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Abstract

We study the consistency for general additive Runge–Kutta methods in the integration of linear nonhomogeneous
problems, obtaining necessary and su+cient conditions of order p, for arbitrary values of p. We use this result joined
to some A-stability conditions for developing a third order additive Runge–Kutta method of type fractional steps and we
show its e+ciency in the numerical integration of a two-dimensional evolutionary convection–di-usion problem. c© 2002
Elsevier Science B.V. All rights reserved.
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1. Introduction

Let us consider an initial value problem (IVP):

y′(t)=f(t; y(t));

y(t0)=y0 (1)

and an arbitrary decomposition of f in n, usually simpler, addends of type

f(t; y(t))=
n∑
i=1

fi(t; y(t)): (2)
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De�nition 1.1. An additive Runge–Kutta method of s stages and n levels is a one-step method such
that, using partition (2), approaches the solution of the IVP (1) by means of the scheme

y0

ym+1 =ym + �
s∑
i=1

n∑
k=1

bki fk(tm + � ci; Y m; i) where

Ym; i=ym + �
s∑

j=1

n∑
k=1

akijfk(tm + � cj; Y m;j) for i=1; : : : ; s: (3)

Here, ym will be approximations to the solution y(tm), where tm=m�. Typically, the vectors Ym; i

are called stages of the method.
For simplicity, we shall consider only constant time step �. The convergence results that we give

in Section 3 are easily extended to variable time steps �m.
The scheme (3) suggests that there are n standard Runge–Kutta methods involved in an additive

Runge–Kutta method, in such way that each one of them deAnes the contribution to the numerical
solution of a part fi of the derivative function f.
Di-erent applications of additive Runge–Kutta methods can be found in the literature; in all of

them, the main advantage is focused in reducing the computational cost of the numerical integration
of certain IVPs, if a suitable partition of function f is considered. For example, in [6,7,13] some
nonlinear sti- problems of type

y′(t)= J (t)y(t) + g(t; y);

y(t0)=y0;

where g(t; y) is a perturbation of the linear term J (t)y(t), are e+ciently integrated by using some
additive Runge–Kutta methods composed by an A-stable DIRK method for computing the contri-
bution of the linear term and an explicit Runge–Kutta method for the perturbation g(t; y), resulting
a linearly implicit numerical method. Also, in [16] it is shown that certain class of semi-explicit
additive Runge–Kutta methods provides robustness and low computational cost in the numerical
integration of Hamiltonian systems with separable Hamiltonians, of type

dp
dt

=f(q);

dq
dt

= g(p);

where p ≡ (p1; : : : ; pn); q ≡ (q1; : : : ; qn); f ≡ (−@H=@q1; : : : ;−@H=@qn) and g ≡ (@H=@p1; : : : ; @H=
@pn), being H ≡ H (p1; : : : ; pn; q1; : : : ; qn) :R2n → R the Hamiltonian function. The scheme proposed
in [16] is

pm+1 =pm + �
s∑

j=1

b1jfj;

qm+1 = qm + �
s∑

j=1

b2j gj;

with

Ym; i=pm + �
i∑

j=1

a1ijfj;

Zm; i= qm + �
i−1∑
j=1

a2ijgj;

for i=1; : : : ; s;
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where fj =f(Zm;j) and gj = g(Ym;j). Note that, for this kind of Hamiltonians, even though a1ii �=0,
the last scheme is explicit, since Ym;j is not an argument of fj =f(Zm;j) and, for suitable choices of
coe+cients (akij; b

k
j ), it preserves the symplectic structure of the phase space (such type of methods

are called canonical).
In some classical papers (see [15,18]), and recently in others (see [3,5,11,12,17]), a special kind

of additive Runge–Kutta methods, called fractional step Runge–Kutta, have been used e+ciently in
the time integration of multidimensional parabolic problems.

De�nition 1.2. A fractional step Runge–Kutta method (abbreviated as FSRK), is an additive Runge–
Kutta method verifying

akii¿ 0; ∀i∈{1; : : : ; s}; k ∈{1; : : : ; n}; akij =0; ∀j¿ i;

|bkj |+
s∑
i=1

|akij| �=0 ⇒ |blj|+
s∑
i=1

|alij|=0; ∀l �= k; l; k ∈{1; : : : ; n}; i; j∈{1; : : : ; s};

aliia
k
ii=0 if k �= l; i∈{1; : : : ; s}; k; l∈{1; : : : ; n}:

We will assume that a choice of coe+cients akij; b
k
i and ci with i; j=1; : : : ; s and k =1; : : : ; n

determines a unique additive Runge–Kutta method, although di-erent partitions on the derivative
function will give di-erent numerical approaches ym. Following the compact notations introduced by
Butcher for the standard Runge–Kutta methods (see [4,10]), we will refer an additive Runge–Kutta
method by means of their coe+cients structured in a table as follows:

Ce A1 A2 . . . An

(b1)T (b2)T . . . (bn)T,

where Ak =(akij); b
k =(bki ); C =diag(c1; : : : ; cs) and e=(1; : : : ; 1)T ∈Rs with i; j= {1; : : : ; s} and

k = {1; : : : ; n}.
We will focus our work in obtaining the order p conditions (for arbitrary values of p) that a

general additive Runge–Kutta method must verify when it is applied to solve numerically a linear
IVP of type

dy(t)
dt

=L(t)y(t) + g(t);

y(t0)=y0;
(4)

where L : [t0; T ] → Rd×d and g : [t0; T ] → Rd.
The use of Butcher’s framework (see [4]) to study the consistency of (3) requires to transform

(4) into an autonomous problem of type

d Ky(t)
dt

=F( Ky(t));

Ky(t0)= Ky 0;
(5)
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where typically

Ky(t)=
(

t
y(t)

)
∈Rd+1; F( Ky(t))=

(
1

f( Ky(t))

)
∈Rd+1; Ky 0 =

(
t0
y0

)
∈Rd+1

and, before studying the consistency, some coe+cient restrictions are usually imposed to ensure that
the application of scheme (3) to resolve the IVP (4) provides the same numerical solution as that
of the scheme applied to (5). In the case of considering only linear problems, such restrictions can
be avoided and we do it in this paper.

In order to construct e+cient methods of type FSRK for such problems we will combine the order
p conditions that we obtain in this paper with some stability conditions according to the nature of the
IVP to solve. For example, if we are interested in approaching the solution of a parabolic problem,
we can carry out Arstly a spatial semidiscretization of it, obtaining a one-parameter family of sti-
IVPs of type

dyh(t)
dt

=Lh(t)yh(t) + gh(t);

yh(t0)=y0h;
(6)

where h is typically the mesh size, and where the sti-ness grows to inAnity when h tends to zero.
Obviously, if we want an e+cient time integration for the family of IVPs (6) it is convenient to
have unconditional convergence results, or in other words, convergence for the numerical solutions
without limitations between the mesh size h and the time step �. If the numerical integration of these
problems is performed with classical one-step explicit methods, a stable behaviour implies strong
restrictions between � and Lipschitz’s constant of the problem, that, in this case, grows to inAnity
when h tends to zero. Therefore, if we want to obtain unconditional convergence, when we discretize
(6), we need to consider implicit methods verifying certain properties of absolute stability. Similar
restrictions between � and h should be considered if we used explicit additive Runge–Kutta methods
but such limitations can be avoided by using A-stable implicit additive Runge–Kutta methods.

This article is structured in four sections. In Section 2, we develop the study of the consistency,
obtaining necessary and su+cient conditions for attaining order p.

In Section 3, we will use some stability results proved in [2,14], together with the consistency
results developed here, for proving the convergence of the method.

Finally, in the last section we show the process for obtaining a third-order L-stable FSRK method
and its e+ciency in the numerical integration of a semidiscrete in space convection–di-usion problem.

2. Order conditions

In order to integrate the IVP (4) by means of a general additive Runge–Kutta method, we consider
Arstly a general decomposition for the linear operator L(t) in n addends

∑n
i=1 Li(t) (Li : [t0; T ] →

Rd×d) and also a decomposition for the source term g(t) of the form
∑n

i=1 gi(t) (gi : [t0; T ] → Rd),
in such a way that we use the scheme (3) with the following decomposition for f(t; y(t)) ≡
L(t)y(t) + g(t):

f(t; y(t))=
n∑
i=1

fi(t; y(t)) with fi(t; y(t))=Li(t)y(t) + gi(t): (7)
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The use of FSRK methods for the integration of problems of type (6) with partition (7) is
computationally interesting, because the initial problem can be reduced to a set of simpler problems,
one in every stage Ym; i of scheme (3), in the form (I − �k Lj(tm; i))Ym; i=Fi, where Fi is computed
explicitly from the result of the last stages, and where the linear operator Lj can be simpler than
L in a certain way; for example, if the operators Lj(tm; i) for j=1; : : : ; n, are obtained by using a
spatial discretization, via Anite di-erences, of operators of type dj(@2=@x2j ) − vj(@=@xj) − kj, then
(I − �kLj(tm; i)) are tridiagonal. 1 However, if we use classical implicit methods we should solve a
family of block tridiagonal systems, enlarging strongly the computational cost, or, on the contrary,
if we use classical explicit methods we should limit strongly the size of the time step when we use
Ane meshes.

In order to rewrite scheme (3) in a compact form we will use the following tensorial notations:

L̂
m
i (�)=



Li(tm + �c1) 0 : : : 0

0 Li(tm + �c2) : : : 0
...

...
. . .

...
0 0 : : : Li(tm + � cs)


∈ (Rd×d)s×s;

Ŷ
m
=



Ym;1

Ym;2

...

Ym;s


∈ (Rd)s; Ĝ

m
i (�)=



gi(tm + �c1)
gi(tm + �c2)

...
gi(tm + �cs)


∈ (Rd)s; (8)

given v ≡ (vi)∈Rs; M ≡ (mij)∈Rs×s and

IRd =




1 0 : : : 0
0 1 : : : 0
...

...
. . .

...
0 0 : : : 1


∈Rd×d;

we denote

Kv ≡



v1IRd

...
vsIRd


∈ (Rd×d)s

and

KM ≡



m11IRd : : : m1sIRd

...
. . .

...
ms1IRd : : : mssIRd


∈ (Rd×d)s×s

1 This is the main advantage of the classical alternating direction implicit methods.
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and using these notations and partition (7), scheme (3) can be written compactly as follows:

ym+1 =ym + �
n∑
i=1

(bi)T(L̂
m
i (�)Ŷ

m
+ Ĝ

m
i (�));

Ŷ
m
= Keym + �

n∑
i=1

Ai(L̂
m
i (�)Ŷ

m
+ Ĝ

m
i (�)):

(9)

To study the consistency of this scheme we introduce, as usual, the local error

em+1 =y(tm+1)− ŷ m+1;

where ŷ m+1 is the approximation to y(tm+1), obtained with one step of scheme (9) starting from
y(tm) instead of ym. We say that an additive Runge–Kutta method is consistent of order p if for
data Li(t)∈Cp([t0; T ];Rd×d); gi(t)∈Cp([t0; T ];Rd), for i=1; : : : ; n, it is veriAed that

‖em+1‖6C�p+1; ∀m¿ 0; � → 0; (10)

where C is a constant independent of �.
In order to obtain the order conditions, we will develop in powers of � and in terms of Li(t); gi(t)

and their derivatives, the solution y(tm+1) and its approach ŷ m+1.
If the operator ( KI − �

∑n
i=1 Ai L̂

m
i (�)) is invertible, 2 then we can deduce that

ŷ m+1 = y(tm) + �
n∑
i=1

(bi)TL̂
m
i (�)


 KI − �

n∑
j=1

AjL̂
m
j (�)



−1(

Key(tm) + �
n∑

k=1

Ak Ĝ
m
k (�)

)

+�
n∑
i=1

(bi)TĜ
m
i (�): (11)

As we have assumed that Li(t)∈Cp([t0; T ];Rd×d) and gi(t)∈Cp([t0; T ];Rd), then the following
Taylor’s expansions for L̂

m
i (�) and Ĝ

m
i (�) can be used

L̂
m
i (�)=

p−1∑
j=0

�j

j!
( KC) jL̂

m( j)
i (0) + O(�p);

Ĝ
m
i (�)=

p−1∑
j=0

�j

j!
( KC) jĜ

m( j)
i (0) + O(�p);

(12)

2 Note that the operator ( KI − �
∑n

i=1 Ai L̂
m
i (�)) is invertible for � small. Nevertheless, as we plan to integrate some sti-

problems, it is convenient to ensure that the operator ( KI − �
∑n

i=1 Ai L̂
m
i (�)) is invertible for arbitrary �. This is proved,

for time-dependent maximal coercive operators Li(t), in [2].
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where

L̂
m ( j)
i (0)=

djL̂
m
i (0)
dtj

and Ĝ
m ( j)
i (0)=

djĜ
m
i (0)
dtj

: (13)

Besides, we can use the following development for ( KI − �
∑n

i=1 Ai L̂
m
i (�))

−1:(
KI − �

n∑
i=1

AiL̂
m
i (�)

)−1

=
p∑
i=0

�i


 n∑

j=1

Aj L̂
m
j (�)



i

+ �p+1

(
n∑
i=1

Ai L̂
m
i (�)

)p+1

 KI − �

n∑
j=1

Aj L̂
m
j (�)



−1

=
p∑
i=0

�i


 n∑

j=1

AjL̂
m
j (�)



i

+ O(�p+1): (14)

Using expansions (12) and (14), the next expression for ŷ m+1 is deduced from (11):

ŷ m+1 = y(tm) + �
n∑
i=1

(bi)T


p−1∑

j=0

�j

j!
( KC)jL̂

m( j)
i (0)




p−1∑
k=0

�k
(

n∑
l=1

Al

E[p=k]∑
r=0

�r

r!
( KC)rL̂

m(r)
l (0)

)k
Ke y(tm)

+ �2
n∑
i=1

(bi)T


p−2∑

j=0

�j

j!
( KC)jL̂

m( j)
i (0)


 p−2∑

k=0

�k
(

n∑
l=1

Al

E[p=k]∑
r=0

�r

r!
( KC)rL̂

m(r)
l (0)

)k

(
n∑
s=1

As

(
p−2∑
u=0

�u

u!
( KC)u Ĝ

m (u)
s (0)

))

+ �
n∑
i=1

(bi)T


p−1∑

j=0

�j

j!
( KC)j Ĝ

m( j)
i (0)


+ O(�p+1); (15)

where E[x] denotes the integer part of x (except in the case k =0 which, for convenience, we will
consider E[p=0]=p).
In [8], an expansion for the exact solution of (4) in powers of � and in function of L(t); g(t)

and their derivatives are given. Such development is summarized in the following.

Lemma 2.1. If L(t)∈Cp([t0; T ];Rd×d) and g(t)∈Cp([t0; T ];Rd); then the exact solution y(tm+1)
of problem (4) can be expanded as follows:

y(tm+1)=y(tm) +
p∑
i=1

�i

i!
y(i)(tm) + O(�p+1); (16)
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where

y(i)(t)=
∑
r=1;:::; i

(*1 ;:::; *r)∈{0;:::; i−1}r
*1+···+*r=i−r

c*1 ; :::; *r (F (*1 ; :::; *r)y(t) + G(*1 ; :::; *r) g(t)); (17)

with

F (*1 ; :::; *r)y(t)=L(*1)(t) : : : L(*r)(t)y(t);

G(*1 ; :::; *r)g(t)=L(*1)(t) : : : L(*r−1)(t)g(*r)(t)

and with

c*1 ; :::; *r = i!
r∏

j=1

1
(r − j + 1) +

∑r
k=j *k

r∏
j=1

1
*j!

: (18)

Now, if we take into account that

L(k)(t)=
n∑
i=1

L(k)i (t); g(k)(t)=
n∑
i=1

g(k)i (t) for k =0; : : : ; p− 1;

we can substitute the developments (17) by the following ones:

y(i)(t)=
∑
r=1;:::; i

(i1 ;:::; ir)∈{1;:::; n}r
(*1 ;:::; *r)∈{0;:::; i−1}r

*1+···+*r=i−r

c*1 ; :::; *r (F (*1 ; :::; *r)
i1 ;:::;ir y(t) + G(*1 ; :::; *r)

i1 ;:::;ir g(t));

F (*1 ; :::; *r)
i1 ;:::;ir y(t)=L(*1)i1 (t)L(*2)i2 (t) : : : L(*r)ir (t)y(t) and

G(*1 ; :::; *r)
i1 ;:::;ir g(t)=L(*1)i1 (t)L(*2)i2 (t) : : : L(*r−1)

ir−1
(t)g(*r)ir (t); (19)

we call fractioned elementary di-erentials (FED) to the terms F (*1 ; :::; *r)
i1 ;:::;ir y(t) and G(*1 ; :::; *r)

i1 ;:::;ir g(t).
To And the order p conditions we impose that, in the developments (16)–(19) for y(tm+1) and

(15) for ŷ m+1, the addends which contain the powers �i, with 06 i6p, are equal. This implies that
we will make equal the coe+cients that in expressions (15) and (16)–(19) multiply to the same FED
F (*1 ; :::; *r)
i1 ;:::;ir y(t) or G(*1 ; :::; *r)

i1 ;:::;ir g(t), for every (*1; : : : ; *r)∈{0; : : : ; i − 1}r such that *1 + · · ·+ *r = i − r,
obtaining the following.

Theorem 2.1. The necessary and su=cient order conditions for an additive Runge–Kutta method;
applied to (4); to attain order p are

(bi1)T(C)*1Ai2(C)*2 : : :Air (C)*r e=
r∏

j=1

1
(r − j + 1) +

∑r
k=j *k

;
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for all r=1; : : : ; p for all (*1; : : : ; *r)∈{0; : : : ; p− 1}r ;

such that 16 r +
r∑

k=1

*k6p and for all (i1; i2; : : : ; ir)∈{1; 2; : : : ; n}r : (20)

Proof. For proving that conditions (20) are su+cient to attain order p, we use the next commutativity
relations among the operators L̂

m( j)
i (0); Ai and Kv, introduced in (8) and (13):

AiL̂
m(k)
j (0)= L̂

m(k)
j (0)Ai; ( KC)jL̂

m(k)
i (0)= L̂

m(k)
i (0)( KC)j and L̂

m(k)
i (0) Kv= KvL(k)i (tm):

These relations imply that

( Kb
i1)TL̂

m(*1)
i1 (0)( KC)*1Ai2 L̂

m(*2)
i2 (0) : : :Air L̂

m(*r)
ir (0)( KC)*r Kv

=( Kb
i1)T( KC)*1Ai2( KC)*2 : : :Air ( KC)*r KvL(*1)i1 (tm) : : : L

(*r)
ir (tm)

= (bi1)T(C)*1Ai2(C)*2 : : :Air (C)*r vL(*1)i1 (tm) : : : L
(*r)
ir (tm); (21)

for all (i1; : : : ; ir)∈{1; : : : ; n}r , for all (*1; : : : ; *r)∈{0; : : : ; p − 1}r and for all v∈Rs. Taking into
account (21) together with the relation Ĝ

m(k)
i (0)= Keg(k)i (tm), we expand (15), obtaining the following

development:

ŷ m+1 = y(tm) +
∑

j=1;:::;p
r=1;:::; j

(i1 ;:::; ir)∈{1;:::; n}r
(*1 ;:::; *r)∈{0;:::; j−1}r

*1+···+*r=j−r

�jC(*1 ; :::; *r)
i1 ;:::;ir F (*1 ; :::; *r)

i1 ;:::;ir y(tm)

+
∑

j=1;:::;p
r=1;:::; j

(i1 ;:::; ir)∈{1;:::; n}r
(*1 ;:::; *r)∈{0;:::; j−1}r

*1+···+*r=j−r

�jC(*1 ; :::; *r)
i1 ;:::;ir G(*1 ; :::; *r)

i1 ;:::;ir g(tm)

+O(�p+1); (22)

with

C(*1 ; :::; *r)
i1 ;:::;ir =

(bi1)T(C)*1Ai2(C)*2 : : :Air (C)*r e
*1!*2! : : : *r!

:

By imposing that the coe+cient C(*1 ; :::; *r)
i1 ;:::;ir associated with FED F (*1 ; :::; *r)

i1 ;:::;ir y(tm) in (22), is equal
to the coe+cient associated with the same FED in expressions (16)–(19) of y(tm+1), which is
(1=i!)c*1 ; :::; *r , we obtain the following order condition:

(bi1)T(C)*1Ai2(C)*2 : : :Air (C)*r e=
*1!*2! : : : *r!

i!
c*1 ; :::; *r

=
r∏

j=1

1
(r − j + 1) +

∑r
k=j *k

: (23)
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Secondly, making equal the coe+cients that multiply in y(tm+1) and ŷ m+1 to the FED G(*1 ; :::; *r)
i1 ;:::;ir g(tm),

we deduce again the order condition (23).
Let us prove now that conditions (20) are also necessary. To get this, we choose the following

IVP:

y′1(t)= t*1y2(t); y1(0)= 0;

y′2(t)= t*2y3(t); y2(0)= 0;

...
...

y′r−1(t)= t*r−1yr(t); yr−1(0)= 0;

y′r(t)= t*r ; yr(0)= 0;

which is obviously of type (4) and we also choose the following decomposition for L(t) and g(t):

Li(t)=




0 +i1it
*1 0 : : : 0

...
. . . . . . . . .

...
...

. . . . . . 0
...

. . . +ir−1it
*r−1

0 : : : : : : : : : 0



; gi(t)=




0

0
...

0

+irit
*r



;

where

+ij =
{
1 if i= j;

0 if i �= j:

For this problem it is easy to check that all the FED of type F ( K*1 ; :::; K* Kr)
Ki1 ;:::; Ki Kr

y(t) and G( K*1 ; :::; K* Kr)
Ki1 ;:::; Ki Kr

g(t)

are null, for t=0, excepting the FED G(*1 ; :::; *r)
i1 ;:::;ir g(0) which takes in its Arst component the value

*1! : : : *r!. Note that the necessary order condition to attain order p in the Arst component of y1 is

(bi1)T(C)*1Ai2(C)*2 : : :Air (C)*r e=
r∏

j=1

1
(r − j + 1) +

∑r
k=j *k

:

It is easy to observe an important growth in the number of order conditions that an additive
Runge–Kutta method must verify, with respect to the corresponding number of conditions for standard
Runge–Kutta methods, as long as the order p is increased. This is a great drawback for designing
high order methods. Nevertheless, in some practical cases, the number of order conditions can be
reduced. This fact occurs when some FED are functionally identical or null and, in these cases, their
corresponding order conditions can be added or superseded, respectively. For example:

(i) (a) If L(,)j (t)L(-)k (t)=L(-)k (t)L(,)j (t) for some j; k ∈{1; : : : ; n} and for some ,; -∈{0; : : : ; p− 1}
then we can add the order conditions (20) associated with the (identical) FED

F (*1 ; :::; *m;,; -;*m+3 ; :::; *r)
i1 ;:::;im; j;k;im+3 ;:::;ir y(t); F (*1 ; :::; *m; -;,;*m+3 ; :::; *r)

i1 ;:::;im;k; j;im+3 ;:::;ir y(t)
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and

G(*1 ; :::; *m;,; -;*m+3 ; :::; *r)
i1 ;:::;im; j;k;im+3 ;:::;ir g(t); G(*1 ; :::; *m; -;,;*m+3 ; :::; *r)

i1 ;:::;im;k; j;im+3 ;:::;ir g(t):

(b) If besides g(,)j (t)= 0; g(-)k (t)= 0, then we can also add the order conditions associated with
the FED

F (*1 ; :::; *r−2 ; ,; -)
i1 ;:::;ir−2 ; j;k y(t)

and

F (*1 ; :::; *r−2 ; -;,)
i1 ;:::;ir−2 ;k; j y(t):

(ii) (a) If L( K*)Ki (t) ≡ 0, for a certain Ki and for some K*¿ 0 then we can supersede the order conditions
(20) such that ij = Ki, and its associated index *j is bigger than or equal to K* for any j �= r.

(b) Besides if g( K*)Ki (t) ≡ 0, then we can exclude also the order conditions (20) such that ir = Ki
and *r¿ K*.

3. Stability and convergence

To study the convergence of scheme (3) we deAne the global error as follows:

E�= sup
m6T=�

‖y(tm)− ym‖;

and we say that an additive Runge–Kutta method is convergent of order p if E�6C�p for data
Li(t)∈Cp([t0; T ];Rd×d) and gi(t)∈Cp([0; T ];Rd).
The convergence of scheme (3) is deduced by combining the property of consistency (10) with

some stability results. In Section 1, we pointed out that the Additive Runge–Kutta methods that we
use must verify certain properties of absolute stability if we want to obtain unconditional convergence.

In order to introduce easily the concept of A-stability for an additive Runge–Kutta method, we
apply scheme (3) to the test scalar IVP

y′(t)=
n∑
i=1

.iy(t) with Re(.i)6 0; i=1; : : : ; n;

y(t0)=y0 (24)

and we obtain the recurrence

ym+1 =


1 +

n∑
i=1

�.i(bi)T


I − n∑

j=1

�.jAj



−1

e


ym; (25)

substituting �.i by zi, we deduce the ampliAcation function associated with scheme (3):

R(z1; : : : ; zn)= 1 +
n∑
i=1

zi (bi)T


I − n∑

j=1

zjAj



−1

e:
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We say that an additive Runge–Kutta method is A-stable if and only if the recurrence (25)
preserves the contractive behaviour of (24), i.e., |ym+1|6 |ym| for all m. This condition is obviously
equivalent to

|R(z1; : : : ; zn)|6 1; ∀ (z1; : : : ; zn)∈Cn such that Re(zi)6 0; ∀i=1; : : : ; n:

Although the A-stability has been introduced in a simple scalar case, this property also ensures a
contractive behaviour for some (vectorial) problems of type

y′(t)=
n∑
i=1

(Li(t)y(t) + gi(t)); i=1; : : : ; n;

y(t0)=y0:

Concretely in [14] the case Li(t) ≡ Li is studied, for all i=1; : : : ; n. In this case it holds that

ym+1 =R(�L1; : : : ; �Ln)ym + S(�L̂1; : : : ; �L̂n; �Ĝ
m
1 (�); : : : ; � Ĝ

m
n (�));

where

S(�L̂1; : : : ; �L̂n; �Ĝ
m
1 (�); : : : ; �Ĝ

m
n (�))

= �
n∑
i=1

(bi)T


Ĝm

i (�) + L̂i


 KI − �

n∑
j=1

AjL̂j



−1(

�
n∑

k=1

AkĜ
m
k (�)

)
and where now

L̂i=



Li 0 : : : 0

0 Li : : : 0
...

...
. . .

...

0 0 : : : Li


 ;

the contractivity of scheme (3) applied to some of these problems is deduced easily from the
following result.

Theorem 3.1. (Jorge and Lisbona [14]). Let {2i}i∈{1; :::; n} be a commutative system of maximal
coercive operators in a Hilbert space H; such that the commutative system of contractions
{(I − �2i)(I + �2i)−1}i∈{1; :::; n} admits a unitary dilation. Then for all A-stable additive Runge–
Kutta method it holds that

‖R(�21; : : : ; �2n)‖6 1; (26)

where R(z1; : : : ; zn) is the ampli�cation function of such method.

Classically, when the operator L depends on t, i.e., L ≡ L(t), AN-stability has been imposed
to preserve contractivity. It is well known that this property is strongly restrictive since it is only
veriAed by simple low-order methods or by high order fully implicit methods. Nevertheless, in [8],
and more recently in [9], it is shown that, under suitable hypotheses of variation in time for operators
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L(t), A-stability can be a su+cient condition for a stable integration, at least in Anite intervals of
time [t0; T ].
For FSRK methods a similar stability result is proved in [2]. Such a result is based on the

following recurrence obtained from (9):

ym+1 = R̃(�L̂
m
1 (�); : : : ; �L̂

m
n (�))ym + S̃(�L̂

m
1 (�); : : : ; �L̂

m
n (�); �Ĝ

m
1 (�); : : : ; � Ĝ

m
n (�));

where

R̃(�L̂
m
1 (�); : : : ; �L̂

m
n (�))= KI +

n∑
i=1

(bi)T�L̂
m
i (�)


 KI −

n∑
j=1

Aj�L̂
m
j (�)



−1

Ke;

can be considered as a perturbation of R(�L1(tm); : : : ; �Ln(tm)) and

S̃(�L̂
m
1 (�); : : : ; �L̂

m
n (�); �Ĝ

m
1 (�); : : : ; �Ĝ

m
n (�))

= �
n∑
i=1

(bi)T


Ĝm

i (�) + L̂
m
i (�)


 KI − �

n∑
j=1

AjL̂
m
j (�)



−1(

�
n∑

k=1

AkĜ
m
k (�)

)
is the contribution of the source term.

Theorem 3.2. (Bujanda and Jorge [2]). Let (9) be an A-stable FSRK method; and let {Li(t)}ni=1
be a linear maximal coercive system of operators satisfying:

(a) for every t ∈ [t0; T ] the system of operators {Li(t)}ni=1 is commutative and the commutative
system of contractions {(I − � Li(t))(I + � Li(t))−1}i∈{1; :::; n} admits a unitary dilation;

(b) there exist n constants Mi such that

‖Li(t′)y − Li(t)y‖6 |t − t′|Mi‖Li(t)y‖; ∀i=1; : : : ; n; ∀t; t′ ∈ [t0; T ]:

Then there exists a constant 3; usually positive 3 ; independent of �; such that

‖R̃(−�L̂m1 (�); : : : ;−�L̂mn (�))‖6 e3�: (27)

From the consistency result (10) and the stability result (26) or (27) it is easy to prove

‖y(tm)− ym‖6 ‖y(tm)− ŷ m‖+ ‖ŷ m − ym‖6C�p+1 + e3�‖y(tm−1)− ym−1‖:
Using this recurrence we obtain the convergence of scheme (3) since

‖y(tm)− ym‖6C
m−1∑
k=0

e3�k�p+16CM�p;

3 Some additional A-stability conditions, of type strong A-stability, together with small variations in time for the
operators Li(t) allow to obtain negative values for 3 and, consequently, preserve a contractive behaviour on the numerical
solutions of scheme (3).
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where

M =




eT3 − 1
3

if 3¿ 0;

T if 3=0;

�0
1− eT3

1− e3�0
∀�∈ (0; �0]; if 3¡ 0:

4. A third-order FSRK method and some numerical tests

4.1. A third-order FSRK method

In this subsection, we summarize the main lines that we have followed to construct an L-stable
third-order FSRK method of six stages and two levels (more details of such construction can be seen
in [1]) with a particular coe+cient structure following the ideas of alternating direction methods.

De�nition 4.1. An FSRK method of two levels is of type alternating directions if b1k = a1ik =0 when
k is even and b2k = a2ik =0 when k is odd.

In order to use some previous stability studies as well as to simplify the construction process of
this method we have Arstly imposed that the nonnull diagonal terms are equal, i.e., a1ii= a2jj = a for
i=1; 3; 5 and for j=2; 4; 6, (in [1] it can be seen that to obtain a third-order method at least Ave
stages are necessary and six are convenient).

From (20), we deduce that the number of necessary order conditions to attain order 3 are 26. We
have grouped these conditions in such a way that in the Arst group only the superindex 1 appears,
in the second group only the superindex 2 appears and Anally in the third group we have put the
remaining equations. The seven equations of the Arst group correspond to the study of the order 3
conditions for the reduced SDIRK

c1 a

c3 a131 a

c5 a151 a
1
53 a

b11 b13 b15

(see [10]), and analogously the second group correspond to the study of the method

c2 a

c4 a242 a

c6 a262 a
2
64 a

b22 b24 b26:

We solve these two groups of equations taking as free parameters a; c3; c4; c5 and c6.
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To Anish the search of the family of third-order methods, we solve the remaining 12 order condi-
tions, obtaining a family of methods with the following free parameters: a; c3; c4; c6
and a143.
Some of these parameters are used to obtain an L-stable method. In order to reduce the study of

absolute stability of these methods, as far as possible, to the study of the absolute stability of the
standard RK methods

Ce A1

(b1)T

and

Ce A2

(b2)T
;

we decompose their ampliAcation functions as follows:

R(z1; z2)=R1(z1)R2(z2) + Rest; (28)

where Ri(zi) is the ampliAcation function associated with

Ce Ai

(bi)T

for i=1; 2 and

Rest =
F1z1z32 + F2z21z

2
2 + F3z31z2 + G2z21z

3
2 + G3z31z

2
2 + H3z31z

3
2

(1− az1)3(1− az2)3
;

with

Fj =Ej;4−j − 1
j!(4− j)!

; j=1; 2; 3;

Gj =Ej;5−j − 3a (Fj−1 + Fj)− 1
12
; j=1; 2;

H3 =E3;3 + 3a2(F1 + F3) + 9a2F2 − 3a(G1 + G2)− 1
36
;

Ei1 ;i2 =
∑

Kk≡(k1 ;:::; kj)∈{1;2}j
nl( Kk)=il;∀l=1;2

(bk1)TAk2 : : :Akj e

and nl( Kk) is the number of times that the index l appears in the multiindex Kk.
From (28) it is easy to see that if we make null the Rest and the RK methods

Ce Ai

(bi)T
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for i=1; 2 are A-stable, then the alternating direction implicit method will be A-stable. In [10] it
can be seen that if a=0:435866521508459 the RK methods

Ce Ai

(bi)T

for i=1; 2 are not only A-stable but also L-stable.
For this family of third-order methods, we have seen that a unique choice of a143, as function

of the parameters c3; c4 and c6, make null the terms F1; F3; G2; G3 and H3, but then F2 takes
the constant value of −0:474949. Nevertheless, this election of a143 is su+cient to get an L-stable
alternating direction implicit method (for more details see [1]).

The remaining free parameters c3; c4 and c6 have been used to minimize the main term of the
local truncation error. From this minimization process, we have obtained the following alternating
direction implicit method:

Ce=(0:435866521508459; 0:435866521508459; 0:7; 0:3; 0:56413347849154; 0:75)T; (29)

(
A1

(b1)T

)
=




0:435866521508459

0:435866521508459 0

0:264133478491540 0 0:435866521508459

0:524203567293128 0 −0:22420356729312 0

0:054134244066592 0 0:074132712916489 0 0:435866521508459

2:005981609913539 0 1:336337252930893 0 −2:59231886284469 0

2:838287230686191 0 2:207497360663944 0 −4:04578459135012 0




(30)

(
A2

(b2)T

)
=




0

0 0:435866521508459

0 0:170931386851894 0

0 −0:13586652150846 0 0:435866521508459

0 0:062944816984284 0 −0:09326511998115 0

0 −0:54301448024727 0 0:857147958738813 0 0:435866521508459

0 −0:78100185474576 0 1:100752954088072 0 0:680248900657693



:

4.2. Numerical tests

In this section, we will perform some numerical experiences with the alternating direction im-
plicit method (29)–(30) combined with a simple spatial discretization of the following convection–
di-usion–reaction problem:

@u
@t

− d1
@2u
@x2

− d2
@2u
@y2 + v1

@u
@x

+ v2
@u
@y

+ k1u+ k2u= g1 + g2;

(x; y; t)∈5 × [0; 5] with 5= [0; 1]× [0; 1];
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u(0; y; t)= u(1; y; t)= 0; y∈ [0; 1]; t ∈ [0; 5];

u(x; 0; t)= u(x; 1; t)= 0; x∈ [0; 1]; t ∈ [0; 5];

u(x; y; 0)= e(x+y)=2sin(6x) sin(6y); x; y∈5;
where d1 = (1−e−t)(1+x), d2 = (2+cos(6t))(1+y), v1 = (2+sin(6t))(1+y), v2 = (2−e−t)(1+x),
k1 = (1 + e−t)(2 − xy), k2 = (1 + e−t)(1 + x2), g1 = e−tx(1 − x)y(1 − y)e(x+y)=2 and g2 =
e−tx(1− x)y(1− y)e(x+y)=2.

To numerically integrate this problem we have realized Arstly a spatial semidiscretization by using
a simple upwind Anite di-erence scheme on a uniform mesh 5h with (N +1)× (N +1) points being
h=1=N and obtaining the following family of IVPs:

dui; j(t)
dt

+ A1hui; j(t) + A2hui; j(t)= g1(xi; yj; t) + g2(xi; yj; t);

u0; j(t)= uN;j(t)= 0; j=0; : : : ; N; t ∈ [0; 5];

ui;0(t)= ui;N (t)= 0; i=0; : : : ; N; t ∈ [0; 5];

ui; j(0)= u(xi; yj; 0); i; j=0; : : : ; N; (31)

where

A1hui; j(t) =−d1(xi; yj; t)ui−1; j(t)− 2ui; j(t) + ui+1; j(t)
h2

+ v1(xi; yj; t)
ui; j(t)− ui−1; j(t)

h
+ k1(xi; yj; t)ui; j(t); i; j=1; : : : ; N − 1;

A2hui; j(t) =−d2(xi; yj; t)ui; j−1(t)− 2ui; j(t) + ui; j+1(t)
h2

+ v2(xi; yj; t)
ui; j(t)− ui; j−1(t)

h
+ k2(xi; yj; t)ui; j(t); i; j=1; : : : ; N − 1;

with xi= i h, for i=0; : : : ; N and yj = j h for j=0; : : : ; N .
Secondly, we have made the time discretization by using the FSRK method given by (29) and

(30). In Table 1, we show the obtained maximum nodal errors EN� from the time instant t=0:05
for di-erent mesh sizes 1=N and for di-erent values of �, which are computed as

EN�= max
i; j=1;:::; N−1;
tm≡m�∈[0:05;5]

‖ũ i; j(tm)− umi; j‖;

where ũ i; j(tm) is the solution of the semidiscrete scheme in space (31) that we have estimated by
using a fourth-order L-stable SDIRK method of Ave stages (see [10]) with enough small time step.
The value of �0 is 5E − 2.
In Table 2 we show the numerical orders of convergence pN� that have been computed as follows:

pN�= log2
EN�
EN�=2
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Table 1
Maximum nodal errors EN�

EN� N =8 N =16 N =32 N =64 N =128

�= �0 4.5413 E-2 4.6690 E-2 4.6699 E-2 4.6729 E-2 4.6729 E-2

�=
�0
2

4.3538 E-3 4.4508 E-3 4.4696 E-3 4.4860 E-3 4.4928 E-3

�=
�0
22

6.0788 E-4 6.1223 E-4 6.1652 E-4 6.1806 E-4 6.1906 E-4

�=
�0
23

8.3720 E-5 8.4310 E-5 8.4889 E-5 8.5100 E-5 8.5234 E-5

�=
�0
24

1.1149 E-5 1.1229 E-5 1.1307 E-5 1.1335 E-5 1.1352 E-5

�=
�0
25

1.4453 E-6 1.4561 E-6 1.4662 E-6 1.4698 E-6 1.4719 E-6

�=
�0
26

1.8425 E-7 1.8564 E-7 1.8694 E-7 1.8739 E-7 1.8766 E-7

�=
�0
27

2.3268 E-8 2.3443 E-8 2.3608 E-8 2.3665 E-8 2.3699 E-8

Table 2
Numerical orders of convergence pN�

pN� N =8 N =16 N =32 N =64 N =128

�= �0 3:3827 3:3909 3:3851 3:3808 3:3786

�=
�0
2

2:8404 2:8619 2:8579 2:8596 2:8595

�=
�0
22

2:8601 2:8603 2:8605 2:8605 2:8605

�=
�0
23

2:9086 2:9084 2:9083 2:9084 2:9084

�=
�0
24

2:9474 2:9472 2:9471 2:9471 2:9471

�=
�0
25

2:9716 2:9715 2:9715 2:9715 2:9715

�=
�0
26

2:9852 2:9853 2:9852 2:9852 2:9852
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