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Abstract

Most proposed metaheuristics for feature selection and model parameter optimization are based

on a two-termed Loss + Penalty function. Their main drawback is the need of a manual set

of the parameter that balances between the loss and the penalty term. In this paper, a novel

methodology referred as the GA-PARSIMONY and specifically designed to overcome this issue

is evaluated in detail in thirteen public databases with five regression techniques. It is a GA-

based meta-heuristic that splits the classic two-termed minimization functions by making two

consecutive ranks of individuals. The first rank is based solely on the generalization error, while

the second (named ReRank) is based on the complexity of the models, giving a special weight

to the complexity entailed by large number of inputs.

For each database, models with lowest testing RMSE and without statistical difference among

them were referred as winner models. Within this group, the number of features selected was

below 50 %, which proves an optimal balance between error minimization and parsimony. Par-

ticularly, the most complex algorithms (MLP and SVR) were mostly selected in the group of

winner models, while using around 40-45 % of the available attributes. The most basic IBk,

ridge regression (LIN) and M5P were only classified as winner models in the simpler databases,

but using less number of features in those cases (up to a 20-25 % of the initial inputs).
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1. Introduction1

The selection of a good overall model, with optimal generalization ability but with a reduced2

number of features, has multiple advantages for its implementation in real-world applications.3

The identification of the most relevant input variables facilitates the understanding of the prob-4

lem being studied, and it generates more robust models against perturbations, noise and miss-5

ing values. In this line, a reduction in the number of inputs has a positive impact on the human6

and economic efforts required for data acquisition and preprocessing. For instance, in envi-7

ronmental applications, it involves cutting down on costs in data acquisition systems as well8

as reducing the time to analyze and process the information. Finally, the development of less9

complex models significantly simplifies upcoming stages such as re-calibration and exploiting,10

and mitigates the well known overfitting issues.11

One of the most frequent approaches to tackle overfitting is the use of regularization. This12

strategy has been included in the training stage of many machine learning algorithms, and it13

consists in minimizing a Loss + Penalty function [1]:14

minimize
β0,β1,...,βp

{L(X, y, β) + λP(β)} (1)

where L(X, y, β) is the loss function that evaluates the performance of the model trained (β)15

given a set of input variables (X) and an outcome (y), and P(β) is the penalty function that is16

related to the complexity of the model. Finally, λ is a non-negative parameter that balances17

cost and penalty terms in order to control the bias-variance trade-off. This type of regulariza-18

tion strategy is used by multiple methods such as ridge regression (L2 penalty), LASSO (L119

penalty), SVM (cost parameter) or ANNs (weight decay). In most of these methods, λ along20

with other secondary parameters are tuned with some classic optimization algorithms such as21

grid search (GS) or random search (RS). These optimization methods are combined with some22

resampling techniques such as k-fold Cross-Validation (CV) or Bootstrap to ensure a final model23

with adequate generalization ability. However, a second validation procedure is still required24

if other external parameters need to be optimized, such is the case of the number of features25

and coefficients involved in the data transformation process. This second validation procedure,26

performed among the best models from the first stage, must be again based on both criteria27
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(generalization capability and complexity).28

Soft computing (SC) appears as an effective alternative to reduce the computational and29

human cost of this task compared against the classic approaches [2, 3, 4, 5, 6, 7, 8, 9]. In the30

last years, several authors have reported the use of SC strategies for the model selection pro-31

cess, combining feature selection (FS) and parameter tuning (PT) to generate models with good32

generalization capabilities [10, 11, 12]. For instance, Huang and Chang [13] combined genetic33

algorithms (GAs) with k-fold cross-validation (CV) for FS and tuning of Support Vector Ma-34

chines (SVM) in order to improve microarray classification. Vieira et al. [14] used binary particle35

swarm optimization (PSO) to tune a wrapper approach with SVM to predict whether a patient36

with septic shock survived or deceased. Ahila et al. [15] modified the PSO method to perform FS37

and tuning of Extreme Learning Machines (ELM) in a power system disturbances classification38

problem. Dhiman et al. [16] designed a hybrid approach with wavelet packet decomposition39

and a GA-SVM scheme for FS and MPO to obtain classification models capable of detecting40

epileptic seizures from background electroencephalogram signals. Castillo et al. [17, 18] used41

ant colony optimization (ACO) to adjust different membership functions of complex fuzzy con-42

trollers. Winkler et al. [19] used different evolutionary strategies to perform FS and to optimize43

linear models, k-nearest neighbors (k-NN), ANNs and SVM with the final purpose of identify-44

ing tumor markers. Sanz-García et al. [20] proposed a GA-based optimization method to create45

better overall parsimonious ANNs for predicting set points in an steel annealing furnace. Ding46

[21] used PSO for selecting spectral bands and optimizing SVM parameters in remote sensing.47

The main objective of these works is to generate models with the lowest generalization error48

while maintaining the overall parsimony, which mainly concerns to the number of variables49

retained as inputs. However, most of these studies include an optimization via a classic two-50

termed Loss + Penalty function that requires to set the penalty parameter (Λ). This Λ is similar51

to the aforementioned λ, but here is used to compare models instead of comparing variations52

of the same model. Hence, its value has to be manually set prior the execution of the optimiza-53

tion methodology. In this context, we introduced a new GA-based optimization methodology,54

named GA-PARSIMONY [22]. Our aim is to automate the optimization process when the com-55

plexity of the model is taken into account by getting rid of the penalty parameter Λ. To do56

so, we break the traditional Loss + penalty optimization function by making two consecutive57
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ranks of the individuals. First, individuals are ranked according to a loss term (k-fold CV error).58

Next, the position of individuals with no significant difference in their loss functions is modified59

based on the complexity of the models (process hereafter referred as ReRank). The complexity60

evaluation accounts for both, the inner complexity of the model and the number of features61

retained. Therefore, the methodology conducts the tuning of model parameters and feature se-62

lection at a time, while boosting the selection of parsimonious models. The methodology has63

been already successfully applied for predicting set points in industrial processes [23, 20, 24],64

for solar energy modeling [25, 26, 27] and for structure engineering [28] among other appli-65

cations. When compared against other optimization methods, the obtained models proved to66

have similar generalization errors while using a lower number of inputs. The main goal of this67

work is to perform a more detailed analysis of the GA-PARSIMONY methodology by testing it68

into five well-known regression methods with different population sizes and public databases.69

The remainder of this paper is organized as follows. GA-PARSIMONY methodology is pre-70

sented in Section 2. The design of the experiments to evaluate the methodology is detailed71

in Section 3. The different regression techniques used are introduced, as well as the public72

databases and metrics used for evaluation. Numerical results obtained are presented and dis-73

cussed in Section 4 and the conclusions drawn are shown in Section 5.74

2. GA-PARSIMONY methodology75

The objective of the methodology is to automate the model structure selection process.76

Specifically, feature selection and parameter tuning are simultaneously conducted in order to77

obtain accurate but parsimonious models. The methodology is referred by authors as GA-78

PARSIMONY [22], as it combines the traditional GA structure (see Figure 1) for FS and PT, with79

the selection of parsimonious models. Here, the main novelty compared to existing proposals is80

the elimination of the penalty parameter from the fitness function. The procedure begins with81

the definition of the initial population Λ0.82

Λ0 : {λ1
0, λ2

0, ..., λP
0 } (2)

Hybrid chromosomes λi
g are used to select features and tune model parameters. The chro-83
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mosomes are composed of two different entities: a binary coded vector, with the selected fea-84

tures as inputs to the predictive technique, and a real coded part, with the numerical values of85

the tuning parameters of the model. The first generation is created via Latin Hypercube Sam-86

pling (LHS) [29], a technique that generates a population with enough diversity in the search87

space and accelerates the convergence process.88

The predictive technique is calibrated for each individual following the specifications (tun-89

ing parameters and input features) of its chromosome. Next, the generalization ability of each90

model is evaluated. This evaluation process is conducted by using m repeated k-fold cross vali-91

dation to prevent overfitting [30]. Here, different metrics to evaluate the performance of models92

can be used, though MAE and RMSE are the most widespread ones.93

J(λi
g) =

∑k×m
i=1 errori

k×m
(3)

Once the fitness function J for all individual λi
g of the population Λg is computed, models94

obtained are sorted according to their fitness function:95

ΛJ
g ← sort(J(Λg)) (4)

Instead of including a complexity penalty term in the fitness function J, the first rank of the96

individuals is modified based on the complexity of the models. This process is referred as the97

ReRank.98

Λs
g ← ReRank(ΛJ

g) (5)

The ReRank algorithm works as follows (see Algorithm 1). Each model is compared against99

its predecessor starting from the top of the initial rank (based on Js). First, a statistical test is100

conducted to determine if a significant difference between their Js exists. Only in the case of101

being statistically equivalent, the complexity of both models is evaluated. If the first model is102

more complex than the latter, they swap their positions. The statistical test used is the Wilcoxon103

Signed-Ranked test [31]. The complexity of the models is evaluated with a expression that104

combines the number of features with the inner complexity of the predictive algorithm:105
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Complexity = 106NFS + Cmodel (6)

where NFS is the number of inputs and Cmodel is the internal model complexity, which de-106

pends on the regression algorithm. This expression is designed to give priority to the NFS term.107

The complexity of the models is first evaluated in terms of the number of inputs. Only in the108

case of having two models with the same number of inputs, the inner complexity of the model109

is taken into account. Mathematically, this is accomplished by weighting the NFS with a value110

high enough (106) and by setting an upper limit of 999999 for Cmodel . The indexes of the first111

chromosomes being compared are sequentially incremented up to the last element. The index112

of the second chromosome is incremented alone in the case of finding two individuals with no113

significant difference in their Js.114

Algorithm 1 ReRank

1: input G(J, Model − Complexity) : Individuals sorted by J
2: const NUMINDIV = cte.; alpha = cte.
3: var PosFirst, PosSecond : 0..NUMINDIV
4: Begin
5: PosFirst← 0
6: repeat
7: PosFirst← PosFirst + 1
8: repeat
9: PosSecond← PosFirst + 1

10: p− value← test (G[PosFirst](J), G[PosSecond](J))
11: if p− value > alpha AND G[PosSecond](Size) < G[PosFirst](Size) then
12: swap(G[PosFirst], G[PosSecond])
13: end if
14: until p− value ≤ alpha OR PosSecond = NUMINDIV
15: until PosFirst = NUMINDIV − 1
16: End

Based on the modified rank obtained after applying the ReRank algorithm, best individuals115

are kept as parents for the next generation. The number of individuals selected as parents for116

the next generation is set by means of the elitism percentage xe.117

Λg[1 : Pe]← select(Λe
g−1) with xe (7)

where Λe
g−1 are the elitist individuals in g − 1 and Pe is the number of elitist individuals.118
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Then, couples of chromosomes for mating are selected following different approaches, from119

uniform selection to more advanced methods such as roulette or tournament. Each couple of120

parents produce two offsprings, and different mating methods can be chosen to generate the121

offsprings, such as crossover or blending [32] among others. Finally, the chromosomes of the122

new generation are randomly mutated to maintain the genetic diversity of population.123

Λg[1 : P]← mutation(Λg[1 : P]) with xm (8)

where xm is the mutation rate, i.e., the percentage of total bits in the boolean part or digits124

in the numeric part mutated. The two best individuals are never muted. This procedure is125

repeated until the maximum number of generations G is reached.126

3. Experimental127

The GA-PARSIMONY methodology was evaluated in different scenarios, using five well-128

known regression algorithms and thirteen databases retrieved from public repositories.129

3.1. Regression Schemes130

Five of the currently most representative regression techniques were selected:131

• MLP [33]: The Multi-Layer Perceptron (MLP) is the most common version of feed-forward132

artificial neural networks. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm was se-133

lected. It is a more robust approach compared to the basic methods, and it is designed to134

avoid falling into local minima. Two parameters were tuned during the training process;135

the number of neurons in the hidden layer and the ridge parameter. The latter determines136

the penalty imposed due to the size of the weights in the training process.137

• SVR [34]: Support Vector Regression (SVR) is the implementation of the well-known sup-138

port vector machines (SVM) for regression tasks. It is actually one of the most used models139

since it is able to deal with non-linear situations thanks to the so-called ’kernel trick’. Be-140

sides, the technique is able to avoid local minimum values, providing high generalization141

capacity. The kernel function selected was the radial basis function (RBF). The setting142
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parameters were the penalty coefficient or cost C, which balances between error mini-143

mization and complexity, the γ of RBF kernel, a parameter which controls the width of144

the Gaussian function, and the insensitive loss parameter ε, which controls the number of145

support vectors.146

• LIN [35]: Ridge regression is a classic variation of linear regression based on the Tikhonov147

regularization criterion. It introduces a L2 penalty to deal with ill-conditioned matrices,148

improving the robustness of the naive linear regression. The only parameter tuned was149

the ridge parameter, which controls the amount of regularization.150

• IBk [36]: The IBk algorithm is an implementation of the k-nearest neighbors method151

(kNN) for regression. The outcome of the IBk model is the average or weighted aver-152

age value of the closest neighbors. The tuning parameters for the IBk are the number of153

the nearest neighbors K and the type of weighting distance used.154

• M5P [37]: The M5P algorithm is a conventional decision tree with linear regression mod-155

els at the leaves. It is based on the M5 algorithm introduced by Quinlan [37] and later156

enhanced by Wang and Witten [38]. The tuning parameter was the minimum number of157

instances per leaf M.158

3.2. GA-PARSIMONY settings159

A real-coded chromosome was used with a total of n + m values that include the n tuning160

parameters and a boolean array of m elements that correspond to the available inputs for the161

model. If the attribute is included in the model, the corresponding element of m is set to 1. The162

length of m depends on the number of features (dimension) of the database being used, while163

the number of tuning parameters n depends on the regression algorithm selected (see Table 1).164

Data was normalized between 0 and 1 and then split into a training-validation set, to im-165

plement the methodology, and a testing set, to externally validate its accuracy. The normalized166

root mean squared validation error (RMSEval) was the metric selected for the fitness function J.167

The validation procedure implemented was 5× 2-fold CV (2 folds with 5 repetitions).168

The Wilcoxon Signed Rank test was used for the statistical comparisons between Js in the169
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ReRank algorithm, with a significance level of α = 0.05. The internal complexity of each predic-170

tive technique (Cmodel) was obtained with the analytic expressions shown in Table 1.171

The selection strategy implemented was random uniform with an elitism percentage of 20%.172

The mating method used was heuristic blending [39], which is based on the following equation:173

pnew = β (pmn − pdn) + pmn (9)

where pmn and pdn are the nth variable in parent chromosomes, pnew is the new single off-174

spring variable and β a random number in the range [−0.1, 1.1]. Finally, a mutation percentage175

of 10% was applied to all the experiments.176

Experiments were carried with different population sizes (8, 16, 32, 48, 65), while the maxi-177

mum number of generations was kept constant (G = 40).178

3.3. Data179

The described methodology was implemented in thirteen benchmark databases retrieved180

from public repositories: UCI[40] and StatLib[41]. Databases were selected to cover different181

regression scenarios, regarding the number of attributes and samples (see Table 2).182

3.4. Evaluation183

The performance of the different models trained (4 regression techniques, 13 datasets, and 6184

population sizes) was evaluated based on the Root Mean Squared Error (RMSE):185

RMSE =

√√√√ 1
N

N

∑
i=1

(ŷi − yi)2 (10)

Databases were normalized between 0 and 1 prior to training, so results could be evaluated186

in percentage terms. Subsequently, each database was split into a training set (80 % of samples)187

and a testing set (20 % of samples). The training set was used to calibrate the different models188

using the GA-PARSIMONY with 5× 2-fold CV. A validation error (RMSEval) was obtained from189

the calibration process, but still a external validation metric was computed with the testing set.190

This testing error was calculated for each model in each run of the 5× 2-fold CV, so 5 testing191
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values were available per model. Therefore, the testing error was reported in terms of its mean192

(RMSEtst) and its standard deviation (RMSEsd
tst).193

For each database, models based on the different regression techniques and population sizes194

were ranked according to the average RMSEtst. The model with the lowest error was initially195

considered the best or winner model. Then, this best model was statistically compared against196

the others using the Wilcoxon Signed-Ranked test with α = 0.05. Models not showing signifi-197

cant difference with the best model were also included in the group of winner models. Another198

metric used to compare the model with lowest testing error and the rest was the DRMSEtst,i,199

which is the difference between the RMSEtst of the model being studied (i) and the model with200

the lowest testing error:201

DRMSEtst,i = RMSEtst,i − RMSEtst,best (11)

3.5. Software202

All experiments were run in the free statistical software R[42]. The following packages were203

used to implement the different regression techniques: e1071 [43] for the SVR and RWeka[44]204

for the remaining techniques in order to import Weka algorithms[35, 45] to R. All computations205

were run in a dual quad-core opteron server (Intel R©Xeon R©CPU E5410 @ 2.33 GHz).206

4. Results and Discussion207

Table 3 summarizes the results of the models with lowest RMSEtst for each database. De-208

spite the fact that results are not comparable in terms of RMSE due to the differences between209

databases, it is interesting to highlight that lowest errors were obtained with SVR and MLP210

in ten out of thirteen databases. In triazines and wisconsin, two databases with a high number211

of attributes, M5P and LIN generated the lowest errors, while IBk was the best performing212

algorithm for meta.213

The GA-PARSIMONY methodology succeeded in reducing the number of inputs, as eight214

out of thirteen models used less than the 50 % of available attributes. It has to be note that these215

high reduction ratios were obtained for the models with lowest testing error, which proves that216

the methodology is able to minimize the prediction error while still developing parsimonious217
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models. The reduction in the number of features was more striking in databases with a high218

number of initial features (tecator, puma, triazines).219

Models were ranked according to the RMSEtst in order to compare algorithms through dif-220

ferent databases. Fig. 2 shows the different rankings of the models obtained for the thirteen221

databases. The plot on the left depicts that MLP and SVR generally coped the first positions in222

the rank when popsize ≥ 32. For any popsize setting, the medians of both techniques were be-223

low the first quartile of the remaining algorithm, which means that SVR and MLP obtained best224

ranking in more than 50% of databases. The MLP performed significantly well in the case of225

small population sizes (popsize = 8), being always ranked between the first and third position226

and showing a small interquartile range for the DRMSEtst. This indicates the good generaliza-227

tion ability of this model for almost all databases. Surprisingly, MLP yielded good results even228

with very few individuals. On the other hand, SVR exhibited the best interquartile range when229

popsize was between 32 and 48 individuals. It obtained first and second positions in more than230

75% of databases with a low DRMSEtst, similar or better than the one of MLP.231

Table 4 focuses on the case of 64 individuals. Models with lowest testing error and no sta-232

tistical difference among them are depicted in bold. MLP and SVR were chosen in the group233

of winner models in eleven out of thirteen databases. A similar trend is observed in Figure 3,234

where the percentage of winner models for each algorithm and popsize is shown. It is observed235

that most winner models were obtained with MLP and SVR. In particular, SVR models were236

selected as winners in 70%− 80% of the cases for a popsize ≥ 16.237

Table 5 presents the average percentage of features used (NFS in %) for each database. Re-238

sults show that the number of winner models obtained with MLP and SVR was high when the239

number of attribute was less or equal to 32, while still showing similar NFS values compared to240

the remaining algorithms. Differences between algorithms increased with databases of higher241

dimensionality (triazines or tecator). Nevertheless, results proved that basic algorithms such as242

LIN, IBk or M5P should be considered when selecting a predictive technique, as there are some243

simpler databases in which they are included in the group of winner models (strike, body f at,244

pryim, wisconsin or meta). What is more, in these simpler databases, these models exhibited245

higher ratios of input reduction compared to the the more complex SVR or MLP.246

This idea was corroborated in Figure 4, where NFS is plotted against the population size.247
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SVR and MLP were chosen in most of databases as winner models (approximately between 8248

and 9 sets out of 13) but a lower NFS (higher reduction) was obtained with simpler techniques249

when they were included in the group of winner models. NFS was around 40 % for SVR and250

MLP, while it decreased close to a 20 % with linear regression and IBk. No relationship between251

NFS and population size was observed.252

Table 6 summarizes the total execution time required by each one of the configurations253

(database, regression technique and population size) implemented. The table was comple-254

mented with Figure 5, where the execution times are shown in relative terms for each database.255

Results show that execution times in the majority of databases were considerably low for an256

iterative optimization methodology, being close or under 10 minutes. This was a consequence257

of the low dimensionality of most databases, as nine out of thirteen databases presented less258

than 500 samples and 40 attributes. It has to be noted that MLP is the algorithm with higher ex-259

ecution times in all cases, due to the time consuming training algorithm of the MLP. In the case260

of tecator, the database with a higher number of attributes, this execution time raised over 1000261

minutes, which proves the inadequacy of this algorithm for high dimensionality databases. The262

execution time of SVR and MLP also increased for databases with a higher number of samples263

(ailerons, puma and space), as the cost of these techniques raises exponentially with the number264

of samples. Lastly, a linear dependence was observed between the number of individuals used265

(population size) and the execution time required.266

5. Conclusions267

This study evaluates the GA-PARSIMONY, a new GA-based optimization methodology for268

model structure selection, with a wide variety of regression techniques and databases. It breaks269

the classic Loss + Penalty optimization functions into a two-step process, in order to eliminate270

the necessity of setting the value of the penalty parameter a priori. A first rank of individuals271

is generated based on the prediction error, and this rank is subsequently modified based on the272

complexity of the model to spur the selection of parsimonious model. The complexity ReRank273

is made taking into account the inner complexity of the algorithm and the number of features274

used.275
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Results proved that this methodology was able to combine error minimization and parsi-276

mony effectively. Models with lowest testing RMSE and no statistical difference among them277

were identified and referred as winner models. Even in this group of winner models, which are278

the ones with lowest generalization error, the percentage of features selected was below 50 %279

for all predictive techniques implemented. The most complex algorithms, MLP and SVR, were280

selected more frequently in the group of winner models, while generally requiring around the281

40 % of available attributes. This value decreased down to 20-25 % for the most simple IBk282

and ridge regression (LIN), despite of being included more occasionally in the group of winner283

models. Due to the relatively low dimension of the databases, no significant differences were284

observed among the different population sizes evaluated. Consequently, other experiments will285

be needed with higher-dimensional databases and with other techniques like ensemble meth-286

ods (random forest for regression, boosting, bagging, etc.).287
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Figure 2: Boxplots of the results obtained with each regression technique and each population size for the different
databases. The plot in the left shows the position of the algorithm in the rank based on the RMSEtst while the plot on
the right depicts the DRMSEtst.
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Table 1: Regression techniques implemented, along with the functions used to compute the inner complexity of the
algorithms (Cmodel) and the optimization range of the tuning parameters.

Algorithm Cmodel Tuning parameters

MLP ∑ wi
2 (network weights)

number of hidden neurons [1, 30]
ridge

[
10−6, 0.9̂

]
SVR number of support vectors

log10(C)
[
−3.9̂, 1.49̂

]
γ
[
10−6, 0.9̂

]
ε
[
10−6, 0.9̂

]
LIN ∑ β2

i (regression weights) ridge
[
10−8, 0.9̂

]
IBk (106/K)− 1

distance weighting [1 = none, 2 = 1− d, 3 = 1/d]
K [1, 30]

M5P number of leafs M [1, 30]
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Table 2: Data description

Database # Attributes # Instances
bodyfat 14 252
boston 13 506
no2 7 500
pm10 7 500
pyrim 26 74
space 6 3107
strike 6 625
tecator 124 240
triazines 58 186
wisconsin 32 194
ailerons 41 13750
meta 18 504
puma 33 8192
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Table 3: Summary of the models with lowest RMSEtst for each database. NFS in % stands for the relationship between
the number of inputs used by the model (NFS) and the number of available inputs of the database.

Database Algorithm popsize RMSEtst RMSEsd
tst NFS NFS[%]

bodyfat SVR 48 .030 .013 2 14.3
boston SVR 64 .066 .008 8 61.5
no2 MLP 24 .094 .004 5 71.4
pm10 SVR 8 .157 .009 4 57.1
pyrim SVR 32 .110 .066 5 19.2
space MLP 8 .032 .002 6 100
strike SVR 16 .052 .020 4 66.6
tecator MLP 64 .009 .001 3 2.4
triazines M5P 16 .162 .005 9 15.5
wisconsin LIN 32 .261 .035 7 21.9
ailerons MLP 24 .044 .001 8 20
meta IBk 48 .067 .043 3 17.6
puma SVM 32 .031 .001 4 12.5
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Table 4: Mean and standard deviation (in parenthesis) of the RMSEtst obtained with each regression technique for the
case of 64 individuals. The algorithm ranking according to the RMSEtst is shown in brackets. The group of winner
algorithms for each database is depicted in bold.

Alg body f at boston no2 pm10 pyrim

MLP .034 (.018) [3] .073 (.011) [2] .095 (.004) [1.5] .157 (.011) [1] .129 (.035) [4]
SVR .030 (.015) [1] .066 (.006) [1] .096 (.004) [3] .158 (.011) [2] .121 (.053) [2]
LIN .035 (.020) [4.5] .113 (.008) [5] .098 (.002) [4] .169 (.013) [5] .120 (.023) [1]
IBk .031 (.010) [2] .078 (.010) [3] .099 (.007) [5] .160 (.012) [3] .127 (.042) [3]
M5P .035 (.021) [4.5] .086 (.012) [4] .095 (.006) [1.5] .168 (.014) [4] .146 (.062) [5]

Alg space strike tecator triazines wisconin

MLP .032 (.002) [1] .060 (.018) [3] .009 (.001) [1] .171 (.008) [1] .269 (.039) [2]
SVR .033 (.003) [2] .055 (.018) [1.5] .026 (.016) [4] .181 (.015) [3] .275 (.042) [4]
LIN .041 (.003) [5] .061 (.018) [4.5] .013 (.002) [2] .189 (.011) [4] .263 (.035) [1]
IBk .038 (.004) [3] .055 (.017) [1.5] .049 (.007) [5] .176 (.012) [2] .278 (.031) [5]
M5P .040 (.003) [4] .061 (.018) [4.5] .016 (.002) [3] .192 (.009) [5] .271 (.037) [3]
Alg ailerons meta puma

MLP .044 (.001) [1.5] .069 (.042) [3] .031 (.001) [1]
SVR .044 (.001) [1.5] .069 (.043) [3] .032 (.001) [2]
LIN .049 (.001) [5] .069 (.042) [3] .151 (.001) [5]
IBk .046 (.004) [4] .067 (.043) [1] .044 (.001) [3]
M5P .045 (.001) [3] .070 (.042) [5] .045 (.001) [4]
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Table 5: Average of the percentage of inputs retained by each model (NFS) for the group of winner models in each
database. The number of winner models is depicted in brackets

Database #Att MLP SVR LIN IBk M5P

space 6 1.00 (6) 0.96 (4) - (0) - (0) - (0)
strike 6 0.56 (6) 0.44 (6) 0.67 (6) 0.33 (6) 0.33 (6)
no2 7 0.67 (6) 0.57 (6) - (0) - (0) 0.86 (4)
pm10 7 0.54 (5) 0.57 (6) - (0) 0.57 (2) - (0)
boston 13 0.62 (1) 0.64 (3) - (0) - (0) - (0)
bodyfat 14 0.14 (6) 0.15 (6) 0.14 (6) 0.14 (5) 0.18 (6)
pyrim 26 0.22 (4) 0.21 (6) 0.14 (4) 0.15 (6) - (0)
wisconsin 32 0.16 (6) 0.08 (6) 0.14 (6) 0.10 (6) 0.08 (6)
triazines 58 0.16 (1) - (0) - (0) - (0) 0.16 (1)
tecator 124 0.25 (1) - (0) - (0) - (0) - (0)
ailerons 40 0.23 (6) 0.24 (1) - (0) - (0) - (0)
meta 17 0.12 (6) 0.12 (6) 0.11 (6) 0.18 (6) 0.11 (6)
puma 32 0.12 (2) 0.12 (2) - (0) -(0) - (0)
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Table 6: Total execution time in minutes of the GA-PARSIMONY methodology for each regression algorithm, population
size and database
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MLP 10.8 24.7 15.4 12.6 11.4 134.7 18.4 225.5 52.6 15.0 422.7 9.5 98.4
SVR 6.2 6.6 6.5 6.5 6.3 13.2 6.7 8.2 7.0 6.8 92.8 10.7 51.5
LIN 7.5 8.1 7.8 7.8 7.5 8.5 7.9 11.2 8.9 8.3 22.5 7.9 9.9
IBk 7.6 7.9 7.9 7.9 7.8 14.8 8.0 10.4 8.8 8.4 154.1 8.0 72.3

M5P 9.1 10.5 10.7 10.6 7.9 12.5 9.5 12.2 10.2 10.5 34.7 9.4 17.0

16

MLP 16.4 22.7 15.7 16.9 15.4 177.1 22.2 485.2 30.7 28.0 1071.8 14.6 669.9
SVR 6.7 7.1 6.9 7.2 6.7 27.7 7.3 8.9 7.6 7.5 497.3 6.8 122.5
LIN 9.1 9.8 9.2 9.1 9.1 10.5 9.2 14.1 11.3 17.3 23.0 9.2 13.3
IBk 9.4 9.9 9.7 9.8 9.4 24.2 9.8 13.6 11.1 10.3 314.5 9.8 144.3

M5P 10.9 12.0 12.9 11.7 10.8 18.8 11.6 15.6 12.8 11.8 63.9 11.2 48.6
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MLP 18.0 40.4 30.6 24.1 19.0 422.3 21.2 1219.8 37.7 22.6 1704.3 18.6 1243.6
SVR 6.9 8.0 7.4 7.4 7.0 36.0 7.8 10.0 8.2 7.8 563.2 7.1 196.3
LIN 11.1 11.0 10.8 10.5 10.7 12.2 10.8 17.6 13.0 11.8 27.4 10.3 16.5
IBk 11.1 11.9 12.0 11.8 11.5 33.3 11.9 16.9 13.4 12.6 458.4 11.7 217.6

M5P 12.9 15.1 15.0 17.8 12.9 19.9 14.5 19.9 15.2 14.3 69.4 16.7 36.1

32

MLP 22.9 44.5 26.1 34.8 20.6 459.9 37.8 1038.5 38.1 35.8 2816.1 23.1 1719.6
SVR 7.4 8.6 8.1 8.3 7.4 45.5 8.5 11.8 9.1 8.3 692.1 7.4 668.1
LIN 12.1 13.2 13.1 12.1 12.8 14.3 12.1 21.4 15.5 13.9 34.0 11.8 24.0
IBk 12.4 13.6 13.5 13.4 13.1 42.3 13.6 20.9 15.7 14.2 645.2 13.6 302.6

M5P 14.7 16.9 17.1 16.4 14.2 27.3 16.1 22.7 18.4 15.9 86.4 28.6 43.2
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MLP 34.5 77.5 34.2 34.4 31.2 591.0 52.7 1401.3 93.0 64.1 2340.8 34.2 2339.1
SVR 8.1 10.3 9.0 9.0 8.4 69.0 10.0 15.4 10.7 9.5 1873.5 29.2 597.3
LIN 14.8 15.8 15.5 14.7 15.9 18.1 14.7 28.5 20.9 17.3 47.2 19.7 26.8
IBk 15.6 17.2 17.1 17.0 16.4 59.7 16.9 27.6 20.8 18.5 972.0 26.3 438.0

M5P 18.7 20.8 21.0 19.9 18.7 38.0 19.7 32.1 23.1 20.3 145.2 18.2 61.7

64

MLP 41.3 83.6 46.8 60.1 41.7 906.6 58.8 1756.6 212.5 80.4 4021.6 53.0 4075.4
SVR 8.9 12.0 10.2 10.1 9.3 85.2 11.8 16.8 12.9 10.8 2405.7 17.7 1139.7
LIN 18.1 21.6 18.7 17.8 19.7 22.4 17.5 36.4 24.4 21.7 61.0 18.0 46.4
IBk 18.6 20.9 20.5 20.5 20.0 78.6 20.3 33.6 25.5 21.8 1259.8 29.7 582.2

M5P 21.5 25.2 34.9 23.4 22.0 47.1 23.7 41.8 28.6 23.4 181.3 32.5 85.4
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