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Abstract 7 

New technologies in precision viticulture are increasingly being used to improve grape quality. 8 

One of the main challenges being faced by the scientific community in viticulture is early yield 9 

prediction. Within this framework, flowering as well as fruit set assessment is of special 10 

interest since these two physiological processes highly influence grapevine yield. In addition, 11 

an accurate fruit set evaluation can only be performed by means of flower counting. Herein a 12 

new methodology for segmenting inflorescence grapevine flowers in digital images is 13 

presented. This approach, based on mathematical morphology and pyramidal decomposition, 14 

constitutes an outstanding advance with respect to other previous approaches since it can be 15 

applied on images with uncontrolled background. The algorithm was tested on 40 images of 4 16 

different Vitis vinifera L. varieties, and resulted in high performance. Specifically, values for 17 

Precision and Recall were 83.38% and 85.01%, respectively. Additionally, this paper also 18 

proposes a comprehensive study on models for estimating actual flower number per 19 

inflorescence.  Results and conclusions that are developed in the literature and treated 20 

herewith are also clarified. Furthermore, the use of non-linear models as a promising 21 

alternative to previously-proposed linear models is likewise suggested in this study. 22 

Keywords: grapevine flower segmentation; flower estimation; yield prediction; precision 23 

viticulture; image analysis. 24 
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1 Introduction 26 

The progress of technology has produced an increased interest in the development of novel 27 

techniques in the field of viticulture. Objective and automated vineyard assessment is of 28 

special interest nowadays. In this respect, yield prediction in vineyards is probably the most 29 

challenging goal from a technical point of view, and is experimenting much interest by the 30 

scientific community (Nuske et al., 2011; Nuske et al., 2014; Font et al., 2014; Diago et al., 31 

2012; Roscher et al., 2014; Dunn et al., 2004). Yield predictions are key tools for managing 32 

vines to optimize growth and then, for improving fruit quality. 33 

Grapevine yield is predominantly determined by two physiological processes: flowering and 34 

fruit set (May, 2004). Fruit set presents a well-known variability among varieties and clones 35 

(May, 2004; Dry, 2010; Galet, 1983), and can also be affected by physiological, environmental 36 

and pathological factors (Carbonneau, 2007). Furthermore, fruit set also shows a great inter- 37 

and intra-vine variability (May, 2004). Therefore, a count of the flower number per 38 

inflorescence is essential for its accurate estimation. Moreover, performing this task in a non-39 

destructive manner is of vital importance for the goals of precision viticulture. 40 

For reasons mentioned above, some methods for flower number estimation have been 41 

presented. On the one hand, May (2000) and Keller et al. (2001) proposed a method based on 42 

wrapping sample inflorescences with a fine mesh from the beginning of anthesis until fruit set 43 

completion. Then, the collected flower caps in the mesh were manually counted in order to 44 

estimate the number of flowers per cluster. This method, in spite of being valid, is time 45 

consuming and labour demanding. On the other hand, Poni et al. (2006) proposed the use of 46 

digital photography for flower number estimation. First, the authors photographed each 47 

sample inflorescence in a study set against a dark background. Then, the number of flowers 48 

present in each image was manually counted. Finally, the real number of flowers per 49 

inflorescence was estimated using a linear model. This model performed a linear regression 50 
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between actual flower number and the flower number manually counted on photos. The 51 

model was calibrated using data from twenty inflorescences taken from extra vines. The work 52 

by Poni et al. represented a conceptual advance in the estimation of flowers per inflorescence, 53 

since its automation would extremely decrease the workload from previous approaches. To 54 

this extent, Diago et al. (2014) developed an automated methodology for counting flowers in 55 

inflorescences by means of image analysis. Images were taken placing a dark background 56 

cardboard behind inflorescences for facilitating the calculation of a region of interest (ROI). 57 

After ROI extraction using colour discrimination, flowers were detected by recognising the 58 

reflection pattern produced by the light on the surface of flowers. Finally, the authors studied 59 

correlation between the number of flowers present in an image and the real number of 60 

flowers in its corresponding inflorescence. As a result, acceptable correlations per variety were 61 

found, whereas correlation of the defined variables was poorer considering varieties as a 62 

whole. This result led authors to discuss the suitability of using individual linear models per 63 

variety instead of a general one. To the best of the authors’ knowledge, despite artificial vision 64 

is increasingly being applied to viticulture, the work by Diago et al. (2014) is unique for the 65 

automated estimation of flower number per inflorescence. 66 

The present paper proposes a new methodology for the automated segmentation of flowers in 67 

inflorescence images under field conditions by means of morphological image processing and 68 

pyramidal decomposition. The algorithm is capable of working without the need of placing a 69 

dark background cardboard behind the inflorescences. This feature eases the use of the 70 

algorithm in field, since the cardboard is uneasily placed in specific situations, and likewise gets 71 

wet or dirty, or even torn. Moreover, the process of placing the dark cardboard and taking the 72 

photo at the same time is hardly performable by a person alone. Additionally, a rigorous study 73 

on models for the estimation of real number of flowers per inflorescence from flowers 74 

counted on images is presented. Conclusions from results of this study do not completely 75 
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match with those previously developed by other authors. Therefore, authors find necessary a 76 

more in depth study and discussion over the results appearing hereafter. 77 

2 Material and methods 78 

2.1 Image acquisition 79 

For developing and testing the segmentation algorithm, 40 inflorescence RGB images of Vitis 80 

vinifera L. cvs Airen, Albariño, Tempranillo and Verdejo were acquired, 10 per variety, in a 81 

commercial vineyard located in Vergalijo (Navarra, Spain), during May 2014 season. 82 

Phenological stage of varieties was 18, according to the scale proposed by Coombe et al (1995) 83 

(flower caps still in place, but cap colour fading from green). RGB images were captured at 84 

6000 × 4000 pixels in size (24 Mpx), 8 bits per channel, using a Nikon D5300 reflex camera 85 

(Nikon corp., Tokyo, Japan); no tripod was used. The lens used was a Sigma (Sigma corp., 86 

Kanagawa, Japan) 50mm F2.8 macro. With respect to camera configuration, the settings for 87 

the main parameters were: 88 

 Diaphragm opening: to obtain the maximum field depth provided by the lens, the 89 

minimum value (f/36) was used.  90 

 ISO sensitivity: it was set to values providing proper image illumination. 91 

 Shutter speed: this parameter was automatically set by the camera. 92 

The distance between the camera lens and the inflorescence was not pre-established, but this 93 

was considered to be around 30–50 cm. No artificial lighting system or background 94 

homogenisation were used in order to mimic the variable outdoor conditions.  95 

The 40 inflorescences photographed for creating the described set were not cut, since they 96 

were monitored until harvest. As a consequence, the total number of flowers, indispensable 97 

data for developing the estimation models study, could not be counted. This is why, with this 98 

purpose, a new set of 48 images of the same varieties (12 per variety) were taken under the 99 

same conditions than those previously detailed.  100 

 101 
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2.2 Methodology for flower segmentation in inflorescence digital images 102 

The methodology proposed for flower segmentation was divided into two main phases: the 103 

ROI extraction (section 2.2.1) and flower segmentation (section 2.2.2). As a preliminary step, 104 

images were scaled down to a resolution of 1500 x 1000 pixels in size (0.25 times the original 105 

size) for reducing computational workload. Another important decision was the selection of 106 

the image colour space used. Images were taken according to the RGB colour scheme (this is 107 

determined by the constructive features of the camera sensor); however, this scheme did not 108 

properly represent image information in this study. Conversely, the HSV colour space 109 

represents structured image information into three noteworthy axes: hue, saturation and 110 

value. The hue channel condenses information on the colour shade; the saturation expresses 111 

its pureness; and the value its lightness. Therefore, RBG images were converted to HSV colour 112 

space prior to being processed.  113 

Much of the processing carried out in this paper is based on mathematical morphology. For 114 

completeness purposes, a brief description of this image processing technique along with 115 

mathematical definition of used operators is offered in Appendix A. 116 

2.2.1 ROI extraction 117 

Inflorescences appear in images as a greenish look on heterogeneous, variable and unknown 118 

background (Fig. 1). Dealing with this situation is probably the most challenging task, since this 119 

stochastic variable may be source of numerous unexpected detection errors. With the aim of 120 

avoiding this background effect, a ROI is extracted from the image.  121 

Let H be the 8-bit image (pixel values in the interval [0, …, 255]) of the hue channel from the 122 

original HSV image, a first ROI approach is the extraction of all green objects using colour 123 

information contained in channel H: 124 

 125 
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 126 

Fig. 1. Examples of scene variability in inflorescence images. 127 

Since inflorescence occupies an outstanding area in image, a cleaner version of ROIG can be 128 

safely created by discarding small connected components: 129 

 130 

where # represents the cardinal operator and CCi a connected component (defined by 8-131 

connectivity). Therefore, those connected components in ROIG not containing at least 2% of 132 

total pixels in the image are discarded. The ROIG’ mask maps green objects in H but is still 133 

insufficient for the described purposes, since other green objects apart from the inflorescence 134 

may be present in the scene (see Fig. 2). This is why further processing is needed to obtain a 135 

more accurate ROI. 136 

 137 

Fig. 2. Extraction of a ROI based on pixel colour: (a) original RGB image, (b) ROI calculated by 138 
binarization on the H channel of the HSV colour space for green objects detection. 139 

Inflorescences are constituted by compact sets of flowers having these last circular shape. 140 

Therefore, the flowers are joined together configuring those sets. As a consequence, the 141 

incidence of light creates a honeycomb-like connected structure of shadows going along the 142 
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interior borders (Fig. 3). This feature is exploited to extract the inflorescence from the rest of 143 

the scene. 144 

 145 

Fig. 3. Illustration of the interior structure of shadows produced by flowers. 146 

Consider S to be the image from the saturation channel. As shown in Fig. 4-(c), flower shadows 147 

appear brighter than its surroundings in this image modality. In addition, it can be assumed 148 

that they are piecewise linear. With these considerations, the first step is blurring linear bright 149 

objects in the image thinner than flower shadows. Opening the image with a linear structuring 150 

element (SE) of width 1 and length L, all those bright structures which cannot contain it are 151 

removed whereas those which can contain the SE are preserved. Performing multiple openings 152 

with such an SE at different rotations and taking the infimum of all those results, linear objects 153 

with different orientations are evaluated. Mathematically: 154 

 155 

where Bi represents SE B at rotation i; 12 rotations of B taken each 15º apart were used. The 156 

length L of B should be chosen so as to ensure that B can be contained by shadow segments at 157 

all rotations. A value of 5 pixels was selected according to performed tests, although other 158 

values may also be valid. Results of this operation can be examined in Fig. 4-(d). 159 
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As was previously mentioned, shadows in S are brighter than their surroundings. In other 160 

words, they constitute a frontier separating dark regions representing flowers. The next 161 

 162 

Fig. 4. Illustration of processing for ROI calculation: (a) original RGB image; (b) ROI based on colour; (c) 163 
saturation channel of the HSV colour space; (d) elimination of thin bright objects; (e) top-hat image; (f) 164 
morphological analysis of granulometry; (g) product of images (e) and (f) filtered with ROI in (b); (h) 165 
binarization of (g); (i) result of iterative and controlled region growing on (h); (j) elimination of false 166 
positives; (k) definitive ROI resulting from partial reconstruction of (b) from marker (j); and (l) obtained 167 
ROI illustrated on original image (a). 168 
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processing is aimed at extracting these so-called borders while discarding those in contrast, 169 

that is, the dark borders. To this effect, a morphological top-hat transformation is applied 170 

using a SE with diamond shape: 171 

 172 

where B is the SE. A diamond shape was selected since it presents good fit in confluence 173 

points. The value of its diagonal length was chosen so as to prioritize the extraction of wider 174 

borders. This value is not critical since several ones are valid; the value 7 was set in our case 175 

(results of this processing can be seen in Fig. 4-(e). 176 

Image ITH contains the original structure of shadows along with other bright borders, which 177 

may have been retained. The following approach is to strengthen only flower shadows as 178 

much as possible. To this extent, a texture analysis based on morphological granulometry 179 

assessment is firstly performed in order to emphasize dark circular patterns in ITH (note that 180 

flowers have these features in ITH). Closing the image with a circular SE B of radius R, all those 181 

flowers, with a radius less than or equal to R, are recognized. By taking the supremum of 182 

multiple closings with a proper range of R values, flowers with different sizes are detected. 183 

Mathematically this is defined as 184 

 185 

where radius values from 1 to 12 were considered (outcomes of this processing can be seen in 186 

Fig. 4-(f)). A great part of flower shadows in ITH belongs to borders of detected flowers in IF. 187 

Thus, by means of calculating the product of both images, flower shadows are definitely 188 

intensified with respect to other objects (Fig. 4-(g)): 189 

 190 

Operator  stands for the element-by-element product. It should be stressed that the result of 191 

this operation has to be scaled down to range values [0, …, 255]. Moreover, mask ROIG’ firstly 192 

calculated is used at this point to discard those objects in IS not corresponding to green objects 193 

in the original image:194
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 195 

Once the object of interest has been strengthen from the background, the following step is its 196 

segmentation. This process is performed by means of binarization. Due to the huge image 197 

variability conditions, binarization threshold has to be automatically calculated for every image 198 

from its features. To this effect, the Otsu thresholding method (Otsu, 1975) automatically 199 

calculates a threshold for a grey-level image by taking the assumption that it is composed of 200 

two sets, the background and the foreground. Then, the method obtains the optimum 201 

threshold Totsu by maximizing the between-class variance. This threshold is used to perform a 202 

2-level-based binarization followed by morphological reconstruction. Two binary images Iotsu 203 

and Iotsu’ are obtained by using values Totsu and Totsu*0.65, respectively: 204 

 205 

Binary image Iotsu contains borders corresponding to the strongest shadows. Iotsu’ contains 206 

those in Iotsu along with others from weaker flower shadows. Since these make a connected 207 

structure, a morphological reconstruction using Iotsu’ as mask and Iotsu as marker will extract it 208 

and discard other objects (see Fig. 4-(h) and Fig. 5): 209 

 210 

Once inflorescence borders have been extracted in IBIN1, they are used to create a first version 211 

of the definitive ROI. Binary image IBIN1 contains borders from flower shadows and may also 212 

contain some noise. Shadow borders are circular or at least have an arc shape (due to 213 

segmentation discontinuities). Contrary, noisy borders tend to be more variable in shape. In 214 

order to extract the inflorescence discarding other objects, an iterative and selective filling 215 

algorithm starting from IBIN1 was designed. Basically, this algorithm dilates objects in an 216 

increasing magnitude. At each expanding step, holes are filled. Those areas that have been 217 

expanded by filling are retained and the rest are restored to their initial size. Mathematically: 218 

 219 
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 220 

Fig. 5. Illustration of the 2-level-based binarization process followed by morphological reconstruction: (a) 221 
image to be binarized, the goal is to segment the inflorescence from the rest of the scene; (b) binary 222 
image resulting from applying the threshold given by the Otsu method (Totsu); (c) binary image obtained 223 
with threshold Totsu*0.65; and (d) image resulting from the morphological reconstruction of (c) from 224 
marker (b). 225 

where i is such that 226 

 227 

and 228 

 229 

Indeed, the designed algorithm fills circular patterns even when they are incomplete and keep 230 

invariable other irregular shapes. Results of this processing are shown in Fig. 4-(i); a step by 231 

step illustration is given in Fig. 6-(a)-(c). Assuming that wider connected components in ROI1 232 

belong to the inflorescence, noisy objects are eliminated from ROI1 by performing: 233 

 234 

where 235 

 236 

i is that fulfilling 237 
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 238 

and being 239 

 240 

 241 

Fig. 6. Process of controlled region growing and false positives elimination: (a) starting image; (b) first 242 
step of growing; and (c) second and definitive step of growing, since the idempotence is reached. (d)-(h) 243 
False positives are increasingly eliminated until idempotence. 244 

Certainly, noisy objects are increasingly removed from ROI1 until stability (the result can be 245 

observed in Fig. 4-(j); Fig. 6-(d)-(h) illustrates the whole process). Finally, since the 246 

inflorescence has been extracted from the interior flower shadows, peripheral flowers may not 247 

have been included in ROI2. The definitive ROI, ROIdef, is the partial reconstruction of ROIG’ from 248 

marker ROI2: 249 

 250 

For establishing a precise value for the number of partial reconstruction steps, parameters 251 

such as flower size and exact distance to object, among others, should be known. Since they 252 

are unknown in this work, a value based on testing was selected; this value was 8. An 253 

illustration on ROI calculation can be examined in Fig. 4, images (k) and (l). 254 

2.2.2 Flower segmentation 255 

From a geometric point of view, flowers are small quasi-spheres. When light reaches a 256 

spherical object, a point of maximum reflection is produced on its surface. The magnitude of 257 
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this reflection progressively decreases around this location according to a circular pattern. 258 

Ideally, the point of maximum reflection could be considered as the centre of a family of 259 

circumferences of increasing radius. Intensity of reflection decreases as the radius increases. 260 

This phenomenon is exploited for detecting individual flowers in inflorescences. 261 

Let V be the value channel of the HSV colour space representing image illumination 262 

information (Fig. 7-(a)). Firstly, flower frontiers are improved by means of opening the image 263 

with a rotating SE of width 1 and length L. Since flower borders are dark in image V, they are 264 

strengthened by performing this set of openings and taking the infimum of all the results: 265 

 266 

where Bi stands for SE B at rotation i; 12 rotations of B were used. The value of L was chosen to 267 

ensure that B could be contained by border segments at least at one rotation. A proper L value 268 

was 5 pixels, although slightly higher and lower values may also be useful. 269 

As a second step, irrelevant peaks are selectively removed from the image. Concretely, peaks 270 

with a height of only one grey level are considered as noise and consequently discarded. This is 271 

achieved by means of morphologically reconstructing IE from marker IE-1: 272 

 273 

Indeed, morphological reconstruction of IE from IE-1 restores all pixel values that were not 274 

originally regional maxima of height 1. This operation is known as h-maxima transformation 275 

(being h=1 in this case). 276 

When flowers are close to open, their surface gets wrinkled around the emerging or blooming 277 

point creating lobs. These lobs may produce more than a maximum light reflection, thus 278 

creating redundant detection points (false positives). In order to avoid such output as much as 279 

possible, a gradual detection scheme is applied by making use of Gaussian pyramidal 280 

decomposition (Burt, 1981). This technique consists in creating a set of images from the 281 

original one by means of smoothing and down-sampling it. Taking advantage of the spatial 282 

proximity of redundant maxima, the main idea is to detect maximum reflections and spatially 283 
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fusing them in a certain level of its pyramidal decomposition. To this effect, the first level of 284 

pyramidal decomposition of IC is computed: 285 

 286 

where PD(IC, w) denotes a step of pyramidal decomposition of image IC using the generating 287 

kernel pattern w. This kernel was defined by Burt (1981) as: 288 

 289 

 

Fig. 7. Illustration of processing for flower segmentation on the same image than in Fig. 4: (a) Value 
channel of the original image; (b) image from the first step of pyramidal decomposition, white dots are 
detected regional maxima; (c) image from the second step of pyramidal decomposition, where white 
dots are regional maxima; (d) two zoomed sub-images, the upper one from (b) and the lower one from 
(c); (e) representation of regional maxima found within the FOV; and (f) blue spots are the centroids of 
regional maxima in (e) and represent finally detected flowers. 
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Note that the size of is half the value of size of IC. Then, regional maxima in  are found 290 

by using the h-maxima transformation 291 

 292 

and subtracting the result from the original image: 293 

 294 

All pixels in  with a value strictly higher than 0 belong to regional maxima in . In 295 

order to preserve these maxima in the following step of decomposition (remember that the 296 

aim of this processing is spatially fusing close maxima and not eliminating any of them), value 297 

of these pixels is set to the maximum (Fig. 7-(b)): 298 

 299 

Next, a following step of pyramidal decomposition is performed and regional maxima are 300 

calculated: 301 

 302 

 303 

 304 

Detected regional maxima, represented on , can be observed in Fig. 7-(c). Fig. 7-(d) also 305 

illustrates how the maxima spatially close in the first pyramidal decomposition fused into the 306 

second. At this point, all pixels with a value higher than 0 in  are considered to be pixel 307 

flowers: 308 

 309 

Finally, the set of centroids, falling within ROIdef, of the connected components in IflowersBin 310 

represent the detected flowers (see Fig. 7, images (e) and (f)): 311 

 312 
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It should be stressed that, since image IflowersBin derives from two steps of pyramidal 313 

decomposition, its size is four times less than the original one. Therefore, coordinates of 314 

centroids in Iflowers must be scaled up in order to represent flower locations in terms of the 315 

original image size. Figure 8 shows some results of the whole process for flower segmentation. 316 

 317 

Fig. 8. Illustration of flower segmentation results on four different images. 318 

3 Results and discussion 319 

The presented methodology for segmenting flowers in grapevine inflorescence images is 320 

evaluated in the following section. Additionally, section 3.2 develops a study on different 321 

model approaches for estimating the total number of inflorescence flowers from information 322 

extracted from the image. 323 

3.1 Performance evaluation of the presented segmentation algorithm for flower segmentation. 324 

The algorithm was tested on the set of 40 images described in section 2.1. For evaluating its 325 

performance, the following metrics based on contingency tables for binary classification were 326 

employed: 327 
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 328 

Metric RC denotes Recall, and is the percentage of actual flowers detected by the algorithm. 329 

On the other hand, PC stands for Precision, which calculates the percentage of flowers 330 

correctly detected.  331 

For making possible the application of the described metrics, a gold standard set was created. 332 

It was carried out by manually labelling flowers on each image in the set, making use of the 333 

software specifically developed to this effect. Thus, true positives (TP), false positives (FP) and 334 

false negatives (FN) were calculated as: 335 

 TP: flowers automatically detected corresponding to actual flowers labelled in the gold 336 

standard. 337 

 FP: flowers automatically detected, which do not correspond to actual flowers in the 338 

gold standard. Redundant TPs were also considered as FP. 339 

 FN: actual flowers labelled in the gold standard which were not found by the 340 

segmentation algorithm. 341 

Table 1 shows obtained results in terms of the RC and PC metrics. Figures in this table were 342 

calculated considering all the images together. In addition, results obtained in the previous 343 

work by Diago et al. (2014) are also included in this table for comparison purposes. It should be 344 

highlighted that results of Diago et al. (2014) were obtained on a different set of images, which 345 

were taken using the help of a dark cardboard as background. Furthermore, despite the 346 

authors collected 90 inflorescence images, the algorithm could be only evaluated on 15 of 347 

them. These facts make the rigorous comparison of both methods difficult, although some 348 

discussion can be brought up. The algorithm described in this paper shows evidence of being 349 

more balanced in terms of average Precision and Recall. The work by Diago et al. (2014) tends 350 

to produce less false positives, although this seems to significantly penalise the percentage of 351 

actual flowers that can be recognized. It could be justified by the application of a more 352 

conservative strategy. Furthermore, higher precision of the previous work could be logically 353 
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expected, since the use of a dark cardboard as background avoids the huge ROI calculation 354 

Table 1. Results of the proposed methodology compared to those obtained by Diago et al. 355 

(2014). Figures are given in terms of average Precision (PC) and Recall (RC); standard deviation 356 

obtained with both metrics is also presented. Diago et al. (2014) used a different dataset for 357 

calculating their results. This is why some features of that dataset and the one used in this 358 

study are detailed in this table. 359 

Metric Average Standard 
deviation 

Number of 
images 

Grapevine 
varieties 

This work 
Actual flowers in the 

gold standard set 225.65 89.8973 40 4 

PC 0.8338 0.0971 - - 
RC 0.8501 0.1120 - - 

Diago et al. (2014) 
Actual flowers in photos 263.53 80.42 15 3 

PC 0.9290 0.0300 - - 
RC 0.7430 0.0549 - - 

 360 

problem faced herein. In addition, the validation set used by Diago et al. (2014) was less 361 

diverse than the one used in this study, since it contained considerably fewer images and 362 

considered less grapevine varieties. In this respect, Table 2 details results of the presented 363 

methodology per variety. It can be noticed that accuracy, measured by PC, moderately varies 364 

among varieties. This can be justified by phenological development of the varieties, which was 365 

substantially more advanced for Tempranillo and Albariño. Flowers of these varieties were 366 

close to open. As was previously described, at this point, flower surface generates lobs around 367 

the opening point. When these lobs are sufficiently pronounced, they produce redundant 368 

maximum light reflections, thereby creating false positives. As a result, it can be inferred that 369 

even better results could have been obtained by taking the images in earlier phenological 370 

stages, even for Airen and Verdejo. 371 

 372 
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Table 2. Results of the segmentation methodology detailed per variety. Average and standard 373 

deviation values of Precision (PC) and Recall (RC) are given per variety. The average and 374 

standard deviation of flowers in the gold standard set (GS) are also given per grapevine variety. 375 

Grapevine 
variety       
Airen 0.8793 0.0903 0.8320 0.0696 284.14 93.79 

Albariño 0.8016 0.0846 0.8320 0.0477 179.25 79.30 
Tempranillo 0.7516 0.0918 0.8377 0.1525 160.75 66.47 

Verdejo 0.8817 0.0463 0.8974 0.1272 240.2 59.88 
 376 

3.2 Study on models for the estimation of the total number of flowers from flowers detected in 377 

images 378 

Once flowers are counted on the image, the final step is, using the acquired information, the 379 

estimation of the actual number of flowers in the inflorescence. Studying the available 380 

bibliography in this sense, it can be concluded that one option has been explored. Poni et al. 381 

(2006) proposed the use of linear models to estimate the actual number of flowers in 382 

inflorescences of Sangiovese and Trebbiano grapevine varieties. Flowers were manually 383 

counted on images and linear regression was applied to correlate this information with actual 384 

inflorescence flowers. The two obtained regression equations, one for each variety, were 385 

proposed as estimation models. Diago et al. (2014) studied the use of estimation linear models 386 

more in depth, comparing the use of a unique variety-independent estimation model with the 387 

described previous approach. Both options were compared using the Pearson's correlation 388 

coefficient (R2). The R2 values obtained by the authors argued for the use of individual variety-389 

dependent estimation models. Making an analysis of the described proposals, the following 390 

points can be concluded: 391 

 The Pearson's correlation coefficient is not suitable for assessing the behaviour of an 392 

estimation model on its own. It gives an accurate idea about the trend similarity of the 393 

actual and estimated variables. However, R2 does evaluate the performance of an 394 

estimation model. 395 
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 The fact that individual linear models showed good behaviour may argue for 396 

considering that inflorescences from different grapevine varieties have distinctive 397 

features. If this were true, it would imply that variables under modelling may have a 398 

non-linear relation, which would be interesting to assess. 399 

 Models were not created and evaluated using a two-phase approach in which two 400 

disjoint sets should be used for obtaining and testing models. 401 

As a result of these conclusions, what follows in this section is a comprehensive study on 402 

models for the estimation of inflorescence flowers using the number of flowers counted in an 403 

image. 404 

A set of 48 images of the same varieties previously used (Airen, Albariño, Tempranillo and 405 

Verdejo) was acquired. For that, inflorescences were coded, photographed and cut after 406 

capture. Then, flowers were manually counted in a destructive manner. Counting results were 407 

registered individually attending to previously established coding. Finally, inflorescence flowers 408 

were also manually counted on images using the software specifically designed for this goal 409 

and figures were registered accordingly. At this stage, two disjoint datasets were created for 410 

model obtaining and evaluation. The first one, referred to as training set, was composed of 20 411 

images, 5 per variety. The validation set was created using the remaining 28 images, 7 per 412 

variety.  413 

Fig. 9-(a) represents individual linear models acquired using linear regression on the training 414 

set. Calculated model equations as well as R2 values are given. In contrast, Fig. 9-(b) shows the 415 

described information for the case of variety-independent linear model calculation. 416 

Afterwards, calibrated models were employed to generate predictions using the validation set. 417 

Fig. 9-(c) analyses behaviour of the actual and predicted variables produced by individual 418 

models. Fig. 9-(d) illustrates the same feature for the case of the variety-independent linear 419 

model. As shown, R2 values calculated for both approaches are considerably high, even higher 420 

than those obtained in other previous studies (see Table 3).  421 
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 422 

Fig. 9. Comparison of different model approaches for actual flower estimation: (a) and (b) illustration of 423 
individual and variety-independent linear models calculation, respectively; (c) and (d) representation of 424 
performance of both approaches; and (e) performance representation of a non-linear variety-425 
independent model. Root-mean-square error (RMSE) produced by (c), (d) and (e) are given in Table 3. 426 

 427 
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This outcome has even more relevance taking into account that, in contrast to previous works, 428 

they were obtained on a validation set “unknown” for the model. 429 

 430 

Table 3. R2 values comparison of those obtained in this and other previous studies for different 431 

estimation model approaches. 432 

Variety Variety-independent 
linear model (R2) 

Variety-dependent 
linear model (R2) 

Variety-independent non-
linear model (R2) 

This work 
Airen 0.9912 0.9912 0.9945 

Albariño 0.8588 0.8588 0.8761 
Tempranillo 0.9680 0.9680 0.9556 

Verdejo 0.9743 0.9743 0.9789 
Total 0.9778 0.9528 0.9514 

Diago et al. (2014) 
Graciano - 0.8100 - 
Carignan - 0.8900 - 

Tempranillo - 0.8700 - 
Total 0.8100 - - 

Poni et al. (2006) 
Sangiovese  - 0.8800 - 
Trebbiano - 0.8700 - 

Total - - - 
 433 

The fact that results from previous experiments by other authors argued for individual models 434 

per variety opens the possibility to consider the evaluation of a non-linear approach. It would 435 

be justified if varieties would show inherent and distinctive features affecting flowers 436 

prediction. In an attempt of characterising them and evaluating a non-linear solution, a feature 437 

space composed of the following axes was defined: 438 

 Number of flowers in the image: 439 

 440 

 ROI area: 441 

 442 

 Flower radius estimation: 443 

 444 
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 Flower density: 445 

 446 

 Flower area: 447 

 448 

The flower radius was estimated by calculating the average of the minimum distances among 449 

flowers (this is the flower diameter estimation) and dividing this result by 2. Then, a multilayer 450 

feed-forward backpropagation neural network was implemented for obtaining the non-linear 451 

estimation model. The neural network had 5 input neurons fed by the defined descriptors, a 452 

hidden layer with two neurons and an output; the transfer function was set to linear. The 453 

neural network was trained on the training set and tested using the validation set. As shown in 454 

Fig. 9-(e) and Table 3, correlation between the actual and estimated variables for the case of 455 

the non-linear model is lower than those obtained with the linear approaches, although it is 456 

high in absolute terms. 457 

At this point, the three tested approaches have provided a high correlation between actual 458 

and predicted variables. To accurately assess and compare the predictive potential of all 459 

options, the root-mean-square error (RMSE) is proposed: 460 

 461 

where  and  are the predicted and actual flower number values of the ith image in the 462 

validation set, respectively. Table 4 includes results in terms of RMSE produced by the three 463 

studied approaches on the validation set. They are detailed per varieties and well as 464 

considering all of them together. Taking into account global results, there is not any observable 465 

justification for claiming the use of individual linear estimation models. This is a remarkable 466 

issue, since it is unmatched by other previous conclusions. Furthermore, the use of a unique 467 

linear estimation model for all varieties simplifies the prediction problem significantly. With 468 
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regard to results of the non-linear model, despite global results are promising and even better 469 

than those produced by any other, this should be carefully discussed. In the authors’ opinion, 470 

the suitability of the non-lineal model should be proven with a wider set of varieties so as to 471 

verify with more confidence the new feature space. In other words, in spite of being really 472 

promising, further research is considered necessary before accepting the increased complexity 473 

derived from the use of a non-linear model.  474 

Table 4. Root-mean-square error (RMSE) produced by each model estimating the total number 475 

of flowers per inflorescence from the number of flowers in inflorescence image. Results are 476 

detailed per variety and also given considering all together. 477 

Variety Variety-independent 
linear model (RMSE) 

Variety-dependent 
linear model (RMSE) 

Variety-independent non-
linear model (RMSE) 

Airen 138 180 72 
Albariño 24 40 19 

Tempranillo 57 43 61 
Verdejo 75 29 63 

Total 84 95 58 
 478 

4 Conclusion 479 

This paper proposes a new methodology for flower segmentation in digital images of 480 

inflorescences of Vitis vinifera L. It is mainly based on mathematical morphology and pyramidal 481 

decomposition. The algorithm is capable of functioning under field conditions and without the 482 

need of placing a black cardboard behind the inflorescence. This supposes an advantage with 483 

respect to previous works since, besides making easier the process of taking the images, it also 484 

opens the door to its integration in vehicles and autonomous robotic platforms after further 485 

research. On the other hand, it has been found that several considerations prior to taking 486 

captions could even improve the obtained results. Taking photos in earlier phenological stages, 487 

using the row side at the sun or capturing the inflorescence with enough perspective are, 488 

among others, actions easily achievable that could benefit the obtained results. 489 
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Additionally to the above mentioned, a rigorous study and comparison of different models for 490 

actual number of flowers per inflorescence estimation, using the number of flowers in an 491 

image as input information, is developed. As a result, suitability of the use of variety-492 

dependent linear models previously pointed out in the literature has been discarded in favour 493 

of employing a unique variety-independent linear model. This issue constitutes an important 494 

discovery in this field, since it greatly generalises and simplifies the solution for estimating the 495 

actual flower number per inflorescence. Besides the classical option based on models created 496 

by means of linear regression, a non-linear estimation model has also been presented along 497 

with a promising set of descriptors. Results obtained with this approach outperform linear 498 

options. In spite of this, in the authors’ opinion, this line needs further research before arriving 499 

at definitive conclusions. In effect, suitability of the developed feature space needs to be 500 

verified on a wider range of varieties. Moreover, once this is confirmed, it has to be assessed 501 

whether the gained accuracy compensates the utilisation of a more complex solution. 502 
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Appendix A. Mathematical background 508 

Mathematical morphology is a nonlinear image processing used to extract structures of 509 

interest from the image. Comprehensive manuals about this technique can be found in Serra 510 

(1982) and Soille (2004). Nevertheless, for completeness purposes, a brief review of 511 

morphological operators used in this paper is carried out in this appendix. 512 

Let f be a greyscale image. Image f is a mapping of a subset Df of , which is the definition 513 

domain of the image, into a bounded set of nonnegative integers N0: 514 

 515 
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where tmax is the maximum value of the data type used (e.g., 255 for 8-bit images, 1 for binary 516 

images, …). The complementary image of f, denoted as , is defined for each pixel x as the 517 

maximum value of the data type used minus the value of the image f at pixel x: 518 

 519 

The intersection of two greyscale images f and g is defined as 520 

 521 

where min stands for the minimum operation. Similarly, the union of two images f and g would 522 

be 523 

 524 

being max the maximum operation. 525 

The structuring element is a basic and essential tool in mathematical morphology used to 526 

study the morphology of objects in images. Mathematically, a structuring element is defined as 527 

a subset B(x) of  centered at point x, whose shape is designed to describe shapes like circles, 528 

lines, diamonds, etc. 529 

The morphological erosion of image f with structuring element B, ƐB(f), is given by the 530 

expression: 531 

 532 

Hence, it is the minimum value of the image in the neighbourhood defined by the structuring 533 

element when its origin is at x. The effect of erosion is expanding dark regions. 534 

The dual operator of erosion is dilation. The morphological dilation of image f with structuring 535 

element B, δB(f), is defined as follows: 536 

 537 

Therefore, it is the maximum value of the image in the neighbourhood defined by the 538 

structuring element when its origin is at x. Dilation expands bright regions in the image. 539 

Combining erosion and dilation, two new operators called opening (γ) and closing ( ), are 540 

obtained: 541 
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 542 

 543 

Opening removes those bright objects in the image that can be completely covered by the 544 

structuring element. Conversely, closing performs the dual operation, removing dark objects in 545 

the image completely covered by the structuring element. 546 

Another interesting operator is the top-hat transformation. It emphasizes bright details in the 547 

image that are smaller than the structuring element B. Its formulation is: 548 

 549 

Operators described are complemented by geodesic transformations. The geodesic dilation is 550 

the iterative unitary dilation of an image f, called marker, with respect to the mask g. Marker f 551 

must be contained within mask g. Mathematically speaking, the operator is defined as: 552 

 553 

The morphological reconstruction by dilation of a mask image g from a marker image f, is the 554 

geodesic dilation of f with respect to g until idempotence. It is denoted by: 555 

 556 

where i is such that: 557 

 558 

Similarly, a partial reconstruction of a mask g from a marker f is calculated by performing n 559 

times the geodesic dilation of f with respect to g: 560 

 561 

Using the geodesic reconstruction, a fill-hole operator can be defined. A hole in a greyscale 562 

image is defined as a set of connected points surrounded by connected components of value 563 

strictly higher than those in the hole. The following operator fills all holes in an image: 564 

 565 

being the boundary image of f .  566 
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