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Abstract

A general procedure for the synthesis of mechanisms is presented here. This approach minimises the
error between the actual path of one or several points of the mechanism and the paths for each of them
prede®ned by a certain number of points. It is also possible to consider kinematic constraints on
velocity, acceleration and jerk. The optimisation method uses a sequence of quadratic problems with an
analytical de®nition of the objective function, constraints and their gradients, while the hessians are
computed by ®nite di�erences. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

During the last years, there have been important advances in the problem of optimal
synthesis of mechanisms, mainly due to the exponential development of computer
performances, together with successive improvements in optimisation methodologies [2±7]. This
has allowed the application of di�erent mathematical programming techniques to the
dimensional and topological synthesis of mechanisms [4,8].
However, most of the available procedures have been developed for particular problems,

usually hiding fundamental physical aspects that are relevant for the designer, and, in general,
leading to methods di�cult to apply in the day by day engineering practice. The method
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proposed in this paper tries to solve some of these disadvantages, including in the scheme most
of the usual situations in mechanism design, such as:

. The possibility of solving 2D and 3D open or closed chain mechanisms under a unique
systematics.

. The ability of considering topological, dimensional and location constraints.

. The inclusion of lower and higher order pairs without any special distinction between them.

. The treatment of kinematic constrains on velocity, acceleration and jerk of any point and
along any direction, using an identical scheme than the one used for the rest of the
constraints.

. The use of the so-called natural co-ordinates as in GarcõÂ a de JaloÂ n et al. [5,6] which allows
an easier treatment of the constraints and a straightforward geometrical representation of
the movement of the mechanism.

With all of this, a very general and close to standard practice method has been obtained with a
reliable behaviour even when the initial design is not very close to the optimal one.
The analysis procedure, following previous works of AvileÂ s et al. [3], Navalpotro [9] and

Vallejo [12], is divided into two stages, the so-called Local and Global Synthesis.
The objective of the ®rst stage is to obtain an initial iteration vector good enough to start

with guarantee the actual optimisation process. An auxiliary optimisation problem is solved for
each synthesis point in order to get the position of the mechanism closest to the proposed
synthesis point, using as design variables the natural co-ordinates of the mechanism, ®xing the
element lengths.

On the contrary, in the second stage, the actual optimisation problem is solved, adding the
dimensions of the mechanism as new design variables. With this, the best mechanism in the
sense of the chosen objective function ful®lling the topological and kinematic constraints is
obtained.
The objective function is the same for both stages and corresponds to the one previously used

in [9,12]. It is de®ned as the strain energy of the bars of the mechanism,1 considered as ¯exible
elements, needed to reach, from a certain position of the mechanism compatible with its actual
lengths, a certain synthesis point. For the local synthesis stage, the position of the mechanism,
which needs less strain energy to reach the synthesis point, is therefore obtained. The vector
formed by the addition of all the local solutions of these ``deformed'' mechanisms, that is, the
positions which actually pass through each of the synthesis points are considered as the initial
iteration vector for the Global Synthesis stage. This uses the same objective function but now
written for all the synthesis points at the same time.
There are some interesting properties of this objective function which makes it useful for this

kind of problems. First of all its scalar character. In second place, its physical meaning that
allows the trained designer to discuss the results from a physical point of view much closer to
his knowledge and interest. Finally, the possibility of including weighting parameters in a very
simple and physical way (i.e. by an appropriate choice of the elastic parameters of the
materials that compose each bar). This last makes it possible to weight the relative importance

1 In fact, any dimensional constraint established in terms of length is considered a bar for this purpose.
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of the change of length of each element during the design process (i.e. a ``sti�er'' bar would
mean a more important addition to the global strain energy with respect to more ``¯exible''
bars, and therefore, a lower probability of change of its length).
With respect to constraints, besides the typical topological ones, there exists additionally the

possibility of considering constraints on velocity, acceleration or jerk. It is also interesting to
point out that it is possible to include user constraints by de®ning the corresponding function
and Jacobian with respect to the design variables by the appropriate user routines. All of the
constraints are de®ned by a design region established by appropriate lower and upper bounds
related to the required accuracy of the solution. This scheme also allows to relax the ful®lment
of the constraints according to the tolerance admitted by the designer, working therefore with
synthesis regions instead of synthesis points allowing a greater adaptation of the mechanism to
the proposed design, specially when kinematic constraints are present. This is also closer to the
actual design process where a certain tolerance for each point is allowed in order to get a
better solution.
The optimisation algorithm that has been used is SQP (sequence of quadratic problems)

[7,13], a robust algorithm with a good convergence ratio, although in this work the former
feature has been considered preferable to the latter. To solve it the subroutine E04VDF of the
commercial mathematical library NAG [11] has been used. This routine employs the analytical
de®nition of the objective function, the constraints and their Jacobians; while the hessians are
computed by a ®nite di�erence approach. The explanation of the whole process, including the
formulation of the objective and constraint functions is presented in the following paragraphs
for a problem without kinematic constraints, which are added in Section 3. Finally, in Section
4, a complete set of examples including di�erent types of situations are analysed in order to
show the global performance of the method, its reliability and possibilities, ®nishing in Section
5 with several conclusions and recommendations.

Fig. 1. Model of a mechanism.
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2. Synthesis of mechanisms with topological constraints

2.1. Design variables

A mechanism is de®ned in this work by a set of elements (bars) and couples (pairs) which
compose its topology (see Fig. 1). The co-ordinates used to de®ne the kinematics (and
dynamics) of the mechanism are the so-called natural co-ordinates of GarcõÂ a de JaloÂ n et al.
[5,6]. This type of co-ordinates are based on the standard degrees of freedom used in the well-
known Finite Element Method [14] in structural analysis, appearing similar concepts like nodes
(points to which the degrees of freedom are attached) and elements (bars of the mechanism).
The Cartesian co-ordinates of the nodes de®ne the position of the mechanism, while the
displacements of these nodes establish its location along time. In general (this is specially true
in 3D problems), additional degrees of freedom have to be employed (i.e. rotations).
Naturally, the de®nition of a mechanism also includes some constraints on the variation of

the co-ordinates (degrees of freedom) induced by elements and couples. For example, a bar
between two nodes implies a ®xed distance (length of the bar) between those points along the
movement, that is a constraint between the degrees of freedom attached to those two nodes; a
®xed angle between two elements induced by a prismatic couple; the movement of a node
along a certain direction induced by a slider or a ®xed co-ordinate of a ®xed point. Besides the
natural co-ordinates, only the bar lengths have been considered here as design variables, being
straightforward to generalise this formulation to include additional design variables. Of course,
all the above are only potential design variables, since some of them may be ®xed parameters
of the problem. Each design variable is de®ned in the input ®le by its range of variation (a
lower and an upper bound) which de®nes its feasible design region.
It is interesting to point out that the element lengths are design variables only for the actual

optimisation process that is the global synthesis stage, while the natural co-ordinates are design
variables both for the local and global synthesis approaches. Summarising, the design variables
of the problem are:

. Local synthesis: Natural co-ordinates of the mechanism I associated to the synthesis point I
(usually the co-ordinates of the nodes) except the ones corresponding to ®xed points.

. Global synthesis: Natural co-ordinates of the complete set of I-mechanisms, plus the co-
ordinates of the ®xed points, plus the lengths of the elements of the mechanism.

The inclusion of all the natural co-ordinates in the set of design variables, although expensive
in time, allows a very easy treatment of any constraint, including kinematic ones. In fact, in
this work, simplicity and reliability have been considered as primary conditions with respect to
computer cost (which is a rapidly decreasing condition in computational mechanics).

2.2. Constraints

The next step is the de®nition of the constraints on the design variables in order, not only to
de®ne the global topology of the mechanism, but to impose the actual design constraints on
the design variables. For planar mechanisms, the main constraints considered have been:

. ®xed points constraints, which impose the constancy of the co-ordinates of the supports for
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each synthesis position
. a three-bar triangle constraint de®ning a rigid body condition
. co-linearity of three points
. constant angle between two bars
. ®xed direction of the movement of one point
. gear±gear pair
. crank±gear pair

for spatial mechanisms, the main implemented constraints are:

. rigid triangle

. rigid tetrahedron

. spatial co-linearity

. co-planarity

. constant angle between two bars

. helical joint

. cylindrical joint

Finally, any other constraint that can be expressed analytically can be included with no more
than writing its analytical expression and the corresponding gradient with respect to each of
the design variables. This is needed to formulate the Jacobian in the SQP algorithm used to
solve the optimisation problem.
In the next paragraphs, as useful examples, some of these constraints and their derivatives

are formulated in terms of the design variables. A more detailed explanation of the di�erent
constraints and their corresponding analytical treatment may be found in Ref. [1].

2.2.1. Fixed points
Co-ordinates of ®xed points may be considered as parameters of the mechanism, and

therefore, not included in the design variable vector. However, in some problems, the ®xed-
point co-ordinates may be design variables moving between certain bounds. In these cases, the
values of these variables remain unchanged for each location of the mechanism and, in
particular, for the synthesis positions. These constraints are written, therefore, in the form:

h�j, i, k, l� � xj

�
FPl�i�

�ÿ xj

�
FPl�k�

�
� 0

j � 1, 2, 3; i � 1, . . . , SP; k � 1, . . . , SP; l � 1, . . . , FP
�1�

with SP the number of synthesis points and FP the number of ®xed points.
The Jacobian of these constraints is just

@h�j, i, k, l�
@xm

�
FPn�o�

� � djmdln�dio ÿ dko�

j � 1, 2, 3; i � 1, . . . , SP; k � 1, . . . , SP; l � 1, . . . , FP

�2�

with dij the Kronecker symbol.
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2.2.2. Point moving along a certain direction (Fig. 2)
Its analytical expression is written as

h1
ÿ
xA, yA, x

P
A, y

P
A, v1, v2

� � xA ÿ xP
A

v1
ÿ yA ÿ yPA

v2
� 0

h2
ÿ
xA, zA, x

P
A, z

P
A, v1, v3

� � xA ÿ xP
A

v1
ÿ zA ÿ zPA

v3
� 0 �3�

where xP
A denotes the location of a ®xed point along the ®xed direction v:

The Jacobian is immediately

@hj
@xA
� 1

v1

@hj
@yA
� ÿdj1

v2

@hj
@xA
� ÿdj2

v3

@hj
@xP

A

� 1

v1

@hj
@yPA
� ÿdj1

v2

@hj
@xP

A

� ÿdj2
v3

@hj
@v1
� ÿxA ÿ xP

A

v21

@hj
@v2
� ÿdj1yA ÿ yPA

v22

@hj
@v3
� ÿdj2 zA ÿ zPA

v23
�4�

2.2.3. Constant sign of the cosine or sine of the angle between two bars
This constraint appears when controlling the relative position of three points de®ning a rigid

body in order to keep one of the points inside one of the half-planes de®ned by the line joining
the other two. It is written as a condition on the dot product between the bar vectors

1rh�xA, xB, xC� � rBA � rCA
LABLAC

r0 �5a�

for a positive cosine.
In terms of the design variables

h�xA, xB, xC� � xBAxCA � yBAyCA � zBAzCA
LABLAC

�5b�

with

Fig. 2. Point moving along a certain direction.
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xBA � xB ÿ xA yBA � yB ÿ yA zBA � zB ÿ zA

xCA � xC ÿ xA yCA � yC ÿ yA zCA � zC ÿ zA

LAB �
����������������������������������
x2
AB � y2AB � z2AB

q
LAC �

�����������������������������������
x2
AC � y2AC � z2AC

q
�6�

The corresponding components of the Jacobian may be written as

@h

@x j
A

�

�
ÿ x j

CA ÿ x j
BA

�
�LABLAC� ÿ rBA � rCA

"
@LAB

@x j
A

LAC � LAB
@LAC

@x j
A

#
L2
ABL

2
AC

@h

@x j
B

�
x j
CA�LABLAC� ÿ rBA � rCA

@LAB

@x j
B

LAC

L2
ABL

2
AC

@h

@x j
C

�
x j
BA�LABLAC� ÿ rBA � rCA

@LAC

@x j
C

LAB

L2
ABL

2
AC

�7�

With respect to the constant sign of a sine, it appears in cases when not only a direction but a
certain sense has to be kept. It is imposed as a cross product condition, that is

1rh�xA, xB, xC� � rBA � rCA
LABLAC

r0 �8�

The gradient is given by similar expressions to Eq. (7).

2.2.4. Triangle constraint
Besides the standard bar length constraints, it is necessary to ensure that the triangle does

not turn around any of its sides. This is established by imposing the constancy of the sign of
the sine and cosine of two of the angles of the triangle. For example, on making reference to

Fig. 3. Triangle constraint.
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Fig. 3, we have

sin�a� � r35 � r34
L2L3

> 0 cos�a� � r35 � r34
L2L3

> 0 cos�b� � r35 � r45
L2L4

> 0 �9�

with immediate gradient.

2.2.5. Gear±gear pair
This situation is shown in Fig. 4. The mathematical constraint establishes that the length of

the arc followed by point A1 from its initial position (A1)0 has to be the same that the one
followed by point A2 from (A2)0

h5 �
�
yA1 ÿ �yA1�0

�
L1 �

�
yA2 ÿ �yA2�0

�
L2 � 0 �10a�

with

yA1 � arctg
yA1 ÿ y01
xA1 ÿ x01

yA2 � arctg
yA2 ÿ y02
xA2 ÿ x02

L1 �
�����������������������������������������������������
�xA1 ÿ x01�2��yA1 ÿ y01�2

q
L2 �

�����������������������������������������������������
�xA2 ÿ x02�2��yA2 ÿ y02�2

q
�10b�

with gradients

@h5
@xA1

� @yA1
@xA1

L1 �
�
yA1 ÿ �yA1�0

� @L1

@xA1

@h5
@yA1

� @yA1
@yA1

L1 �
�
yA1 ÿ �yA1�0

� @L1

@yA1

@h5
@x01

� @yA1
@x01

L1 �
�
yA1 ÿ �yA1�0

� @L1

@x01

@h5
@y01
� @yA1
@y01

L1 �
�
yA1 ÿ �yA1�0

� @L1

@y01

@h5
@xA2

� @yA2
@xA2

L2 �
�
yA2 ÿ �yA2�0

� @L2

@xA2

@h5
@yA2

� @yA2
@yA2

L2 �
�
yA2 ÿ �yA2�0

� @L2

@yA2

Fig. 4. Gear±gear constraint.
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@h5
@x02

� @yA2
@x02

L2 �
�
yA2 ÿ �yA2�0

� @L2

@x02

@h5
@y02
� @yA2
@y02

L2 �
�
yA2 ÿ �yA2�0

� @L2

@y02
�11�

and

@L1

@xA1
� �xA1 ÿ x01�����������������������������������������������������������

�xA1 ÿ x01�2��yA1 ÿ y01�2
�q

@L1

@yA1
� �yA1 ÿ y01�����������������������������������������������������������

�xA1 ÿ x01�2��yA1 ÿ y01�2
�q

@L1

@x01
� ÿ �xA1 ÿ x01�����������������������������������������������������������

�xA1 ÿ x01�2��yA1 ÿ y01�2
�q

@L1

@y01
� ÿ �yA1 ÿ y01�����������������������������������������������������������

�xA1 ÿ x01�2��yA1 ÿ y01�2
�q

@yA1
@xA1

� 1

1�
�
yA1 ÿ y01
xA1 ÿ x01

�2

y01 ÿ yA1

�xA1 ÿ x01�2
@yA1
@yA1

� 1

1�
�
yA1 ÿ y01
xA1 ÿ x01

�2

1

�xA1 ÿ x01�

@yA1
@x01

� 1

1�
�
yA1 ÿ y01
xA1 ÿ x01

�2

yA1 ÿ y01

�xA1 ÿ x01�2
@yA1
@y01

� 1

1�
�
yA1 ÿ y01
xA1 ÿ x01

�2

ÿ1
�xA1 ÿ x01� �12�

It has to be remarked that Eqs. (10a) and (10b) do not prevent the separation between gears
that have to be kept in contact. This implies the necessity of imposing an additional constraint
establishing that the distance between the centres of the gears has to be equal to the addition
of the lengths of the two gear bars. This constraint may be written as

L1 � L2 � d01±02 �13�
with

L1 �
�����������������������������������������������������
�xA1 ÿ x01�2��yA1 ÿ y01�2

q
L2 �

�����������������������������������������������������
�xA2 ÿ x02�2��yA2 ÿ y02�2

q

d01±02 �
����������������������������������������������������
�x02 ÿ x01�2��y02 ÿ y01�2

q
and immediate gradients from Eq. (12).
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2.2.6. Crank±gear pair
This case is similar to the previous one, except that for the length of the arc followed by a

certain point A of the gear, from the initial contact point with the crank, has to be equal to the
displacement of the corresponding point of the crank (Fig. 5).
In a similar way to the equation written for the gear±gear constraint, we have now

h6 �
�
yA1 ÿ �yA1�0

�
L1 ÿ

�����������������������������������������������������������������
xA2 ÿ �xA2�0

�2��yA2 ÿ �yA2�0�q
� 0 �14�

with

yA1 � arctg
yA1 ÿ y01
xA1 ÿ x01

The gradients with respect to the gear design variables are identical to the ones established in
Eq. (11), while the ones for the crank variables are straightforward.
In the same way that was explained before for the gear±gear pair, an additional constraint

has to be included in order to keep in contact the crank with the gear. This new constraint is
written as

L2
1 � �y01 ÿ yA1�2 L1 �

�����������������������������������������������������
�xA1 ÿ x01�2��yA1 ÿ y01�2

q
�15�

meaning that the distance between the centre of the gear and the crank has to be equal to the
radius of the gear. The gradient of this constraint is again immediate from Eq. (12).

2.3. Objective function

The objective function, as was pointed out in Section 1, is de®ned for the local synthesis
problem as

Fig. 5. Crank±gear constraint.
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V �
Xm
i�1

Ei�li ÿ Li�2 �16�

with Ei the ®ctitious elastic module of each bar i, li the ®nal length of the bar i to achieve the
synthesis point, Li the initial length of the bar i and m the number of bars of the mechanism
able to be ``deformed'' (un®xed length) along the optimisation problem.
It has to be noticed that the initial iteration vector for the nodal co-ordinates has to be

chosen as close as possible (in the sense of the ``strain energy'') to the ®nal expected position of
the mechanism, for each of the synthesis points. In order to do that, an initial analysis of the
behaviour of the mechanism along a su�cient time interval is very useful, being possible to use
a speci®c analysis program or even the local synthesis software. In this latter case, additional
constraints establishing the value of the basic degrees of freedom along the movement have to
be de®ned, while the synthesis constraints are discarded.
Fixed points are not considered as design variables in the local synthesis problem and

kinematic constraints are not active in this case either.
The associated solutions give the co-ordinates of all the nodes of the mechanism for each

synthesis point, that is for each associated ``active'' mechanism, being obvious that this
solution depends on the initial lengths and the initial position. However, and as has been
repeatedly obtained for the di�erent examples studied, except for initial positions very far away
from the optimal ones, the ®nal result is almost independent of these initial values. On the
contrary, this initial iteration vector a�ects dramatically the convergence ratio, especially when
it is not close enough to the optimal solution.
The true optimisation problem is solved in the second stage (the so-called ``global synthesis

problem''). In this second procedure, the design variable vector is of dimension dim(x� =
2 � NODES � SP + BARS, which corresponds to each nodal co-ordinate for each synthesis
point plus the bar lengths.
The objective function is again Eq. (16) but now extended to all the synthesis points,

including additionally the bar lengths as new design variables and possible weighting
coe�cients wk for each synthesis point k, that is

V �
XPS
k�1

wk

Xm
i�1

Ei�li ÿ Li�2 �17�

All the topological constraints considered in the local synthesis problem are again included
here, expanding them to take into account all the di�erent synthesis points, that is, writing
them for each ``active'' mechanism of the problem.
Due to the fact that the design vector includes all the nodal co-ordinates of the mechanism

for each synthesis position, we have, implicitly, the whole information needed to de®ne
completely the behaviour of the mechanism at each synthesis point in terms of the design
variables, including its kinematic performance (velocities and accelerations of any point of the
mechanism).
That is, for each synthesis point, an active mechanism I which ful®ls the local synthesis but

whose lengths are not, in general, the ones of the optimal solution of the problem is obtained.
For each of these active mechanisms the analytical relations between their associated kinematic
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variables (velocities, accelerations and jerks) and the design variables are known, being possible
to de®ne additional constraints on kinematic values by the corresponding equivalent
constraints among the design variables. This allows the control of velocities, accelerations, etc.,
during the design stage.

3. Synthesis with kinematic constraints

As it has been previously pointed out, for each synthesis point an active mechanism I is
generated which ful®ls the topological constraints but whose dimensions are not coincident, in
general, with the ones of the ®nal optimised mechanism. The velocity and acceleration of any
point of the mechanism, at the time associated to any of the proposed active mechanisms, can
be obtained in terms of the natural co-ordinates of this speci®c mechanism and the bar lengths,
that is, in terms of the proposed design variables. Therefore, they may be considered as an
implicit function of the design variables of the problem.
With this in mind, it is clear that the establishment of any kind of kinematic constraint on

velocity, acceleration, jerk or any possible combination, may be considered as a new constraint
on the design variables. The only condition is that these kinematic values correspond to the
times of the synthesis points, which de®ne the design variables.2 This allows to control the
values of these kinematic variables during the design process by adding these new constraints
to the topological ones. However, these tend to constrain strongly the optimal solution leading,
in some occasions, to an impossible one, becoming again critical in the initial analysis of the
mechanism.

3.1. Formulation of the kinematic problem

The velocity problem is formulated by no more than deriving the initial position problem
with respect to time, becoming a simple linear problem in terms of velocities at a certain
prede®ned location of the mechanism.

EÇx � Çb �18�
with Çx the velocity vector (derivatives with respect to time of the natural co-ordinates of the
mechanism), E the gradient matrix of the constraints with respect to the natural co-ordinates
and Çb the time derivative of the right-hand side vector of the constraints. Inverting Eq. (18)
velocities are computed. It has to be noticed that E and Çb are computed at a certain location,
which corresponds to a certain time that, as was stated, is associated to one of the proposed
synthesis points. To formulate Eq. (18), the time evolution of the drivers has to be known in
order to compute the vector Çb:
When deriving the constraints with respect to time, we have to take into account that:

2 Notice that constraints combining values of kinematic variables at di�erent times may also be considered if all of
them are associated to active mechanisms.
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. the derivatives with respect to time of the bar lengths vanish, since they do not change along
time.

. the derivative with respect to time of the ®xed co-ordinates is obviously zero.

. for each synthesis point, velocities have to be analytic functions of the design variables, and
therefore, derivable.

With this, it is possible to obtain immediately the gradients of the velocities with respect to the
design variables in order to be included in the optimisation algorithm. This is accomplished by
deriving Eq. (18) with respect to each of the design variables having

E
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The gradient of each velocity component with respect to the design variables is, therefore,
computed by inverting Eq. (19), taking into account that the system matrix E is the same that
has been already inverted in Eq. (18). Therefore, the computer time needed is only the one
associated to an additional back substitution of a new right-hand side. This is done for each of
the synthesis points for which a kinematic constraint is established.
The acceleration problem is obtained in a similar manner by now deriving Eq. (18) with

respect to time. With this, we have

EÈx � Èbÿ ÇEÇx �20�

This is computed after velocities, appearing again the same matrix E previously factorised.
In the same way, the gradients of the accelerations with respect to the design variables are

computed by deriving Eq. (20) having
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Of course, and in the same manner that was discussed for velocities, Eqs. (20) and (21) are
written for any of the active mechanisms where constraints on accelerations are established.
This allows us to include in the optimisation problem the desired kinematic constraints both

on the values of their three components directly or on any combination of them like, for
instance, the modulus

v �
�������������������������
_x2 � _y2 � _z2
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4. Examples

In the following paragraphs some examples are presented related to both the position and
kinematic synthesis processes. They try to be representative of the possibilities of the method,
including its capabilities and some of the drawbacks and problems already stated which usually
imply a deep study of the performance of the mechanism previous to the proper synthesis
problem.

4.1. Example 1: ®ve bar mechanism

This is a very simple problem with exact and known solution, and therefore, its interest
relies mainly on the study of the accuracy and convergence rate of the method in di�erent
situations. It corresponds to the mechanism shown in Fig. 6, with ®ve nodes, ®ve bars with
lengths and connectivity included in Table 1, and two ®xed points, nodes 1 and 2.
The topology constraints, and besides the constant bar lengths and ®xed points co-ordinates,

are in this case only the condition needed to keep the triangle topology, that can be expressed
by the following three constraints

ÿ1:00 < sin�34ÿ 35� < 0:00 0:00 < cos�34ÿ 35� < 1:00 0:00 < cos�43ÿ 45� < 1:00

We shall study here the di�erent solutions obtained when starting from di�erent lengths of the
bars imposing the synthesis point co-ordinates for node 5 included in Table 2, which
correspond to exact co-ordinates of the analytical solution mechanism. The obtained results are
shown in Table 3 for a ®xed small number of iterations. From them, it is obvious that the
initial choices 6, 7 and 14 are able to obtain the exact solution in that number of iterations,
while solution 13 is close but could not. The rest of alternatives lead to results far from the
actual solution. This approach is very simple, not very costly and allows the designer, when he
has not an accurate idea of the expected solution, to obtain a proper initial iteration vector for
the bar lengths.
If we now choose the lengths corresponding to case 13 as starting vector, and increase the

accuracy not limiting the number of iterations, we get as ®nal solution the exact mechanism
with an evolution of the objective function shown in Fig. 7. Also, Fig. 8 shows, as an example,
the following graphs for the synthesis point number 3:

Fig. 6. Five bars mechanism.
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. Initial position of the active mechanism number 13 (grey line).

. Closest position of the initial mechanism to point 3 (local synthesis) (black thin line).

. Final position of the mechanism after the synthesis process (black thick line).

After this synthesis of position we move further imposing kinematic constraints. Of course, a
previous analysis of the mechanism is very important in order to have an accurate idea of the
range of velocities and accelerations of the di�erent points of the mechanism. In this sense, for
instance, the velocity of point 5 along direction x and at the time corresponding to the
synthesis point 3 is _x�5�3 � ÿ0:462977745D� 03: This is the quantity we shall now restrain.
Five di�erent cases, as it is detailed in Table 4, have been considered as possible synthesis
situations:

Case 1: A very strong constraint on this velocity, limiting it to _x�5�3 � ÿ0:10000000D� 03:
Case 2: A weak constraint onto the velocity, limiting it to _x�5�3 � ÿ0:40000000D� 03:
Case 3: The same constraint as in Case 2 plus a constraint on the y component of the
acceleration of the same point at the same time. If the exact value for this quantity is
_y�5�3 � ÿ0:29895105D� 05, we restrain its value to _y�5�3 � ÿ0:25000000D� 05:
Case 4: The same as in Case 3 but now the ®xed points are allowed to move into a narrow
band. This will allow a much easier adaptation of the mechanism to the imposed conditions,
and therefore, a closer solution to the one searched (average of all the di�erent constraints)
shown in a substantial reduction of the objective function. The following bands have been
allowed for the co-ordinates of the ®xed points (NODE 1 = (0.0, 0.0); NODE 2 = (15.0,
ÿ1.0))

Table 1
Topology of the mechanism

Bar Node 1 Node 2 Length

1 1 3 4.000000
2 3 4 14.000000
3 3 5 15.000000

4 4 5 15.000000
5 2 4 6.000000

Table 2

Synthesis points

SP x y

1 13.265770 ÿ10.019700
2 9.628700 ÿ8.930700
3 7.757700 ÿ8.838100
4 4.283400 ÿ11.171100
5 6.413600 ÿ12.612500
6 11.026300 ÿ11.900400
7 14.978300 ÿ10.341000
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ÿ1:00 < x�1� < 1:00 ÿ 1:00 < y�1� < 1:00 14:00 < x�2� < 16:00

ÿ2:10 < y�2� < ÿ0:10

Case 5: Two additional constraints to the ones imposed in Case 4 have been considered
here. The moduli of the velocity and acceleration of point 5 at the time corresponding to the
synthesis point 5. If these values for the exact mechanism are v�5�5 � 0:50941870D� 03;
a�5�5 � 0:45979694D� 05, we shall restrain them to be lower than v�5�5 � 0:40000000D� 03;
a�5�5 � 0:42000000D� 05, respectively.

The di�erent results obtained are included in Table 4.

Table 3
Pseudo random starting vectors for the bar lengths

Case Bar 1 Bar 2 Bar 3 Bar 4 Bar 5 Objective function

Initial lengths and ®nal value of the objective function after ®ve iterations
1 5.80 18.84 12.92 16.93 10.05 0.11125785D+00
2 3.00 15.00 12.00 12.00 7.00 0.56383776D+00

3 3.00 15.00 12.00 12.00 8.00 0.73077150Dÿ01
4 3.00 15.00 12.00 12.00 9.00 0.79822798D+00
5 3.00 15.00 12.00 12.00 10.00 0.11125785D+00

6 4.00 15.00 15.00 15.00 5.00 0.72921761Dÿ10
7 4.00 15.00 15.00 15.00 6.00 0.72921760Dÿ10
8 4.00 15.00 15.00 15.00 7.00 0.29455572D+00
9 4.00 15.00 15.00 15.00 8.00 0.29455572D+00

10 4.00 15.00 15.00 15.00 9.00 0.69999987D+00
11 5.00 14.00 16.00 16.00 5.00 0.24823123D+00
12 5.00 14.00 16.00 16.00 6.00 0.24823123D+00

13 5.00 14.00 16.00 16.00 7.00 0.28355876Dÿ04
14 5.00 14.00 16.00 16.00 8.00 0.72921764Dÿ11
15 5.00 14.00 16.00 16.00 9.00 0.42955934D+00

Table 4

Final lengths and objective function for each synthesis problem

Case 1 Case 2 Case 3 Case 4 Case 5

L1 3.028555 3.72808 3.64680 3.31491 3.73988
L2 14.59707 14.01445 13.84843 13.56089 16.50489

L3 15.05072 14.94996 14.57200 14.3975 14.29121
L4 12.27295 14.16153 15.74827 15.91603 18.63774
L5 3.55401 5.16000 6.67614 5.70355 8.44462

x1 1.000000 ÿ0.74363
y1 0.674266 ÿ1.00000
x2 16.00000 16.00000
y2 ÿ0.10000 ÿ0.10000
Objective function 0.1173D+01 0.6754Dÿ01 0.1283D+00 0.4066Dÿ01 0.1703D+00
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As it is easy to observe, this new imposition of constraints implies a certain variation of the
bar lengths and an increment of the objective function as it is the di�erence between the values
of the constraints and the exact values of the constrained magnitudes. A certain ``mobility'' of
the ®xed points allows the reduction of the objective function, and therefore, the increase of
the accuracy of the mechanism with respect to the constraints. Of course, the equality
kinematic constraints are always ful®lled.

Fig. 7. Evolution of the objective function for the case 13.

Table 5
De®nition of the synthesis points

SP x(5) y(5)

1 8.500000 ÿ4.830377
2 8.500000 ÿ3.381574
3 8.500000 ÿ1.329634
4 8.500000 0.663212
5 8.500000 2.002536

6 8.500000 4.095180
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4.2. Example 2: the Peaucillier mechanism

This second example studies the position synthesis of a well-known mechanism, the so-called
Peaucillier mechanism able to follow a straight vertical path as it is shown in Fig. 9, that as it
is established in classical references [10], has to ful®l the following condition

L2 � L3 L4 � L5 � L6 � L7 �24�

In this case, six points located along the vertical path as shown in Table 5 de®ne the synthesis.
We start from the bar lengths shown in the second column of Table 6 obtaining the ®nal

lengths included in the third column of the same table.

Fig. 8. Di�erent locations of the mechanism 13 along the synthesis process.

Fig. 9. Peuacillier mechanism.
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Fig. 10 shows the path of the initial and ®nal mechanism and Fig. 11 the evolution of the
objective function.
It is interesting to point out that conditions (24) are only a particular case of the actual ones

that may be established as

L4 � L6 L5 � L7 L2
2 ÿ L2

3 � L2
4 ÿ L2

5 L2 > L3 and L4 > L5 �25�
that have been here obtained.

4.3. Example 3: box-transporting mechanism

The following example corresponds to a mechanism designed to transport boxes from a
certain position to another. The chosen topology is shown in Fig. 12 and the synthesis points

Table 6
Initial and ®nal bar lengths

Bar Initial length Final length

1 5.000000 5.000000
2 10.000000 12.865798
3 14.000000 12.044742

4 5.000000 5.525284
5 2.500000 3.174246
6 6.500000 5.525284

7 3.500000 3.174244

Fig. 10. Intial and ®nal path of the mechanism.
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in Table 7. Finally, the initial and ®nal lengths are shown in Table 8. In this case, and on the
contrary to the previous examples, the design is not de®ned by the path of a single point but
by the locations of three points in the initial and ®nal positions of the mechanism. Due to the
tolerance allowed for these locations, they are constrained to be inside two regions, de®ned by

Fig. 11. Evolution of the objective function.

Fig. 12. Proposed box-transporting mechanism.
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the appropriate constraints bands. The ®nal objective function is 0.13991086Dÿ16, which is
not strange since we have chosen the synthesis regions in such a way that they include the
exact solution as can be seen in Fig. 13 which also includes the paths of two points of this
solution mechanism.
If we now add to the previous constraints, a kinematic one like the null value of the y

component of the velocity of node 6 at its initial and ®nal locations, we now get the new
solution included in the fourth column of Table 8. This result ful®ls both the position and
kinematic constraints. Fig. 14 shows the path followed by node 6, being interesting to notice
the two cusps appearing in the path as a consequence of the velocity constraints.

Table 7
De®nition of the synthesis positions (synthesis regions)

Co-ordinates Constraints Position 1 Position 2

x(3) Lower band 8.31491600 ÿ1.00000000
Upper band 8.31491600 1.00000000

y(3) Lower band 3.44415100 ÿ10.00000000
Upper band 3.44415100 ÿ8.00000000

x(6) Lower band 35.00000000 0.00000000
Upper band 35.00000000 0.00000000

y(6) Lower band 18.00000000 18.00000000
Upper band 18.00000000 24.00000000

x(8) Lower band 28.00000000 ÿ9.00000000
Upper band 28.00000000 ÿ5.00000000

y(8) Lower band 25.14142800 23.14142800
Upper band 25.14142800 34.14142800

Table 8
Initial and ®nal lengths

Bar Initial length Final length Final length

1 9.000000 9.00000 9.00000
2 16.000000 15.909841 15.659176
3 14.000000 14.321545 13.864767

4 36.000000 30.396816 30.396816
5 19.000000 19.936299 17.019403
6 22.000000 19.468617 17.991286

7 18.000000 15.537028 16.822431
8 33.000000 32.719895 32.147923
9 28.000000 28.360886 28.421768
10 22.000000 21.329476 21.421182

11 10.000000 10.000000 10.000000
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4.4. Example 4: synthesis with a gear±gear pair

As a ®nal example of 2D mechanisms we study the mechanism shown in Fig. 15, which
includes a gear±gear pair. The idea is to solve a functional synthesis problem, establishing a
correlation between nodes 3 and 9 of the mechanism. Table 9 de®nes this functional constraint.
The initial and solution bar lengths are included in the second and third column of Table 10,

respectively, while Fig. 16 shows the evolution of the objective function with a ®nal value of
0.29658947Dÿ01.
If we now relax the constraints on node 9 allowing a certain tolerance on its co-ordinates

(synthesis region de®ned by Table 11), we obtain a new mechanism with the lengths included
in the fourth column of Table 10. The value of the objective function is now 0.31601815Dÿ10
implying the almost exact ful®lment of the constraints.
We now consider other kinematic constraints like:

Fig. 13. Path for points 6 and 8.

Fig. 14. Final path of points 6 and 8.
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Case 1: Constraint on velocity _x�9�4 � 1
Case 2: Constraint on acceleration �y�9�3 � 0:25E� 04
Case 3: Constraint on acceleration �x�9�3 � 0:75E� 04
Case 4: Constraints on velocity and acceleration v�9�4 � 0:35E� 03; a�9�3 � 0:6E� 04
Case 5: The same as Case 4, but the weighting coe�cient for the synthesis point 3 is
modi®ed to ®ve times the one of the node 9
Case 6: Constraints on velocity and acceleration including now a node not appearing in the
position synthesis de®nition

_x�9�3� ÿ0:2E� 03; _y�10�4� ÿ0:38E� 03; �x�9�3� 0:75E� 04; �y�10�4� 0:18E� 04

Case 7: Velocity constraints but relaxed by synthesis regions

_x�9�3� ÿ0:20E� 03; _y�10�6� � ÿ 0:65E� 02, 0:55E� 02�;

�x�9�3� 0:75E� 04; �y�10�4� �0:3E� 05, 0:32E� 05�

Fig. 15. Gear±gear mechanism.

Table 9

De®nition of the functional constraints (functional synthesis)

SP x(3) y(3) x(9) y(9)

1 3.695520 1.530730 ÿ28.50000 3.000000
2 1.530730 3.695520 ÿ29.50000 4.900000

3 ÿ1.530730 3.695520 ÿ31.70000 8.100000
4 ÿ4.000000 0.001000 ÿ33.50000 11.200000
5 ÿ2.828430 ÿ2.828430 ÿ33.00000 6.400000
6 0.001000 ÿ4.000000 ÿ31.10000 1.600000

7 3.695520 ÿ1.530730 ÿ29.00000 1.200000
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The corresponding results are now shown in Table 12 for each of the proposed cases.
Again we can observe that the addition of kinematic constraints makes it more di�cult to

obtain a good performance of the mechanism with respect to all of them and eventually the
loosing of the accuracy obtained in the functional synthesis. For example, in Case 6, an

Table 10
Initial and ®nal bar lengths

Bar Initial length Final length Final length

1 4.000000 4.000000 4.000000
2 6.000000 6.017078 5.985318
3 2.000000 5.032170 4.980715

4 8.000000 4.950751 5.033967
5 22.000000 14.580902 14.686802
6 24.000000 17.919763 17.738732

7 14.000000 30.035494 30.051118
8 20.000000 10.390396 10.462367
9 15.000000 9.983679 10.189555

Fig. 16. Evolution of the objective function.
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excessively strong constraint gives rise to a very high value of the objective function showing
that this new mechanism is not able to ful®l appropriately the proposed functional path.

4.5. Example 5: a three-dimensional problem

Finally, and as an example of three-dimensional mechanism we propose a simple one: a 3D
``crank±lever'' mechanism with ®xed co-ordinates y�2� � 0:00; x�3� � 0:00; z�3� � ÿ4:00 as it is
shown in Fig. 17.
We now de®ne the following synthesis points and initial lengths getting the trivial solution

given by Tables 13 and 14 with ®nal value for the objective function 0.71651650Eÿ13 that is
an exact mechanism, with the evolution of the objective function shown in Fig. 18.
If we now impose additional kinematic constraints and allow a more relaxed location region

for both nodes 2 and 3, de®ned by Table 15, we get, for the following cases, the results given
in Table 16:

Table 11
Synthesis region for node 9

SP x(9) Lower x(9) Upper y(9) Lower y(9) Upper

1 ÿ28.60000 ÿ28.40000 2.900000 3.100000
2 ÿ29.60000 ÿ29.40000 4.800000 5.000000
3 ÿ31.80000 ÿ31.60000 8.000000 8.200000

4 ÿ33.60000 ÿ33.40000 11.100000 11.300000
5 ÿ33.10000 ÿ32.90000 6.300000 6.500000
6 ÿ31.20000 ÿ31.00000 1.500000 1.700000

7 ÿ29.10000 ÿ28.90000 1.100000 1.300000

Fig. 17. 3D crank±lever mechanism.
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Table 12
Final length for each bar and each case

Bar Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

L1 4.00000 4.00000 4.00000 4.00000 4.00000 4.00000 4.00000

L2 6.00425 5.99451 5.97130 6.12413 6.04618 5.98532 5.55492
L3 5.01846 5.05275 5.06605 5.16573 5.23969 4.98071 4.15610
L4 4.97729 4.95273 4.96265 4.71014 4.71334 5.03397 6.28898
L5 15.34750 14.56018 15.3539 15.22337 15.17334 14.68680 17.58223

L6 17.65937 17.85362 17.86493 18.64378 18.91315 17.73873 15.36328
L7 30.10148 30.04307 30.01498 30.02815 30.03041 30.05103 29.99511
L8 10.91440 10.36011 10.96530 10.89495 10.93462 10.46237 12.37788

L9 10.31390 10.21663 9.15978 9.54994 9.53201 10.18955 6.75044
Objective function 0.1085Dÿ02 0.1677Dÿ10 0.3599Dÿ01 0.1783D+00 0.3571D+00 0.1356D+05 0.6538D+00
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Table 13
De®nition of the synthesis

SP x(2) z(2) y(3)

1 2.000000 0.000000 6.633250
2 0.765367 1.847759 5.450536

Table 14
Bar lengths

Bar Initial length Final length

1 1.0000 2.0000
2 9.0000 8.0000

Fig. 18. Evolution of the objective function.
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Case 1: Constraint on velocity: _y�3�1 � 100
Case 2: Constraint on acceleration: �y�3�2 � 10,000
Case 3: Constraint on velocity and acceleration: _y�3�1 � 100; �y�3�2 � 10,000

It is clear that the ®rst two cases are able to obtain the exact mechanism, while the third only
approximates the constraints which is understandable since the two constraints included in
Case 3 are the same than in Cases 1 and 2 which gave rise to di�erent mechanisms being,
therefore, impossible to obtain a unique mechanism able of ful®lling both at the same time.

5. Conclusions

In this paper, we have presented a method for the optimal synthesis of mechanisms that, on
the contrary to other previously proposed methods, considers as design variables all the
di�erent co-ordinates (natural co-ordinates) which de®ne the location and kinematics of the
mechanism. This is established for all the di�erent times at whom a certain synthesis condition
is imposed, together with the lengths of each of the topological components of the mechanism.
This allows the complete control of the mechanism for each of those times, without the
necessity of approximating the gradient of the objective function and/or constraints that now
can be obtained analytically and very easily for most of the usual constraints. The price for
this simplicity is the computational cost of the problem due to the large number of design
variables when having a big number of synthesis conditions. Anyhow, due to the exponential
increment of computer performance and the usually small number of elements that compose
most of the practical mechanisms, this seems to be a very small price when compared to the
above advantages including its generality (the extension to 3D situations is straightforward
without including any new concept or special formulation) and reliability.
This simple analytical treatment both of constraints and objective functions allows to use a

very robust optimisation method like the sequence of quadratic problems. This is accomplished

Table 15
Synthesis regions for kinematic constraint

Co-ordinate Node 1 Node 2

y(3) Lower bound 4.633250 3.405361
Upper bound 8.633250 7.405361

Table 16
Di�erent results for kinematic constraints

Case L1 L2 y(3)1 y(3)2 Objective function

1 2.0 9.165151 8.0000000 7.015549 0.34507278Dÿ16
2 2.0 9.315438 8.1717430 7.210778 0.34507279Dÿ16
3 2.0 9.240195 8.0000000 7.210778 0.11293050Dÿ01
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without any complexity in programming, being very easy for the user to include any additional
constraint with the only e�ort of formulating the gradient of that constraint with respect to the
design variables.
The possibility of considering di�erent weighting coe�cients for each constraint and the

possibility of de®ning regions of possible locations of each of the nodes of the mechanism
allow to consider very easily useful design directives. These may be established, for instance,
according to the importance of the change of length of each bar (production or building
constraints may be formulated usually in this way). This implies a strong ¯exibility in the
design process which, together with reliability and generality, is one of the most important
properties of this kind of packages.
Also, the fact that the design vector includes all the degrees of freedom of the problem for

all the times of interest allows the addition of kinematic constraint with a very small extension
of the program as has been shown in the examples and theoretical development above. This
allows the establishment of very usual functional constraints, like limits on the value of the
velocity at certain critical points of the path, which is very important, for instance, to limit
impacts, or the possibility of establishing limits on the value of the acceleration usually related
to the need of having small inertia forces when manipulating materials with low resistance.
This tool is also very e�cient in detecting easily, interferences, impossible paths, etc. on the

proposed mechanism or topology with no more than observing the value of the objective
function at the end of the synthesis. Anyhow a deep study of the mechanism prior to the start
of the synthesis process is very useful to detect also this kind of problems and establish
appropriate values for the bands bounding the constraints or for the initial iteration vectors,
although it has been proved that this approach is robust enough to deal with initial iterations
vectors far enough from the actual solution, keeping of course the same mechanism topology.
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