidate nodes must be
selected. To do so, for a current solution (of a given element
of the partition), all the network nodes are evaluated using a
“prospecting function” (a “prospecting function” for each ob-
jective function); this provides an idea of the success that will be
achieved in the search (i.e., to obtain a better solution in the ob-
jective function to be improved); thus, the resulting order of net-
work nodes is stored in a “list of elite candidate nodes” (a list of
elite candidate nodes for each objective function) according to
the aforementioned “prospecting function.”. These prospecting
functions are as follows.

a) Prospecting function for cost. Cost is evaluated using a
function that calculates the difference between the cost of
the feeder of the network node (feeder that supplies power
to the node) and the lower cost of the next feeder to be
connected to the node.

b) Prospecting function for expected nonsupplied energy.
This function performs an approximate evaluation of
the difference between expected nonsupplied energy
before and after each movement (better improvements
of expected nonsupplied energy are usually obtained
by including movements of new reserve feeders in the
network).

c) Prospecting function for the degree of compliance with
constraints. This function, in the case of the multiobjec-
tive deterministic model, calculates in each network node
the difference between the number of constraints that
are not fulfilled with the current feeder and the number
of constraints that are not fulfilled when changing this
feeder (that supplies power to such node) or changing the
size of its conductor to a larger one. In the case of the
multiobjective fuzzy model, this function calculates in
each network node the difference between the exposure
of the current feeder and the exposure when changing the
feeder or changing the size of its conductor to a larger
one.

Once all the network nodes have been evaluated, the nodes
are ordered by the prospecting function corresponding to the
objective function to be minimized. In this way, we can deter-
mine which node is the most suitable in order to improve this
objective function.

7) Obtainment of a Solution Using the Set of Candidate
Nodes: Once the network node has been selected (belonging
to the set of candidate nodes) on which we wish to perform a
movement, each movement allowed in this node (demand node
or substation node), or on the feeders that are connected to
the node, produces a different solution. In order to determine
the movement to be selected, and in order to obtain the next
planning solution, each allowed movement is performed, and
the objective function is evaluated directly. We then select the
movement that achieves the best improvement of this function
to be minimized.

8) Local Acceptance Criterion and Global Acceptance
Criterion: For a given element of the partition of the solution
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space, with the local acceptance criterion, a new solution is
accepted if its value is lower than the current value of the
objective function (to be minimized) and if the corresponding
mathematical constraints of the objective functions for the
element of the partition are satisfied (see Section II-E).

As indicated later, the NMTS algorithm uses a set of
current planning solutions “provisionally nondominated,” i.e.,
the set of nondominated solutions at a given moment of algo-
rithm execution. Then, for a given element of the partition, with
the criterion of global acceptance, a new solution is always ac-
cepted if it is a provisionally nondominated solution. Then the
set of is updated.

9) Local Stop Criterion and Global Stop Criterion: The
global stop criterion of the search stops the NMTS algorithm
if: 1) a specified number of global iterations (for example,
1000 iterations) has been carried out (one global iteration
corresponds to one complete search in all the elements of the
partition); or 2) if no provisionally nondominated solution has
been found after a specified number of global iterations (for
example, 20 iterations).

The local stop criterion stops the search in an element of the
partition if, after a specified number of local iterations (for ex-
ample, five iterations, where a local iteration corresponds to a
movement for a new solution in the element of the partition),
the obtained solutions are dominated. If this criterion stops the
search in an element, a new search in a new element of the par-
tition is carried out. Thus, this criterion allows diversification
of the search when no provisionally nondominated solution is
found in an element (during the specified number of iterations).
Search diversification can be accentuated if we select network
nodes that have not been visited yet or that have been received
“few” visits. Each node stores the number of visits performed
during the search process.

C. Tabu Search Algorithm for Multiobjective Optimal
Planning of Power Distribution Networks

In the case of the fuzzy multiobjective model, the set of so-
lutions (where the NMTS algorithm carries out the search) con-
tains set (as well as certain solutions that are acceptable for
the NMTS algorithm but unfeasible). Analogously, in the case of
the multiobjective deterministic model, set contains set (as
well as some solutions acceptable by the NMTS algorithm but
unfeasible). The NMTS algorithm starts to calculate an accept-
able initial solution of set using the minimum spanning tree
algorithm, which, thereafter, will be the current solution (stored
in ). This solution will be the first “provisionally nondom-
inated” solution that is stored in the set .

As indicated above, the search space is divided into elements
of the partition ( denotes the th element). These elements
will be explored successively searching for “provisional non-
dominated” solutions (with respect to the current solutions of
set ). Normally, in a given element , initially from a
provisionally nondominated solution (of such element), the
NMTS algorithm looks for new solutions (for such element).
In a given local iteration, from the current solution (stored in

) of a given element , by movements NMTS algorithm
tries to find a solution that improves (successively) one or
more objective functions. A new solution (stored in )

is not sought from among all the possible solutions (huge
computational effort) but rather from among the solutions that
can be obtained with movements in nodes of the neighboring
set . This set is formed by network nodes that
belong to the neighborhood of the solution stored in
and that are not prohibited by the constraints imposed by
the TL. This set is still very big; hence, a set of candidates
is selected, Candidates- , which is formed by
the network nodes belonging to the set of elite candidate
nodes selected by the prospecting function of a given objec-
tive function (in the multiobjective fuzzy model, the sets are
Candidates- , Candidates- ,
and Candidates- ex , for the objective functions of
fuzzy cost, fuzzy expected nonsupplied energy, and exposition,
respectively. Similar concepts are stated for the multiobjective
deterministic model). Each movement for a given objective
function (for a given element ) leads to a new solution. (Note
that the search is repeated for each objective function in order
to improve each of them.) Thus, when a new solution (stored in

) has a better objective function value (to be minimized)
than the current solution, then is updated (for ) with
the stored solution in (local acceptance criterion). If
additionally this new solution (stored in ) is provisionally
nondominated (with respect to the solutions of the set ),
then it is stored in (global acceptance criterion), and the
solutions of that are dominated by are eliminated
from . On the other hand, if this new solution (stored in

) is dominated, the search continues from that solution
(for ). If the achieved solutions are dominated (along a given
number of movements—local iterations), then the search in
is stopped (local stop criterion), and the search continues in
another element of the partition.

As indicated above, the NMTS algorithm is stopped when the
global stop criterion is fulfilled, i.e., if a given number of global
iterations has been carried out or if no provisionally nondomi-
nated solution has been found after a specified number of global
iterations.

Table II presents a description of the NMTS algorithm.

IV. COMPUTATIONAL RESULTS

The NMTS algorithm described in this paper has been inten-
sively tested in large computational experiments for both mul-
tiobjective (deterministic and fuzzy) models and applied to real
distribution systems of significant dimensions. A Spanish utility
provided most of the data on distributions networks [12]. This
section contains the main results of a multiobjective optimal
planning case corresponding to an underground distribution net-
work represented in Fig. 3. This figure shows an existing 10-kV
feeder network (continuous segments) and the proposed routes
(dashed segments) to build future feeders of three proposed sizes
(3 150 Al, 3 1 400 Al, and parallel circuits 3 1 400
Al). These are also the sizes of the existing feeders. The size
of the existing substation at node 181 is 15 MVA, and a future
substation of two proposed sizes (31 MVA and 15 MVA) is pro-
posed to be built at node 182.

In this section, first the sets of nondominated solutions (for
this case) achieved by the NMTS algorithm are presented for
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TABLE II
NMTS ALGORITHM

both multiobjective models; then, significant characteristics of
the NMTS algorithm search are described.

Fig. 3. Initial distribution system and proposed feeder routes.

A. Application of the NMTS Algorithm to Find the Set of
Nondominated Solutions

The application of the NMTS algorithm determines the
nondominated solutions obtained for the multiobjective fuzzy
model and the multiobjective deterministic model of Section II.

The NMTS algorithm successively obtains a set of planning
solutions when it is run. Thus, Figs. 4 and 5 show the set of these
solutions achieved by the NMTS algorithm for the multiobjec-
tive deterministic model and for the multiobjective fuzzy model,
respectively. In Fig. 4, the economic cost , in thousands
of euros, is represented on the horizontal axis, and the expected
nonsupplied energy , in kilowatthours, is represented on
the vertical axis. In Fig. 5, the removal of the fuzzy
economic cost, in thousands of euros, is represented on the hor-
izontal axis, and the removal of the fuzzy expected
nonsupplied energy, in kilowatthours, is represented on the ver-
tical axis.

From the above-mentioned set of achieved planning solutions
in Fig. 4, the corresponding nondominated ones are shown in
Table III, i.e., 22 nondominated solutions obtained for the mul-
tiobjective deterministic model. In Table III, the number of the
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Fig. 4. Successive planning solutions obtained by NMTS algorithm for the
multiobjective deterministic model.

Fig. 5. Successive planning solutions obtained by NMTS algorithm for the
multiobjective fuzzy model.

nondominated solution is denoted by the symbol , its eco-
nomic cost is denoted by , and its expected nonsupplied
energy by . From the set of achieved planning solutions
in Fig. 5, the corresponding nondominated ones are shown in
Table IV, i.e., 62 nondominated solutions obtained for the mul-
tiobjective possibilistic model. In Table IV, the number of the
nondominated solution is denoted by the symbol ks, the removal
of its fuzzy economic cost by , the removal of its fuzzy

TABLE III
NONDOMINATED SOLUTIONS OBTAINED BY NMTS ALGORITHM

FOR THE DETERMINISTIC MODEL

TABLE IV
NONDOMINATED SOLUTIONS OBTAINED BY NMTS

ALGORITHM FOR THE FUZZY MODEL

expected nonsupplied energy by , and its exposure by
EX .

From the set of nondominated solutions achieved with the
NMTS algorithm (for the multiobjective fuzzy model or the de-
terministic model), the planner can select the final nondomi-
nated solution, taking into consideration the most satisfactory
objective functions values and taking into account his or her ex-
perience and professional point of view.

Furthermore, well-known methods [12], [17] can also be ap-
plied to select the final nondominated solution (from the set of
nondominated solutions). Using a min–max approach [17] to
select the final solution, from previous works [12], a final better
planning solution is normally obtained from the set of nondom-
inated solutions of the multiobjective fuzzy model, with a much
lower expected nonsupplied energy and also with a substantially
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Fig. 6. Successive values of R( ~C(y; ~x)).

Fig. 7. Successive values of R( ~E(~x)).

lower exposure (than the final planning solution of the set of
nondominated solutions of the deterministic model); in other
words, it is a more reliable and robust planning solution (with
a very slight cost increase). Thus, from a technical standpoint,
the final solution of the multiobjective fuzzy model is frequently
much more satisfactory.

B. Characteristics of the Search of the New Tabu
Search Algorithm

The NMTS algorithm performs an intensive search looking
for optimizations of the three objective functions of the multi-
objective fuzzy model. Thus, Fig. 6 shows the successive values
of the removal of the objective function of fuzzy cost (of the
multiobjective fuzzy model) on the vertical axis and the search
iteration number on the horizontal axis. It reveals interesting as-
pects of the search, such as the provisional acceptance of solu-
tions with higher removal of cost (to escape from local optima).
Fig. 6 shows that there are iterations corresponding to search di-
versification movements, but this is clearer in Fig. 7. This figure
shows the successive values of the removal of the objective func-
tion of expected nonsupplied energy on the vertical axis and the
search iteration number on the horizontal axis. In Fig. 7, diver-
sification movements are shown clearly since such movements
have a more significant effect on this objective function. Fig. 8
shows the successive values of the objective function of expo-
sure on the vertical axis and the search iteration number on the
horizontal axis. It illustrates that movements often lead to non-
satisfied technical constraints (value 0 as exposure value) that
are satisfied in subsequent iterations. It also shows that move-
ments cause a wide search in the exposure values (between 0
and 1).

Fig. 8. Successive values of EX.

Similar comments can be made in relation to the character-
istics of the search of the new Tabu search algorithm for the
multiobjective deterministic model with respect to the objective
functions of cost and expected nonsupplied energy.

V. CONCLUSION

This paper has presented an original metaheuristic algorithm
(NMTS algorithm) for solving a novel multiobjective fuzzy
model (and the corresponding multiobjective deterministic
model) of power distribution optimal planning. A multiobjec-
tive optimization with minimization of the objective functions
of fuzzy economic cost, fuzzy expected nonsupplied energy,
and exposure is provided by the NMTS algorithm, which also
determines the optimal location and size of the reserve feeders
for maximizing the network reliability with the lowest cost
for a given exposure level (robustness level). Thus, the NMTS
algorithm obtains the set of nondominated multiobjective
planning solutions. Later, this enables the planner to select the
most satisfactory nondominated solution according to his or
her experience.

Intensive testing has been carried out in real power distribu-
tion systems (with notably larger dimensions than other systems
previously published) to validate the new algorithm (and the
multiobjective fuzzy and deterministic models); these tests have
also revealed its practical usefulness for application to large dis-
tribution networks. Often, the final solution achieved from the
fuzzy model is much more satisfactory than the one from the
deterministic model.

Significant characteristics of the NMTS algorithm (for both
multiobjective models) are 1) intensification of the search for
planning solutions using suitable prospecting functions to iden-
tify the best network candidate nodes (for each objective func-
tion); 2) diversification of the search through the discretization
of the space of planning solutions using suitable elements of
partition of this space; this also leads to a proper distribution
of computational effort when searching among these elements;
3) the NMTS algorithm uses an original structure of movements
on network nodes of the planning solutions, thus enabling the
feasibility of the searched solutions to be maintained; 4) the
design of the TL enables recently explored network nodes to be
stored with a low utilization of computer resources; and 5) the
NMTS algorithm achieves the set of nondominated solutions
for both multiobjective models, i.e., the fuzzy and determin-
istic models.
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Further research works about the improvement of the deter-
mination of fuzzy data and the possible effects of data uncer-
tainty on planning solutions will be explored to expand the plan-
ning abilities of the fuzzy model presented in [12], which will
be published in a future paper.
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