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Possibilistic Model Based on Fuzzy Sets for the
Multiobjective Optimal Planning of Electric Power

Distribution Networks
Ignacio J. Ramírez-Rosado, Member, IEEE, and José Antonio Domínguez-Navarro, Member, IEEE

Abstract—This paper presents a new possibilistic (fuzzy) model
for the multiobjective optimal planning of power distribution net-
works that finds out the nondominated multiobjective solutions
corresponding to the simultaneous optimization of the fuzzy eco-
nomic cost, level of fuzzy reliability, and exposure (optimization
of robustness) of such networks, using an original and powerful
meta-heuristic algorithm based on Tabu Search. This model de-
termines the optimal location and size of the future feeders and
substations in distribution networks with dimensions significantly
larger than the ones usually presented in papers on the matter. The
model also allows to determine the optimal reserve feeders (loca-
tion and size) that provide the best distribution network reliability
at the lowest cost for a given level of robustness (exposure). The
model and the algorithm have been intensively tested in real distri-
bution networks, which proves their practical application to large
power distribution systems.

Index Terms—Fuzzy sets, multiobjective optimization, planning,
power distribution systems, Tabu search.

I. INTRODUCTION

THE CLASSICAL optimal planning of distribution net-
works [1]–[6] determines basically the most economical

planning solution (single objective optimal economic cost
solution) with the best size and location for future substations
and/or feeders to meet the future demand represented using
deterministic values. In this classical planning, an objective
function of economic cost associated with the expansion of
the distribution network (in a single-stage or a multi-stage
planning [2], [4], [5]) is optimized, subject to a set of technical
constraints [2], [6] (power capacity limits of the substations
and feeders, voltage drop limits at the demand nodes of the
distribution system, and radiality conditions of the power
network operation). In the past, deterministic planning models
used conventional optimization algorithms such as “branch
and bound” [1], [2], and more recently they have used other
methods based on more efficient meta-heuristic techniques of
local search such as, for example, “branch exchange” [3], [4]
and genetic algorithms [5], [6].
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In the field of the multiobjective optimal planning of distribu-
tion networks based on deterministic demand, very few works
have analyzed the network reliability maximization simultane-
ously with the minimization of the economic cost [7]. Further-
more, sometimes this optimal planning has been carried out using
a single objective corresponding to the linear combination of a
reliability cost function and the economic cost [5], [8]. Usually,
the papers on multiobjective distribution planning based on de-
terministic demand have not been tested in real distribution net-
works of significant dimensions (except in [7]) to obtain the set
of multiobjective nondominated solutions [9], [10] with a true si-
multaneous optimization of objectives.

The abovementioned deterministic planning models (single
objective or multiobjective models) can only represent one value
of future demand at each node of the distribution network and,
therefore, they cannot represent directly the intrinsic uncertainty
associated with the future demand. This future demand can be
better defined using fuzzy variables that represent possibility dis-
tributions of the demand values in the future [11]–[14], providing
a more realistic representation of such demand. Relatively few
fuzzy models for the optimal planning of distribution networks
[12]–[14]havebeenpublished.Nomodelofmultiobjective fuzzy
planning for distribution systems seems to have considered a true
simultaneous optimization of the economic cost and reliability
taking into account the optimal size and location of reserve
feeders (feeders that are not usually operative except for failures
in the distribution network in a radial operating state). These
optimal reserve feeders provide the best network reliability at
the lowest economic cost. In the fuzzy planning of distribution
systems, we can introduce the concept of risk (exposure) associ-
ated with the assessment of the possibility that the power flows
in the feeders and substations surpass their power capacity limits
[12]–[14]. This concept has a substantial advantage (compared
to the deterministic models) since the planner can evaluate the
“risk” associated with a given planning solution using the “expo-
sure” value of such solution (distribution network) linked to the
future possibility of overloading the feeders and/or substations.
That is, this “risk” is an advantageous and important concept in
order to evaluate the “robustness” of the distribution network in
terms of future security in the operation of the network. Only
a fuzzy planning model for distribution systems [13] has con-
sidered the risk (exposure) of surpassing the allowed voltage
drop limits, but it has not been applied to distribution networks
of significant dimensions. This exposure, associated with the
voltage drop limits, is also interesting for the planner in terms
of robustness of the distribution network in order to obtain an
appropriate level of electric service quality in the future.
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This paper presents an original possibilistic (fuzzy) model
based on nonlinear optimization for the multiobjective optimal
planning of power distribution systems in a single stage or
multi-stage optimal planning (for the latter, using the pseudo-
dynamic methodology [2]). The possibilistic model determines
the multiobjective nondominated solutions that manage simul-
taneously to minimize the (fuzzy) economic cost, maximize the
(fuzzy) reliability and minimize the risk (exposure), whereby
the risk of surpassing the power capacity limits of the feeders
and substations is minimized and, furthermore, the risk of
surpassing the allowed voltage drop limits at the network nodes
is also miminized. This new multiobjective possibilistic (fuzzy)
model also determines the optimal size and location of the
reserve feeders that should be built to maximize the network
reliability at the lowest economic cost (for a given level of
risk). This model has been applied to distribution systems
significantly larger and more complex to optimize than most of
the ones usually presented in the papers on distribution system
optimal planning, using an original meta-heuristic algorithm
of multiobjective optimization based on the technique of Tabu
Search [15]. The model and the algorithm have been intensively
tested in real distribution networks, which proves their practical
application to large power distribution systems.

II. POSSIBILISTIC MODEL OF MULTIOBJECTIVE PLANNING

In the first section, several fundamental concepts related to the
possibilistic(fuzzy)modelarepresented,aswellasthemathemat-
ical comparisons of fuzzy numbers. Afterwards, the possibilistic
multiobjective model is described, and finally the formal mathe-
maticalmethod(SectionII-C)usedtosolvethemultiobjectiveop-
timizationproblemisdiscussed.Thismethodcanbeimplemented
by diverse algorithms, and in this paper we have used the above-
mentioned original algorithm described in Section III.

A. Fundamental Concepts

1) Fuzzy Variables: The power demand at each node can be
represented using a value (the “most favorable” demand),
a value (the “most unfavorable” demand), and a value
(demand with the highest possibility of existence in the future
that corresponds to the value 1 of the membership function
[11]), as shown in Fig. 1.

This description of the demand is associated with a trian-
gular possibility distribution (fuzzy), , and rep-
resents simultaneously a large set of possible future values of
demand at a given node. Other important variables are the power
flows in the feeders and substations, the economic cost (“fixed”
and variable cost) associated with the expansion of the distri-
bution system, the failure rate and repair rate for the reliability
evaluation (using the “expected nonsupplied energy”), and the
voltages at the network nodes. All these magnitudes, with in-
trinsic uncertainties, are also represented by triangular possi-
bility (fuzzy) distributions. The abovementioned fuzzy (possi-
bilistic) power flows and fuzzy voltages are calculated in ra-
dial operating states of the network using an iterative version
of the algorithm of power flows as in [16]–[18]. The fuzzy “ex-
pected nonsupplied energy” is obtained through an enumerative
algorithm that simulates successive feeder failures and calcu-

Fig. 1. Fuzzy representation of power demand.

lates their contribution to the “expected nonsupplied energy”
of the system as in [19], [20]. Furthermore, the objective func-
tions of economic cost and reliability, and the technical con-
straints [21], are represented using possibility distributions, too
[22], [23]. Note that the possibilistic model represents simulta-
neously, using fuzzy (possibilistic) variables, an extensive set of
situations (scenarios) of future demand (very large set of future
demand values at each node of the network). Therefore, often
the technical constraints of power capacity limits in the feeders
and substations, and the allowed voltage drop limits at the net-
work nodes, will not be strictly met in all the future situations
considered simultaneously. If they were met in all the future sit-
uations, then the planning solutions would have no “risk” asso-
ciated, that is, the “exposure” (to the risk) would be zero. If such
technical constraints were only met in a subset of these future
situations, we would be assuming a certain level of risk, that is,
a certain exposure to this risk [11]. The possibilistic multiobjec-
tive model presented in Section II-B optimizes simultaneously
the economic cost associated with the distribution network, the
exposure and the reliability of the network.

2) Comparison of Objective Function Values: As we have
mentioned before, possibility distributions (triangular fuzzy
numbers) are used to represent several magnitudes (i.e., de-
mand, power flow, voltage, etc.). The fuzzy (possibilistic)
variables are denoted by the symbol ( ) in the possibilistic
model. The nonlinear objective function associated with the
economic cost and the one associated with the expected non-
supplied energy correspond to fuzzy values. These fuzzy values
must be compared and ranked to assess several planning so-
lutions. The ranking function “removal” [22], [23] allows to
determine and compare these values. For example, in Fig. 2, the
removal of the fuzzy value for an is defined [22],
[23] as . (The symbols and

in Fig. 2 will be used later). Thus, for two fuzzy values
and , we can study whether is true or not,
that is, and can be compared. Therefore, we can compare
the fuzzy values of the objective functions abovementioned.

3) Fuzzy Constraints: In Fig. 3, let us represent the right-
hand side of the fuzzy number by and the left-hand side
by (with a similar representation for the fuzzy number ).
The relationship is satisfied if the left-hand side satisfies

and the right-hand side satisfies for any -cut
. Then, according to [22]–[24], a fuzzy constraint

can be satisfied in different ways. We have considered that
a fuzzy constraint is satisfied up to the level if , that is,
we have applied “Soyster’s criterion” [22]–[24].

The possibilistic (fuzzy) power flows of the model can be
“larger” than the power capacity limits of the distribution ele-
ments from a -level up to a zero-level. For example, in Fig. 2,
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Fig. 2. Fuzzy variables.

Fig. 3. Fuzzy constraint.

let us assume that the fuzzy number represents the fuzzy power
flow carried out through a feeder, and that the power capacity
limit of such feeder is Then, the relationship
implies that the fuzzy power flow is “lower” than (or “equal”
to) the power capacity limit for any -cut . (
in Fig. 2).

This -level is a measurement of the corresponding risk
accepted by the planner and is called “exposure”. Furthermore,
a measurement of the so-called “robustness” of the distribution
system planning solution is the value ( ) [11]. If the level
of robustness is forced to increase, then the number of feasible
planning solutions (that meet the power capacity limits) de-
creases. Usually, if an objective function is minimized, then
there is a planning solution for each specified level of robust-
ness. Similar concepts of “exposure” and “robustness” can be
extended to fuzzy node voltages with respect to the lowest
voltage limits allowed at the network nodes [21].

B. Possibilistic Model for Multiobjective Planning

The multiobjective deterministic planning of a power distri-
bution network can be modeled as a problem of multiobjective
optimization with integer variables ( ) (decision variables to
build and size up new proposed feeders and substations) and
continuous variables ( ) (power flow and voltage), where the
economic cost associated with the expansion and ex-
pected nonsupplied energy is minimized, subject to the
usual technical constraints that represent
the first and second law of Kirchhoff, the power capacity limits
of the feeders and substations, and the allowed voltage drop
limits at the nodes (subject to the condition of radiality of the
power flows in these distribution networks). In mathematical
terms, it can be expressed as [21]

(1)

where represents the set of the abovementioned technical con-
straints ( refers to the th constraint); and
represents the multiobjective deterministic minimization to ob-
tain the nondominated solutions using the optimality of Pareto
[9], [10] with the simultaneous maximization of the objectives

and .
If the different magnitudes are represented by fuzzy (possi-

bility) distributions, then the possibilistic (fuzzy) model of mul-
tiobjective optimal planning will include, in a similar way, in-
teger variables ( ) and fuzzy continuous variables ( ), where
the fuzzy planning cost and the fuzzy expected non-
supplied energy are miminized subject to the fuzzy tech-
nical constraints . Furthermore, the expo-
sure (mathematically defined later) is included in the pos-
sibilistic model. It considers the exposure associated with the
power capacity limits of the feeders and substations as well as
the exposure associated with the voltage drop limits at the net-
work nodes. Thus, the possibilistic model can be expressed as
[21]

(2)

where is the set of the fuzzy technical constraints and
represents the multiobjective fuzzy min-

imization to obtain nondominated solutions using the optimality
of -Pareto [22], [24] with a simultaneous minimization of the
objectives , and .

Note that, in the next paragraphs, the objective functions of
the model contain fuzzy variables and fuzzy coefficients. There-
fore, the model will be called “possibilistic” model [22]–[24].
The terms of the objective function of economic cost
of (3) represent fuzzy variable costs associated with existing
feeders and substations; fuzzy fixed costs associated with fu-
ture feeders and substations; and fuzzy variable cost associated
with future feeders and substations [21]. This function contains
possibilistic (fuzzy) variables

(3)

where
set of routes (between nodes) associated with the
existing feeders in the initial network;
set of proposed feeder routes (between nodes) to
be built;
set of proposed feeder sizes to be built;
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set of nodes associated with the existing substa-
tions in the initial network;
set of nodes associated with the proposed loca-
tions to build substations;
set of proposed substation sizes to be built;
route between the nodes and ;
fuzzy power flow, in kVA, supplied from the node

associated with a substation of size ;
fuzzy power flow, in kVA, carried through the
route associated with a feeder of
size ;
fuzzy power flow, in kVA, supplied from the node

associated with an existing substation
in the initial network;
fuzzy power flow, in kVA, carried through the
route associated with an existing
feeder in the initial network;
fuzzy variable cost coefficient of an existing
feeder in the initial network, on the route

;
fuzzy variable cost coefficient of a feeder of size

to be built on the route ;
fuzzy fixed cost of a feeder of size to be built
on the route ;
fuzzy variable cost coefficient of an existing sub-
station in the initial network, at the node

;
fuzzy variable cost coefficient of a substation of
size , at the node ;
fuzzy fixed cost of a substation of size ,at the
node ;
1, if a substation of size associated with node

is built. Otherwise, it is equal to 0;
1, if a feeder of size associated with route

is built. Otherwise, it is equal to
0.

In (3), notice that the fuzzy mathematical operations are al-
gebraic operations with fuzzy numbers [20], [22].

The objective function of the expected nonsupplied energy
is the following fuzzy function:

(4)

where
;

fuzzy constants obtained considering other suitable
reliability fuzzy constants (several reliability related
fuzzy parameters, such as the fuzzy failure rate and
fuzzy repair rate of the distribution feeders, as well
as the length of the corresponding feeders) associated
with a feeder on the route ;

and is the fuzzy expected nonsupplied
power, in kVA, associated with a possible feeder failure on
route , taking into account the reserve feeders.

As mentioned above, the multiobjective possibilistic model
includes the minimization of the exposure (a new objec-
tive function). Thus, in future situations (scenarios) of demand

(large set of values of future demand at each node of the network
considered simultaneously), it minimizes the risk of surpassing
the technical constraints of the power capacity limits of the ele-
ments of the network and the allowed voltage drop limits, taking
into account the best reserve feeders. In the multiobjective deter-
ministic model, this risk is not evaluated since there is only one
future situation (a single deterministic value of future demand
at each node of the network). However, with the multiobjective
possibilistic model, the planner works simultaneously with the
representation of a significant set of future demand situations
(scenarios). Then, he/she can select an exposure level (risk) ac-
ceptable for the planning solution from his/her experience and
professional point of view.

For each planning solution (distribution network belonging to
the set ), the exposure of the network is mathematically
defined as

(5)

where the operator represents the max-
imum [22]–[24] of the values of the set

; ,
, and are, respectively, the sets of nodes, substations

and feeders of the planning solution (the one that is being
evaluated); and , , and are, respectively,
the exposure associated with the node -th, the substation -th
and the feeder -th [21], for this planning solution. Then, in
(5), represents the exposure associated with the power
flow of the feeder -th, that is, the lowest -level at which the
fuzzy power flow ( ) of the feeder is “lower” than (or “equal”
to) the power capacity limit ( ) of the feeder. Thus

(6)

where is the minimum of the values [22]–[24].
Furthermore, represents the exposure associated with

the power flow in the substation th, that is, the lowest -level
at which the fuzzy power flow ( ) in the substation is “lower”
than (or “equal” to) the power capacity limit ( ) of the
substation. Thus

(7)

Finally, represents the exposure associated with the
voltage of the node th, that is, the lowest -level at which the
fuzzy voltage ( ) of the node is “higher” than (or “equal” to)
the allowable lowest voltage limit ( ). Thus

(8)

C. Resolution Method of the Possibilistic Model

This method is developed in two phases. In the first phase,
the set of nondominated planning solutions is obtained (with
respect to the objective functions of fuzzy economic cost, fuzzy
expected nonsupplied energy, and exposure) using a parametric
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method based on an optimization by goals [10]. In the second
phase, a solution of the set of nondominated solutions is selected
using a suitable max-min approach [22].

Phase 1: Search of the Set of Nondominated Solutions: Each
planning solution obtained with the multiobjective possi-
bilistic model has an associated fuzzy value for the objective
function of fuzzy planning cost , a fuzzy value
for the fuzzy expected nonsupplied energy and
a deterministic value for the exposure . The evaluation
and comparison of these different fuzzy values is carried out
using the removal function [22], [23], mentioned in
Section II-A. The “removal” of the objective function
(fuzzy expected nonsupplied energy) can range from 0 to ,
where is the maximum “removal”
value of the fuzzy expected nonsupplied energy when the
objective function of economic cost is optimized. The exposure

can range from 0 to 1. Thus, a partition of the space of
planning solutions is carried out by limiting the values of two
objective functions using mathematical constraints that lead
systematically to successive planning solutions (parametric
method [10]), as shown in the next paragraph. Let us consider
the mathematical constraints

(9)

where and .
Then, the following optimization is successively solved

each time, by varying systematically the values of and
:

(10)

where represents the minimization of the re-
moval of the objective function ( ) to obtain the optimal
solution [22], [24].

The planning solutions obtained with this method are com-
pared among themselves to determine a set of nondominated
solutions.

Phase 2: Selection of the Best Multiobjective Planning
Solution: After analyzing the set of nondominated solutions,
the planner can select the final nondominated solution, con-
sidering the most satisfactory values of the three objectives
and according to his/her experience and professional point of
view. In this paper, a max-min approach is used to select the
best (final) multiobjective planning solution. Each solution
in the set of nondominated solutions has an associated vector

of values ( ) that can be normalized using the
following expression:

(11)
where , and are the “removal” values
of the maximum values obtained for the objective function
of fuzzy economic cost, for the function of fuzzy expected
nonsupplied energy and for the exposure function, respec-
tively, and , and are the “removal” values
of the minimum values obtained. Note that the result of this
normalization gives the vector (1, 1, 1) for the ideal point
( ) and the vector (0, 0, 0) for the anti-ideal
point ( ), that is, it represents the level of
satisfaction for each objective function. Afterwards, a max-min
approach, shown in (12), at the bottom of the page, is applied
to select the best (final) multiobjective planning solution (that
is, the most satisfactory solution using the aforementioned
approach). The definition of the well-known max-min operator
can be found in [20], [22], and [24].

III. SUMMARY OF THE ALGORITHM OF MULTIOBJECTIVE

TABU SEARCH

The basics of the original Tabu Search algorithm will be
briefly described and, afterwards, due to the lack of space,
only a summary of the application of such an algorithm to our
multiobjective optimization problem will be presented.

A. Basics of the Tabu Search [21]

1) Evaluation of a Planning Solution : The Tabu Search al-
gorithm uses integer variables (Section II-B), i.e., variables that
define the network topology (planning solution). For a given
planning solution (topology and fuzzy demand), the fuzzy ra-
dial power flows [16]–[18] can be determined (using possibility
distributions), as well as the corresponding fuzzy voltages at the
network nodes and the fuzzy planning economic cost. The ex-
posure associated with this solution can also be obtained con-
sidering the power flows and the power capacity limits of the
feeders and substations, as well as the node voltages and allowed
voltage drop limits. The fuzzy expected nonsupplied energy can
be calculated taking into account the reserve feeders [21].

2) Movements for the Search of a New Planning Solution: A
solution is defined when the feeders and substations (to be built)
are determined. We can obtain a new solution from a given one
by applying certain changes to its topology. To find new solu-
tions, the following topology changes are allowed: 1) remove a
feeder by introducing a new one (with guarantee of a radial oper-
ating state of the power network); 2) change the size of a selected
feeder; 3) remove or include a substation; and 4) change the size

(12)
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Fig. 4. Illustrative example.

of a given substation. These changes (called “movements”) pre-
serve the operation radiality of the new networks (planning so-
lutions in the “neighborhood” of the present solution). For ex-
ample, in Fig. 4 we are going to explain the abovementioned
movements 1) and 2). An elementary electric network is rep-
resented in Fig. 4 with a substation at node 1 and six demand
nodes (nodes 2–7). The continuous segments are the feeders that
compose the current radial solution and the dashed segments are
additional feeder routes that could be part of new solutions. The
search of a new solution starts in the aforementioned radial so-
lution. Then, the search process selects a node, for instance node
3 in the current solution. This process only allows to carry out
movements that preserve the radiality. Therefore, the allowed
movements (associated with node 3) are: change the size of the
feeder on the route (2,3), or remove the feeder from this route by
introducing a new feeder (preserving the radial operating state)
that supplies power to node 3 [feeder on the route (7,3) or feeder
on the route (6,3)].

3) Tabu List: The elements of the power network associated
with movements in the last iterations are stored in a list of
length . Furthermore, the movements on such elements are
“forbidden”. Thus, the search is diversified. The length of the
Tabu list is defined as the closest integer to [15], where

is the number of components that correspond to and
(Section II-B).

4) Neighborhood of a Planning Solution: The set of solu-
tions that can be obtained from a given solution (by applying
movements) are the “neighborhood” of the solution. Since the
neighborhood is usually composed of a large set of solutions
(with a considerable computational effort to evaluate them), a
subset of movements is selected to obtain some solutions (“elite
candidates”) of such neighborhood that seem to be better than
the current solution (without a previous evaluation of these “elite
candidates”). The movements that lead to the “elite candidates”
are selected using a local approach aimed at improving the op-
timization objectives. Obviously, the movements on elements
belonging to the Tabu list are forbidden [15].

B. Application of the Tabu Search to Our Multiobjective
Optimization Problem [21]

The new meta-heuristic algorithm is a multiobjective orig-
inal version of the Tabu Search technique [15]. The flow chart in
Fig. 5 shows a brief description of the new algorithm, which will
be presented in detail in a future paper. This algorithm is based
on a local search with suitable procedures to avoid local minima.
The two main procedures are: a short-term memory (Tabu list)
that avoids the repetition of movements carried out in the last it-
erations (steps 6 and 8), and a long-term memory that provides
regions of unexplored solutions within the search space (step 3).
The algorithm begins with an initial solution belonging to the set
of the planning solutions (step 1). Afterwards, still in step 1, the
partition (in search regions) of the solutions space is created as

Fig. 5. Tabu Search flowchart.

it has been explained in Phase 1 of Section II-C. In each search
region, the movements that improve the objectives are applied.
From the neighborhood of the current solution, the set of elite
candidates is selected (step 4). Then, these elite candidates are
evaluated. In step 5, if there are nondominated solutions, then
such solutions are stored in the set of nondominated solutions;
otherwise, the best one is chosen (step 7). The systematization
of the Tabu Search is reinforced by keeping in a “Tabu list” the
element that has given (through the corresponding movement)
the aforementioned best solution in step 8 (or the nondominated
solutions in step 6). In the following iteration, the movements on
elements stored in the Tabu list are forbidden (step 4). Thus, we
avoid going back to solutions already visited (recent local op-
tima). The local search is repeated as long as it improves the cur-
rent solution (step 9). The global search is repeated until there
are no more unexplored regions (step 10). Afterwards, the cor-
responding set of nondominated solutions is obtained from all
the obtained planning solutions, (step 2). Finally, the best solu-
tion from the set of nondominated solutions is selected as it has
been explained in Phase 2 of Section II-C.

IV. COMPUTATIONAL RESULTS

The possibilistic model of multiobjective planning and the
new algorithm of multiobjective optimization (Tabu Search)
have been intensively validated in large computational exper-
iments and applied to real distribution networks of significant
dimensions. Most of the data on the distribution systems have
been provided by a Spanish electric utility.

In this paper, only the main data and results of a case of
multiobjective optimal planning are presented due to the lack
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Fig. 6. Existing and future proposed distribution network.

TABLE I
POWER DEMAND REQUIREMENTS IN KVA

of space. Fig. 6 shows the existing 10-kV feeder network (con-
tinuous segments) and the proposed routes (dashed segments)
to build future underground feeders of three proposed sizes
(3 150 Al, 3 1 400 Al, and parallel circuits 3 1 400
Al). These are also the sizes of the existing feeders. The size
of the existing substation is 15 MVA and a future substation
of two proposed sizes (31 MVA and 15 MVA) is proposed
to be built at node 182. Table I gives the power demand, in
kVA, of the distribution system nodes ( ) from node 1 to node
148, node 176 and node 177. From node 149 to 175 and from
node 178 to 182, the power demands are zero. In Table I, the
demand is represented by triangular fuzzy numbers (note that
( ) have been described in Section II-A). The value
represents the demand, in kVA, with the highest possibility of
existence in the future (and it also represents the deterministic
demand of the deterministic model).

The application of Phase 1, defined in Section II-C, de-
termines the nondominated solutions obtained with the two
planning models (deterministic and possibilistic models). Fig. 7
shows the 22 nondominated solutions obtained with the mul-
tiobjective deterministic model. The economic cost ,
in thousands of Euros, is represented on the horizontal axis
and the expected nonsupplied energy , in kWh, is repre-
sented on the vertical axis. Fig. 8 shows the 61 nondominated
solutions obtained with the multiobjective possibilistic model,
where the removal of the planning economic cost,
in thousands of Euros, the removal of the expected
nonsupplied energy, in kWh, and the exposure ( ) are shown.
Due to the lack of space, Table II only shows a sample of the
nondominated solutions obtained with the deterministic model
and Table III gives a sample of the ones obtained with the
possibilistic model. In Table II (and in Table III), the symbol
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Fig. 7. Nondominated solutions obtained with the multiobjective deterministic model.

Fig. 8. Nondominated solutions obtained with the multiobjective possibilistic
model.

denotes the number of the nondominated solution obtained
with the deterministic model (and the possibilistic model,
respectively). Thus, for example, in Table II the nondominated
solution number 7 obtained with the deterministic model is
denoted by .

In order to select the best multiobjective planning solution
(Phase 2 defined in Section II-C), the values of the objective
functions of Tables II and III are normalized using the following
expressions:

(13)

(14)

TABLE II
SAMPLE OF NONDOMINATED SOLUTIONS OBTAINED WITH THE

DETERMINISTIC MODEL

TABLE III
SAMPLE OF NONDOMINATED SOLUTIONS OBTAINED WITH THE

POSSIBILISTIC MODEL

Then, the max-min approach (Section II-C) is applied: the
result of the application of the “ ” operator is given in the
column “Max-min” (Tables II and III), and, afterwards, the re-
sult of the “ ” operator indicates that best solution obtained
with the multiobjective deterministic model is solution number
7 (Table II) and that the best one obtained with the multiobjec-
tive possibilistic model is solution number 19 (Table III). Fig. 9
shows this nondominated solution number 19, where the reserve
feeders are represented by dashed segments.

Thus, comparing the two distribution network topologies of
the mentioned best multiobjective planning solutions (obtained
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Fig. 9. Solution obtained with the multiobjective possibilistic model.

with the possibilistic and deterministic models), we get 48 topo-
logical differences between such solutions (17 different feeder
routes, and 31 feeder routes with built feeders that have different
size for the two topologies).

If the best multiobjective planning solutions obtained with the
deterministic model (deterministic solution) and the possibilistic
model (possibilistic solution) are compared, there is only a very
slight increase in the fixed cost (3.61%) of the possibilistic solu-
tion vs. the deterministic one. However, the technical features of
the former are much better than the ones of the latter. Thus, the
expected nonsupplied energy improves significantly (30.79%) in
the possibilistic solution compared with the deterministic one.
Furthermore, the possibilistic solution has an associated zero ex-
posure value (completely robust solution) whereas the determin-
istic solution has an associated exposure of 0.20. Therefore, the
multiobjective possibilistic model is preferred since it provides a
better planning solution with a much lower expected nonsupplied
energy and, also, with asubstantially lower exposure, that is, it is a
more reliable and robust planning solution (with a very slight cost
increase). Thus, from a technical point of view, the solution of the
multiobjective possibilistic model is much more satisfactory, as
it improves significantly the reliability of the power distribution
network and, according to the concept of robustness used in this
paper, it also creates an expectation of more robustness of the fu-
ture electric service quality and operation security of the distribu-
tion network.

V. CONCLUSIONS

This paper has presented a new possibilistic (fuzzy) model
of multiobjective optimal planning for electric power distribu-
tion systems of significant dimensions, using an original meta-

heuristic algorithm of multiobjective Tabu Search based on non-
linear optimization. The model considers a fuzzy explicit repre-
sentation of the uncertainties associated with the future demand,
as well as a fuzzy representation of the uncertainties associated
with the expansion cost of the distribution network, the power
flow in the feeders and substations, the network node voltages,
and the reliability (expected nonsupplied energy). This original
possibilistic model provides a true simultaneous minimization
of the economic cost, expected nonsupplied energy and expo-
sure, subject to several fuzzy technical constraints imposed by
the Kirchhoff’s laws, the power capacity limits of the feeders
and substations, and the allowed voltage drop limits at the distri-
bution network nodes (subject to the condition of radial network
operation). The possibilistic model also allows to find out the
optimal location and size of the reserve feeders that maximize
the network reliability at the lowest cost for a given exposure
level (robustness level). Furthermore, the corresponding multi-
objective deterministic model has been presented (and the com-
putational results obtained with both deterministic and possi-
bilistic models have been compared). An original meta-heuristic
algorithm of multiobjective optimization has been created to
solve the possibilistic model (and the deterministic one). This
algorithm uses sophisticated heuristic strategies to avoid local
optima. The algorithm determines the set of nondominated mul-
tiobjective planning solutions. Afterwards, the planner can se-
lect the most satisfactory nondominated solution on the basis of
his/her experience and professional point of view. In this paper,
a max-min approach has been proposed to select the best non-
dominated planning solution.

The new algorithm and the possibilistic model have been in-
tensively tested in real power networks of significantly larger di-
mensions than the ones usually presented in papers on optimal
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planning of distribution systems, proving their practical appli-
cation to large power distribution systems.

The multiobjective possibilistic model allows to consider si-
multaneously a very large set of future demand scenarios (a large
set of future demand values at each node of the distribution net-
work, resulting in an improved representation of the intrinsic un-
certainty of the future demand in the planning process), whereas
the corresponding multiobjective deterministic model can only
consider one planning scenario (only one value of future de-
mand at each node of the network). The computational results
have shown that the network topologies obtained with the possi-
bilistic model are notably different from the ones obtained with
the deterministic model. Moreover, the possibilistic model pro-
vides more satisfactory planning solutions than the determin-
istic model, with a significant improvement of the distribution
network reliability as well as a very large improvement of the
robustness (exposure), that is, leading to an expectation of more
robustness of the future electric service quality and operation
security of the distribution network.
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