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New technologies in precision viticulture are increasingly being used to improve grape quality. One of the
main challenges being faced by the scientific community in viticulture is early yield prediction. Within
this framework, flowering as well as fruit set assessment is of special interest since these two physiolog-
ical processes highly influence grapevine yield. In addition, an accurate fruit set evaluation can only be
performed by means of flower counting. Herein a new methodology for segmenting inflorescence grape-
vine flowers in digital images is presented. This approach, based on mathematical morphology and pyra-
midal decomposition, constitutes an outstanding advance with respect to other previous approaches
since it can be applied on images with uncontrolled background. The algorithm was tested on 40 images
of 4 different Vitis vinifera L. varieties, and resulted in high performance. Specifically, values for Precision
and Recall were 83.38% and 85.01%, respectively. Additionally, this paper also proposes a comprehensive
study on models for estimating actual flower number per inflorescence. Results and conclusions that are
developed in the literature and treated herewith are also clarified. Furthermore, the use of non-linear
models as a promising alternative to previously-proposed linear models is likewise suggested in this
study.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

The progress of technology has produced an increased interest
in the development of novel techniques in the field of viticulture.
Objective and automated vineyard assessment is of special interest
nowadays. In this respect, yield prediction in vineyards is probably
the most challenging goal from a technical point of view, and is
experimenting much interest by the scientific community (Nuske
et al., 2011, 2014; Font et al., 2014; Diago et al., 2012; Roscher
et al., 2014; Dunn and Martin, 2004). Yield predictions are key
tools for managing vines to optimize growth and then, for improv-
ing fruit quality.

Grapevine yield is predominantly determined by two physiolog-
ical processes: flowering and fruit set (May, 2004). Fruit set presents
a well-known variability among varieties and clones (May, 2004;
Dry et al., 2010; Galet, 1983), and can also be affected by physiolog-
ical, environmental and pathological factors (Carbonneau et al.,
2007). Furthermore, fruit set also shows a great inter- and intra-
vine variability (May, 2004). Therefore, a count of the flower number
per inflorescence is essential for its accurate estimation. Moreover,
performing this task in a non-destructive manner is of vital impor-
tance for the goals of precision viticulture.

For reasons mentioned above, some methods for flower number
estimation have been presented. On the one hand, May (2000) and
Keller et al. (2001) proposed a method based on wrapping sample
inflorescences with a fine mesh from the beginning of anthesis
until fruit set completion. Then, the collected flower caps in the
mesh were manually counted in order to estimate the number of
flowers per cluster. This method, in spite of being valid, is time
consuming and labour demanding. On the other hand, Poni et al.
(2006) proposed the use of digital photography for flower number
estimation. First, the authors photographed each sample inflores-
cence in a study set against a dark background. Then, the number
of flowers present in each image was manually counted. Finally,
the real number of flowers per inflorescence was estimated using
a linear model. This model performed a linear regression between
actual flower number and the flower number manually counted on
photos. The model was calibrated using data from twenty inflores-
cences taken from extra vines. The work by Poni et al. (2006) rep-
resented a conceptual advance in the estimation of flowers per
inflorescence, since its automation would extremely decrease the
workload from previous approaches. To this extent, Diago et al.
(2014) developed an automated methodology for counting flowers
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in inflorescences by means of image analysis. Images were taken
placing a dark background cardboard behind inflorescences for
facilitating the calculation of a region of interest (ROI). After ROI
extraction using colour discrimination, flowers were detected by
recognising the reflection pattern produced by the light on the sur-
face of flowers. Finally, the authors studied correlation between
the number of flowers present in an image and the real number
of flowers in its corresponding inflorescence. As a result, acceptable
correlations per variety were found, whereas correlation of the
defined variables was poorer considering varieties as a whole. This
result led authors to discuss the suitability of using individual lin-
ear models per variety instead of a general one. To the best of the
authors’ knowledge, despite artificial vision is increasingly being
applied to viticulture, the work by Diago et al. (2014) is unique
for the automated estimation of flower number per inflorescence.

Thepresentpaperproposes anewmethodology for theautomated
segmentation of flowers in inflorescence images under field condi-
tions by means of morphological image processing and pyramidal
decomposition. Thealgorithm is capableofworkingwithout theneed
of placing a dark background cardboard behind the inflorescences.
This feature eases theuseof thealgorithm infield, since the cardboard
is uneasily placed in specific situations, and likewise getswet or dirty,
or even torn.Moreover, the process of placing the dark cardboard and
taking the photo at the same time is hardly performable by a person
alone. Additionally, a rigorous study on models for the estimation of
real number of flowers per inflorescence from flowers counted on
images is presented. Conclusions from results of this study do not
completelymatchwith those previously developed by other authors.
Therefore, authors find necessary a more in depth study and discus-
sion over the results appearing hereafter.
2. Material and methods

2.1. Image acquisition

For developing and testing the segmentation algorithm, 40
inflorescence RGB images of Vitis vinifera L. cvs Airen, Albariño,
Tempranillo and Verdejo were acquired, 10 per variety, in a com-
mercial vineyard located in Vergalijo (Navarra, Spain), during
May 2014 season. Phenological stage of varieties was 18, according
to the scale proposed by Coombe (1995) (flower caps still in place,
but cap colour fading from green). RGB images were captured at
6000 � 4000 pixels in size (24 Mpx), 8 bits per channel, using a
Nikon D5300 reflex camera (Nikon corp., Tokyo, Japan); no tripod
was used. The lens used was a Sigma (Sigma corp., Kanagawa,
Japan) 50 mm F2.8 macro. With respect to camera configuration,
the settings for the main parameters were:

� Diaphragm opening: to obtain the maximum field depth pro-
vided by the lens, the minimum value (f/36) was used.

� ISO sensitivity: it was set to values providing proper image
illumination.

� Shutter speed: this parameter was automatically set by the
camera.

Two criteria were applied in the acquisition process to ensure
appropriate image illumination:

� Capturing inflorescences facing the Sun. The opposite orienta-
tion leads to light reflection and refraction patterns that can
negatively affect the results.

� Casting a shadow on the scene. Since the Sun is located behind
the photographer due to the previous criterion, he/she can
easily cast a shadowwith his/her own body on the inflorescence
to create a homogeneous illumination for the scene.
The distance between the camera lens and the inflorescence was
not pre-established, but this was considered to be around 30–
50 cm. No artificial lighting system or background homogenisation
were used in order to mimic the variable outdoor conditions.

The 40 inflorescences photographed for creating the described
set were not cut, since they were monitored until harvest. As a con-
sequence, the total number of flowers, indispensable data for
developing the estimation models study, could not be counted.
This is why, with this purpose, a new set of 48 images of the same
varieties (12 per variety) were taken under the same conditions
than those previously detailed.

2.2. Methodology for flower segmentation in inflorescence digital
images

The methodology proposed for flower segmentation was
divided into two main phases: the ROI extraction (Section 2.2.2)
and flower segmentation (Section 2.2.3). A flow-chart diagram
illustrating the most relevant processes involved in the whole
image analysis is shown in Fig. 1. As a preliminary step, images
were scaled down to a resolution of 1500 � 1000 pixels in size
(0.25 times the original size) for reducing computational workload.
Another important decision was the selection of the image colour
space used. Images were taken according to the RGB colour scheme
(this is determined by the constructive features of the camera sen-
sor); however, this scheme did not properly represent image infor-
mation in this study. Conversely, the HSV colour space represents
structured image information into three noteworthy axes: hue, sat-
uration and value. The hue channel condenses information on the
colour shade; the saturation expresses its pureness; and the value
its lightness. Therefore, RBG images were converted to HSV colour
space prior to being processed.

Much of the processing carried out in this paper is based on
mathematical morphology. In the first Section 2.2.1, a brief
description of this image processing technique along with mathe-
matical definition of operators used throughout the paper is
developed.

2.2.1. Mathematical background and operator’s definition
Mathematical morphology is a nonlinear image processing used

to extract structures of interest from the image. Comprehensive
manuals about this technique can be found in Serra (1982) and
Soille (2004). Nevertheless, for completeness purposes, a brief
review of morphological operators used in this paper is carried
out in this section.

Let f be a greyscale image. Image f is a mapping of a subset Df of
Z2, which is the definition domain of the image, into a bounded set
of nonnegative integers N0:

f : Df � Z2 ! f0; . . . ; tmaxg
where tmax is the maximum value of the data type used (e.g., 255 for
8-bit images, 1 for binary images, . . .). The complementary image of
f, denoted as fc, is defined for each pixel x as the maximum value of
the data type used minus the value of the image f at pixel x:

f cðxÞ ¼ tmax � f ðxÞ
The intersection of two greyscale images f and g is defined as

f ^ g ¼ min½f ðxÞ; gðxÞ�
where min stands for the minimum operation. Similarly, the union
of two images f and g would be

f _ g ¼ max½f ðxÞ; gðxÞ�
being max the maximum operation.



Fig. 1. Flow-chart diagram illustrating the main steps involved in the methodology for flower segmentation.
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The structuring element is a basic and essential tool in mathe-
matical morphology used to study the morphology of objects in
images. Mathematically, a structuring element is defined as a sub-
set B(x) of Z2 centred at point x, whose shape is designed to
describe shapes like circles, lines, diamonds, etc.

The morphological erosion of image f with structuring element
B, eB(f), is given by the expression:

½eBðf Þ�ðxÞ ¼ min
b2B

f ðxþ bÞ
Hence, it is the minimum value of the image in the neighbour-

hood defined by the structuring element when its origin is at x. The
effect of erosion is expanding dark regions.

The dual operator of erosion is dilation. The morphological dila-
tion of image f with structuring element B, dB(f), is defined as
follows:

½dBðf Þ�ðxÞ ¼ max
b2B

f ðxþ bÞ

Therefore, it is the maximum value of the image in the neigh-
bourhood defined by the structuring element when its origin is
at x. Dilation expands bright regions in the image.

Combining erosion and dilation, two new operators called
opening (c) and closing (u), are obtained:

cBðf Þ ¼ dBðeBðf ÞÞ

uBðf Þ ¼ eBðdBðf ÞÞ
Opening removes those bright objects in the image that can be

completely covered by the structuring element. Conversely, closing
performs the dual operation, removing dark objects in the image
completely covered by the structuring element.

Another interesting operator is the top-hat transformation. It
emphasizes bright details in the image that are smaller than the
structuring element B. Its formulation is:

THBðf Þ ¼ f � cBðf Þ
Operators described are complemented by geodesic transfor-

mations. The geodesic dilation is the iterative unitary dilation of
an image f, called marker, with respect to the mask g. Marker f
must be contained within mask g. Mathematically speaking, the
operator is defined as:

dðnÞg ðf Þ ¼ dð1Þg ½dðn�1Þ
g ðf Þ�; being dð1Þg ðf Þ ¼ dBðf Þ ^ g

The morphological reconstruction by dilation of a mask image g
from a marker image f, is the geodesic dilation of fwith respect to g
until idempotence. It is denoted by:

R1
g ðf Þ ¼ dðiÞg ðf Þ

where i is such that:

dðiÞg ðf Þ ¼ dðiþ1Þ
g ðf Þ

Similarly, a partial reconstruction of a mask g from a marker f is
calculated by performing n times the geodesic dilation of f with
respect to g:
Rn
gðf Þ ¼ dðnÞg ðf Þ
Using the geodesic reconstruction, a fill-hole operator can be

defined. A hole in a greyscale image is defined as a set of connected
points surrounded by connected components of value strictly
higher than those in the hole. The following operator fills all holes
in an image:

wðf Þ ¼ R1
f f c#
� �h ic

being f # the boundary image of f.

2.2.2. ROI extraction
Inflorescences appear in images as a greenish look on heteroge-

neous, variable and unknown background (Fig. 2). Dealing with
this situation is probably the most challenging task, since this
stochastic variable may be source of numerous unexpected detec-
tion errors. With the aim of avoiding this background effect, a ROI
is extracted from the image. This ROI calculation is carried out by
following a double and incremental approach. In a first step, a
ROI based on colour features is obtained. Then, it is improved by
means of a novel morphological approach especially designed to
this effect.

2.2.2.1. Extraction of a first ROI based on colour features. Let H be the
8-bit image (pixel values in the interval [0, . . ., 255]) of the hue
channel from the original HSV image. A first ROI approach is the
extraction of all green objects using colour information contained
in channel H:

ROIGðx; yÞ ¼
1 if 40 6 Hðx; yÞ 6 76
0 otherwise

�
Since inflorescence occupies an outstanding area in image, a

cleaner version of ROIG can be safely created by discarding small
connected components:

ROIGdef
¼ fCCi #ROIGj#ðCCiÞ > ð#ðHÞ � 0:02Þg

where # represents the cardinal operator and CCi a connected com-
ponent (defined by 8-connectivity). Therefore, those connected
components in ROIG not containing at least 2% of total pixels in
the image are discarded. The ROIGdef mask maps green objects in
H but is still insufficient for the described purposes, since other
green objects apart from the inflorescence may be present in the
scene (see Fig. 3). This is why further processing is needed to obtain
a more accurate ROI.

2.2.2.2. ROI improving. Inflorescences are constituted by compact
sets of flowers having these last circular shape. Therefore, the flow-
ers are joined together configuring those sets. As a consequence,
the incidence of light creates a honeycomb-like connected struc-
ture of shadows going along the interior borders (Fig. 4). This fea-
ture, along with the information provided by the first ROI, is



Fig. 2. Examples of scene variability in inflorescence images.
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exploited to extract the inflorescence from the rest of the scene and
create an accurate definitive ROI.

Consider S to be the image from the saturation channel. As
shown in Fig. 5(c), flower shadows appear brighter than its sur-
roundings in this image modality. In addition, it can be assumed
that they are piecewise linear. With these considerations, the first
step is blurring linear bright objects in the image thinner than
flower shadows. Opening the image with a linear structuring ele-
ment (SE) of width 1 and length L, all those bright structures which
cannot contain it are removed, whereas those which can contain
the SE are preserved. Performing multiple openings with such an
SE at different rotations and taking the infimum of all those results,
linear objects with different orientations are evaluated.
Mathematically:

IL ¼ inf i¼1;...;12fcBi ðSÞg

where Bi represents SE B at rotation i; 12 rotations of B taken each
15� apart were used. The length L of B should be chosen so as to
ensure that B can be contained by shadow segments at all rotations.
A value of 5 pixels was selected according to performed tests,
although other values may also be valid. Results of this operation
can be examined in Fig. 5(d).

As was previously mentioned, shadows in S are brighter than
their surroundings. In other words, they constitute a frontier sepa-
rating dark regions representing flowers. The next processing is
aimed at extracting these so-called borders while discarding those
in contrast, that is, the dark borders. To this effect, a morphological
top-hat transformation is applied using a SE with diamond shape:

ITH ¼ THBðILÞ

where B is the SE. A diamond shape was selected since it presents
good fit in confluence points. The value of its diagonal length was
chosen so as to prioritize the extraction of wider borders. This value
is not critical since several ones are valid; the value 7 was set in our
case (results of this processing can be seen in Fig. 5(e).
Fig. 3. Extraction of a ROI based on pixel colour: (a) original RGB image, (b) ROI calcu
detection. (For interpretation of the references to colour in this figure legend, the reade
Image ITH contains the original structure of shadows along with
other bright borders, which may have been retained. The following
approach is to strengthen only flower shadows as much as possi-
ble. To this extent, a texture analysis based on morphological gran-
ulometry assessment is firstly performed in order to emphasize
dark circular patterns in ITH (note that flowers have these features
in ITH). Closing the image with a circular SE B of radius R, all those
flowers, with a radius less than or equal to R, are recognized. By
taking the supremum of multiple closings with a proper range of
R values, flowers with different sizes are detected. Mathematically
this is defined as

IF ¼ supi¼1;...12fuBi
g

where radius values from 1 to 12 were considered (outcomes of this
processing can be seen in Fig. 5(f)). A great part of flower shadows
in ITH belongs to borders of detected flowers in IF. Thus, by means of
calculating the product of both images, flower shadows are defi-
nitely intensified with respect to other objects (Fig. 5(g)):

IS ¼ ITH � If

Operator � stands for the element-by-element product. It
should be stressed that the result of this operation has to be scaled
down to range values [0, . . ., 255]. Moreover, the mask ROIGdef
based on colour previously calculated is used at this point to dis-
card those objects in IS not corresponding to green objects in the
original image:

IS0 ¼ IS � ROIGdef

Once the object of interest has been strengthen from the back-
ground, the following step is its segmentation. This process is per-
formed by means of binarization. Due to the huge image variability
conditions, binarization threshold has to be automatically calcu-
lated for every image from its features. To this effect, the Otsu
thresholding method (Otsu, 1978) automatically calculates a
threshold for a grey-level image by taking the assumption that it
is composed of two sets, the background and the foreground. Then,
lated by binarization on the H channel of the HSV colour space for green objects
r is referred to the web version of this article.)



Fig. 4. Illustration of the interior structure of shadows produced by flowers.

Fig. 5. Illustration of processing for ROI calculation: (a) original RGB image; (b) ROI based on colour; (c) saturation channel of the HSV colour space; (d) elimination of thin
bright objects; (e) top-hat image; (f) morphological analysis of granulometry; (g) product of images (e) and (f) filtered with ROI in (b); (h) binarization of (g); (i) result of
iterative and controlled region growing on (h); (j) elimination of false positives; (k) definitive ROI resulting from partial reconstruction of (b) frommarker (j); and (l) obtained
ROI illustrated on original image (a).
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Fig. 6. Illustration of the 2-level-based binarization process followed by morphological reconstruction: (a) image to be binarized, the goal is to segment the inflorescence
from the rest of the scene; (b) binary image resulting from applying the threshold given by the Otsu method (Totsu); (c) binary image obtained with threshold Totsu ⁄ 0.65;
and (d) image resulting from the morphological reconstruction of (c) from marker (b).
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the method obtains the optimum threshold Totsu bymaximizing the
between-class variance. This threshold is used to perform a 2-
level-based binarization followed by morphological reconstruc-
tion. Two binary images Iotsu and Iotsu0 are obtained by using values
Totsu and Totsu ⁄ 0.65, respectively:

Iotsuðx;yÞ¼
0 if IS0 6 Totsu

255 otherwise

�
; Iotsu0 ðx;yÞ¼

0 if IS0 6 Totsu �0:65
255 otherwise

�
Binary image Iotsu contains borders corresponding to the stron-

gest shadows. Iotsu0 contains those in Iotsu along with others from
weaker flower shadows. Since these make a connected structure,
a morphological reconstruction using Iotsu0 as mask and Iotsu as mar-
ker will extract it and discard other objects (see Fig. 5(h) and 6):

IBIN1 ¼ R1
Iotsu0

ðIotsuÞ
Once inflorescence borders have been extracted in IBIN1, they are

used to create a first version of the definitive ROI. Binary image
IBIN1 contains borders from flower shadows and may also contain
some noise. Shadow borders are circular or at least have an arc
shape (due to segmentation discontinuities). Contrary, noisy bor-
ders tend to be more variable in shape. In order to extract the inflo-
rescence discarding other objects, an iterative and selective filling
algorithm starting from IBIN1 was designed. Basically, this algo-
rithm dilates objects in an increasing magnitude. At each expand-
ing step, holes are filled. Those areas that have been expanded by
filling are retained and the rest are restored to their initial size.
Mathematically:

ROI1 ¼ ðR1
Ii
ðIi � Ii�1Þ _ Ii�1Þ

where i is such that

R1
Ii
ðIi � Ii�1Þ ¼ R1

Ii�1
ðIi�1 � Ii�2Þ

and

Ii ¼ wðdBi ðIBIN1ÞÞ ^ ROIGdef
; i ¼ 1; . . . ;n; I0 ¼ IBIN1
Indeed, the designed algorithm fills circular patterns even when
they are incomplete and keep invariable other irregular shapes.
Results of this processing are shown in Fig. 5(i); a step by step illus-
tration is given in Fig. 7(a)–(c). A cleaner version of ROI1 can be
obtained discarding false positives. To this respect, assuming that
wider connected components in ROI1 belong to the inflorescence,
noisy objects corresponding to false positives are eliminated from
ROI1 by performing:

ROI2 ¼ Ii

where

Ii ¼ R1
Ii�1

ðcBi ðROI1Þ ^ Ii�1Þ
i is that fulfilling

Ii ¼ Ii�1; i ¼ 1; . . . ;n

and being

I0 ¼ ROI1

Certainly, noisy objects are increasingly removed from ROI1
until stability (the result can be observed in Fig. 5(j); 7(d)–(h) illus-
trates the whole process). Finally, since the inflorescence has been
extracted from the interior flower shadows, peripheral flowers
may not have been included in ROI2, so it has to be properly
expanded. This expansion is achieved by means of a partial recon-
struction of ROIGdef from marker ROI2:

ROIdef ¼ Rn
ROIGdef

ðROI2Þ

where ROIdef is the definitive ROI.
For establishing a precise value for the number of partial recon-

struction steps, parameters such as flower size and exact distance
to object, among others, should be known. Since they are unknown
in this work, a value based on testing was selected; this value was
8. An illustration on ROI calculation can be examined in Fig. 5,
images (k) and (l).



Fig. 7. Process of controlled region growing and false positives elimination: (a) starting image; (b) first step of growing; and (c) second and definitive step of growing, since
the idempotence is reached. (d)–(h) False positives are increasingly eliminated until idempotence.
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2.2.3. Flower segmentation
From a geometric point of view, flowers are small quasi-

spheres. When light reaches a spherical object, a point of maxi-
mum reflection is produced on its surface. The magnitude of this
reflection progressively decreases around this location according
to a circular pattern. Ideally, the point of maximum reflection could
be considered as the centre of a family of circumferences of
increasing radius. Intensity of reflection decreases as the radius
increases. This phenomenon is exploited for detecting individual
flowers in inflorescences.

Let V be the value channel of the HSV colour space representing
image illumination information (Fig. 8(a)). Firstly, flower frontiers
are improved by means of opening the image with a rotating SE of
width 1 and length L. Since flower borders are dark in image V, they
are strengthened by performing this set of openings and taking the
infimum of all the results:

IE ¼ inf i¼1;...;12fcBi ðVÞg

where Bi stands for SE B at rotation i; 12 rotations of B were used.
The value of L was chosen to ensure that B could be contained by
border segments at least at one rotation. A proper L value was 5 pix-
els, although slightly higher and lower values may also be useful.

As a second step, irrelevant peaks are selectively removed from
the image. Concretely, peaks with a height of only one grey level
are considered as noise and consequently discarded. This is
achieved by means of morphologically reconstructing IE from mar-
ker IE�1:

IC ¼ R1
IE
ðIE � 1Þ

Indeed, morphological reconstruction of IE from IE�1 restores all
pixel values that originally were not strict regional maxima; i.e.,
regional maxima of at least height 1. This operator is known as
regional maxima operator.

When flowers are close to open, their surface gets wrinkled
around the emerging or blooming point creating lobs. These lobs
may produce more than a maximum light reflection, thus creating
redundant detection points (false positives). In order to avoid such
output as much as possible, a gradual detection scheme is applied
by making use of Gaussian pyramidal decomposition (Burt, 1981).
This technique consists in creating a set of images from the original
one by means of smoothing and down-sampling it. Taking advan-
tage of the spatial proximity of redundant maxima, the main idea is
to detect maximum reflections and spatially fusing them in a cer-
tain level of its pyramidal decomposition. To this effect, the first
level of pyramidal decomposition of IC is computed:

IPD1
C ¼ PDðIC ;wÞ

where PD(IC, w) denotes a step of pyramidal decomposition of
image IC using the generating kernel pattern w. This kernel was
defined by Burt (1981) as:

w ¼ 1
4
� a
2
;
1
4
; a;

1
4
� a
2
;
1
4

� �
; a ¼ 0:375

Note that the size of IPD1
C is half the value of size of IC. Then, regio-

nal maxima in IPD1
C are found by using the regional maxima

operator

IPD1
maxi ¼ R1

I
PD1
C

ðIPD1
C � 1Þ

and subtracting the result from the original image:

IPD1
R�max ¼ IPD1

C � IPD1
maxi

All pixels in IPD1
R�max with a value strictly higher than 0 belong to

regional maxima in IPD1
C . In order to preserve these maxima in the

following step of decomposition (remember that the aim of this
processing is spatially fusing close maxima and not eliminating
any of them), value of these pixels is set to the maximum (Fig. 8
(b)):

I0
PD1

C ðx; yÞ ¼ IPD1
C ðx; yÞ if IPD1

R�maxðx; yÞ ¼ 0
255 otherwise

(
Next, a following step of pyramidal decomposition is performed

and regional maxima are calculated:

IPD2
C ¼ PD I0

PD1

C ;w
� �

IPD2
maxi ¼ R1

I
PD2
C

IPD2
C � 1

� �



Fig. 8. Illustration of processing for flower segmentation on the same image than in Fig. 5: (a) Value channel of the original image; (b) image from the first step of pyramidal
decomposition, white dots are detected regional maxima; (c) image from the second step of pyramidal decomposition, where white dots are regional maxima; (d) two
zoomed sub-images, the upper one from (b) and the lower one from (c); (e) representation of regional maxima found within the FOV; and (f) blue spots are the centroids of
regional maxima in (e) and represent finally detected flowers. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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IPD2
R�max ¼ IPD2

C � IPD2
maxi

Detected regional maxima, represented on IPD2
C , can be observed

in Fig. 8(c). Fig. 8(d) also illustrates how the maxima spatially close
in the first pyramidal decomposition fused into the second. At this
point, all pixels with a value higher than 0 in IPD2

R�max are considered
to be pixel flowers:
IflowersBinðx; yÞ ¼ 0 if IPD2
R�maxðx; yÞ ¼ 0

255 otherwise

(
Finally, the set of centroids of the connected components in

IflowersBin falling within ROIdef represents the detected flowers (see
Fig. 8, images (e) and (f)):
Iflowers ¼ centroidðCCiÞjCCi # IflowersBin ^ centroidðCCiÞ 2 ROIdef
	 


It should be stressed that, since image IflowersBin derives from two
steps of pyramidal decomposition, its size is four times less than
the original one. Therefore, coordinates of centroids in Iflowers must
be scaled up in order to represent flower locations in terms of the
original image size. Fig. 9 shows some results of the whole process
for flower segmentation.
3. Results and discussion

The presented methodology for segmenting flowers in grape-
vine inflorescence images is evaluated in the following section.
Additionally, Section 3.2 develops a study on different model
approaches for estimating the total number of inflorescence flow-
ers from information extracted from the image, which is the final
aim of this work.

3.1. Performance evaluation of the presented segmentation algorithm
for flower segmentation

The algorithm was tested on the set of 40 images described in
Section 2.1. For evaluating its performance, the following metrics
based on contingency tables for binary classification were
employed:

RC ¼ TP
TP þ FN

; PC ¼ TP
TP þ FP

Metric RC denotes Recall, and is the percentage of actual flowers
detected by the algorithm. On the other hand, PC stands for Preci-
sion, which calculates the percentage of flowers correctly detected.

For making possible the application of the described metrics, a
gold standard set was created. It was carried out by manually
labelling flowers on each image in the set, making use of the



Fig. 9. Illustration of flower segmentation results on four different images.

Table 1
Results of the proposed methodology compared to those obtained by Diago et al. (2014). Figures are given in terms of average Precision (PC) and Recall (RC); standard deviation
obtained with both metrics is also presented. Diago et al. (2014) used a different dataset for calculating their results. This is why some features of that dataset and the one used in
this study are detailed in this table. The best PC and RC values are highlighted in bold.

Metric Average Standard deviation Number of images Grapevine varieties

This work
Actual flowers in the gold standard set 225.65 89.8973 40 4
PC 0.8338 0.0971 – –
RC 0.8501 0.1120 – –

Diago et al. (2014)
Actual flowers in photos 263.53 80.42 15 3
PC 0.9290 0.0300 – –
RC 0.7430 0.0549 – –

Table 2
Results of the segmentation methodology detailed per variety. Average and standard
deviation values of Precision (PC) and Recall (RC) are given per variety. The average and
standard deviation of flowers in the gold standard set (GS) are also given per
grapevine variety.

Grapevine variety PC rPC RC rRC GS rGS

Airen 0.8793 0.0903 0.8320 0.0696 284.14 93.79
Albariño 0.8016 0.0846 0.8320 0.0477 179.25 79.30
Tempranillo 0.7516 0.0918 0.8377 0.1525 160.75 66.47
Verdejo 0.8817 0.0463 0.8974 0.1272 240.2 59.88
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software specifically developed to this effect. Thus, true positives
(TP), false positives (FP) and false negatives (FN) were calculated
as:

� TP: flowers automatically detected corresponding to actual
flowers labelled in the gold standard.

� FP: flowers automatically detected, which do not correspond to
actual flowers in the gold standard. Redundant TPs were also
considered as FP.

� FN: actual flowers labelled in the gold standard which were not
found by the segmentation algorithm.

Table 1 shows obtained results in terms of the RC and PC met-
rics. Figures in this table were calculated considering all the images
together. In addition, results obtained in the previous work by
Diago et al. (2014) are also included in this table for comparison
purposes. It should be highlighted that results of Diago et al.
(2014) were obtained on a different set of images, which were
taken using the help of a dark cardboard as background. Further-
more, despite the authors collected 90 inflorescence images, the
algorithm could be only evaluated on 15 of them. These facts make
the rigorous comparison of both methods difficult, although some
discussion can be brought up. The algorithm described in this
paper shows evidence of being more balanced in terms of average
Precision and Recall. The work by Diago et al. (2014) tends to pro-
duce less false positives, although this seems to significantly pena-
lise the percentage of actual flowers that can be recognized. It
could be justified by the application of a more conservative strat-
egy. Furthermore, higher precision of the previous work could be
logically expected, since the use of a dark cardboard as background
avoids the huge ROI calculation problem faced herein. In addition,
the validation set used by Diago et al. (2014) was less diverse than
the one used in this study, since it contained considerably fewer
images and considered less grapevine varieties. In this respect,
Table 2 details results of the presented methodology per variety.
It can be noticed that accuracy, measured by PC, moderately varies
among varieties. This can be justified by phenological development
of the varieties, which was substantially more advanced for
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Tempranillo and Albariño. Flowers of these varieties were close to
open. As was previously described, at this point, flower surface
generates lobs around the opening point. When these lobs are suf-
ficiently pronounced, they produce redundant maximum light
reflections, thereby creating false positives. As a result, it can be
inferred that even better results could have been obtained by tak-
ing the images in earlier phenological stages, even for Airen and
Verdejo.

3.2. Study on models for the estimation of the total number of flowers
from flowers detected in images

Once flowers are counted on the image, the final step is, using
the acquired information, the estimation of the actual number of
flowers in the inflorescence. Studying the available bibliography
in this sense, it can be concluded that one option has been
explored. Poni et al. (2006) proposed the use of linear models to
estimate the actual number of flowers in inflorescences of San-
giovese and Trebbiano grapevine varieties. Flowers were manually
counted on images and linear regression was applied to correlate
this information with actual inflorescence flowers. The two
obtained regression equations, one for each variety, were proposed
as estimation models. Diago et al. (2014) studied the use of estima-
tion linear models more in depth, comparing the use of a unique
variety-independent estimationmodel with the described previous
approach. Both options were compared using the Pearson’s corre-
lation coefficient (R2). The R2 values obtained by the authors
argued for the use of individual variety-dependent estimation
models. Making an analysis of the described proposals, the follow-
ing points can be concluded:

� The Pearson’s correlation coefficient is not suitable for assessing
the behaviour of an estimation model on its own. It gives an
accurate idea about the trend similarity of the actual and esti-
mated variables. However, R2 does evaluate the performance
of an estimation model.

� The fact that individual linear models showed good behaviour
may argue for considering that inflorescences from different
grapevine varieties have distinctive features. If this were true,
it would imply that variables under modelling may have a
non-linear relation, which would be interesting to assess.

� Models were not created and evaluated using a two-phase
approach in which two disjoint sets should be used for obtain-
ing and testing models.

As a result of these conclusions, what follows in this section is a
comprehensive study on models for the estimation of inflorescence
flowers using the number of flowers counted in an image.

A set of 48 images of the same varieties previously used (Airen,
Albariño, Tempranillo and Verdejo) was acquired. For that, inflo-
rescences were coded, photographed and cut after capture. Then,
flowers were manually counted in a destructive manner. Counting
results were registered individually attending to previously estab-
lished coding. Finally, inflorescence flowers were also manually
counted on images using the software specifically designed for this
goal and figures were registered accordingly. At this stage, two dis-
joint datasets were created for model obtaining and evaluation.
The first one, referred to as training set, was composed of 20
images, 5 per variety. The validation set was created using the
remaining 28 images, 7 per variety.

Fig. 10(a) represents individual linear models acquired using
linear regression on the training set. Calculated model equations
as well as R2 values are given. In contrast, Fig. 10(b) shows the
described information for the case of variety-independent linear
model calculation. Afterwards, calibrated models were employed
to generate predictions using the validation set. Fig. 10(c) analyses
behaviour of the actual and predicted variables produced by indi-
vidual models. Fig. 10(d) illustrates the same feature for the case
of the variety-independent linear model. As shown, R2 values cal-
culated for both approaches are considerably high, even higher
than those obtained in other previous studies (see Table 3). This
outcome has even more relevance taking into account that, in con-
trast to previous works, they were obtained on a validation set
‘‘unknown” for the model.

The fact that results from previous experiments by other
authors argued for individual models per variety opens the possi-
bility to consider the evaluation of a non-linear approach. It would
be justified if varieties would show inherent and distinctive fea-
tures affecting flowers prediction. In an attempt of characterising
them and evaluating a non-linear solution, a feature space com-
posed of the following axes was defined:

� Number of flowers in the image:

f 1 ¼ #ðIflowersÞ
� ROI area:

f 2 ¼ #ðROIdef Þ
� Flower radius estimation:

f 3 ¼ rflower

� Flower density:

f 4 ¼ f 1
f 2

� Flower area:

f 5 ¼ log p�f 23
� �

The flower radius was estimated by calculating the average of
the minimum distances among flowers (this is the flower diameter
estimation) and dividing this result by 2. Then, a multilayer feed-
forward backpropagation neural network was implemented for
obtaining the non-linear estimation model. The neural network
had 5 input neurons fed by the defined descriptors, a hidden layer
with two neurons and an output; the transfer function was set to
linear. The neural network was trained on the training set and
tested using the validation set. As shown in Fig. 10(e) and Table 3,
correlation between the actual and estimated variables for the case
of the non-linear model is lower than those obtained with the lin-
ear approaches, although it is high in absolute terms.

At this point, the three tested approaches have provided a high
correlation between actual and predicted variables. To accurately
assess and compare the predictive potential of all options, the
root-mean-square error (RMSE) is proposed:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

bFli � Fli
� �2

n

vuut
where bFli and Fli are the predicted and actual flower number

values of the ith image in the validation set, respectively. Table 4
includes results in terms of RMSE produced by the three studied
approaches on the validation set. They are detailed per varieties
and well as considering all of them together. Taking into account
global results, there is not any observable justification for claiming
the use of individual linear estimation models. This is a remarkable
issue, since it is unmatched by other previous conclusions. Further-
more, the use of a unique linear estimation model for all varieties
simplifies the prediction problem significantly. With regard to
results of the non-linear model, despite global results are promis-
ing and even better than those produced by any other, this should
be carefully discussed. In the authors’ opinion, the suitability of the
non-lineal model should be proven with a wider set of varieties so



Fig. 10. Comparison of different model approaches for actual flower estimation: (a) and (b) illustration of individual and variety-independent linear models calculation,
respectively; (c) and (d) representation of performance of both approaches; and (e) performance representation of a non-linear variety-independent model. Root-mean-
square error (RMSE) produced by (c), (d) and (e) are given in Table 3.
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Table 3
R2 values comparison of those obtained in this and other previous studies for different estimation model approaches.

Variety Variety-independent linear model (R2) Variety-dependent linear model (R2) Variety-independent non-linear model (R2)

This work
Airen 0.9912 0.9912 0.9945
Albariño 0.8588 0.8588 0.8761
Tempranillo 0.9680 0.9680 0.9556
Verdejo 0.9743 0.9743 0.9789
Total 0.9778 0.9528 0.9514

Diago et al. (2014)
Graciano – 0.8100 –
Carignan – 0.8900 –
Tempranillo – 0.8700 –
Total 0.8100 – –

Poni et al. (2006)
Sangiovese – 0.8800 –
Trebbiano – 0.8700 –
Total – – –

Table 4
Root-mean-square error (RMSE) produced by each model estimating the total number of flowers per inflorescence from the number of flowers in inflorescence image. Results are
detailed per variety and also given considering all together. The best estimation values for each variety are highlighted in bold.

Variety Variety-independent linear model (RMSE) Variety-dependent linear model (RMSE) Variety-independent non-linear model (RMSE)

Airen 138 180 72
Albariño 24 40 19
Tempranillo 57 43 61
Verdejo 75 29 63
Total 84 95 58
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as to verify with more confidence the new feature space. In other
words, in spite of being really promising, further research is con-
sidered necessary before accepting the increased complexity
derived from the use of a non-linear model.

4. Conclusion

This paper proposes a new methodology for flower segmenta-
tion in digital images of inflorescences of V. vinifera L. It is mainly
based on mathematical morphology and pyramidal decomposition.
The main contributions of this work can be summarized as follows:

� The algorithm is capable of functioning under field conditions
and without the need of placing a black cardboard behind the
inflorescence. This supposes an advantage with respect to pre-
vious works since, apart from facilitating the image acquisition,
it also opens the door to its integration in vehicles and autono-
mous robotic platforms after further research.

� The methodology presented in this paper proposes an unsuper-
vised solution for segmenting flowers in digital images taken
under field conditions. Attending to the literature, most of
works developed for analysing images taken under field condi-
tions use supervised approaches based on neural networks or
support vector machines fed with, in many cases, tens of fea-
tures. These methods are undoubtedly powerful, but may also
present problems of generalisation depending on the nature of
the features used and the design of the training set. The latter
is especially critical in the field of precision agriculture, since
taking images and agronomic data in the field is particularly
time and labour demanding.

� Many algorithms developed in this paper, like those illustrated
in Figs. 6 and 7 for controlled region growing and image clean-
ing, are original, based in morphological features and solve gen-
eric problems. This along with the fact that they have been
mathematically and generically described makes possible their
use in other image analysis challenges.
� Contrary to conclusions in previous works, this paper shows
evidences that a single variety-independent linear model for
estimating the actual flower number in inflorescences may out-
perform individual models calibrated per variety. Moreover,
this paper also proposes a novel variety-independent non-
linear model to this effect which shows signs of outperforming
both approaches.

On the other hand, it has been found that several considerations
prior to taking captions could even improve the obtained results.
Taking photos in earlier phenological stages, or capturing the
inflorescence with enough perspective are, among others, actions
easily achievable that could benefit the obtained results. More sen-
sitive to results may be the inappropriate scene illumination,
which is a general problem for image analysis methods when
working under field conditions. However, using the row side at
the sun and casting a shadow on the scene are the two simple
acquisition criteria used in this work that have provided stable
results.

Additionally to the above mentioned, a rigorous study and com-
parison of different models for actual number of flowers per inflo-
rescence estimation, using the number of flowers in an image as
input information, is developed. As a result, suitability of the use
of variety-dependent linear models previously pointed out in the
literature has been discarded in favour of employing a unique
variety-independent linear model. This issue constitutes an impor-
tant discovery in this field, since it greatly generalises and simpli-
fies the solution for estimating the actual flower number per
inflorescence. Besides the classical option based on models created
by means of linear regression, a non-linear estimation model has
also been presented along with a promising set of descriptors.
Results obtained with this approach outperform linear options. In
spite of this, in the authors’ opinion, this line needs further
research before arriving at definitive conclusions. In effect, suit-
ability of the developed feature space needs to be verified on a
wider range of varieties. Moreover, once this is confirmed, it has
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to be assessed whether the gained accuracy compensates the util-
isation of a more complex solution.
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