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Abstract. We study the behaviour of the n-dimensional centered Hardy-Littlewood max-
imal operator associated to the family of cubes with sides parallel to the axes, improving
the previously known lower bounds for the best constants cn that appear in the weak type
(1,1) inequalities.
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Introduction. Let C be the family of cubes with sides parallel to the axes,
and let C0 be the collection of sets in C that are centered at zero. Given a locally
integrable real valued function f on Rn, the centered Hardy-Littlewood maximal
operator associated to C0 is defined as

where \C\ denotes the Lebesgue measure of C. An analogous definition can be given
for more general bounded, convex, symmetric subsets of Rn, but here we shall only
be concerned with cubes.

While several authors have sought to find better upper bounds for the best con-
stants in the weak type (1,1) inequalities satisfied by M, there is very little work
done with respect to lower bounds. Denote by cn the best constant appearing in
the weak type (1,1) inequality satisfied by the operator M. It is shown in [MS],
Theorem 6, that cn > (1+21/n)n , and conjectured in [M], Note I.7, p. 22, that in

fact (1+21/n )n is the best constant for every n, i.e., if f e L1(Rn) and a > 0, then

a|{Mf >a} < (1±21/n)n||f||1.
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The one-dimensional version of this conjecture (c1 =3) originally appeared in
[BH] (see Problem 7.74 c, proposed by A. Carbery), and a counterexample can be
found in [A]. Here we show that the general conjecture fails for every n > 2, and
also asymptotically, i.e., liminf cn > lim(1+21/n)n = r2. The method we use is the
same as in [MS] and [A], that is, we study the behaviour of the operator M when
it acts over finite sums of Dirac deltas, a technique which leads to arguments of a
completely elementary nature. It is easy to justify such procedure in order to obtain
lower bounds for the best constants. Interestingly enough, Dirac deltas also suffice to
give upper bounds. (This fact is the basis of the discretization method, developed by
M. de Guzman—see [Gu], Theorem 4.1.1—and refined by M. Trinidad Menarguez
and F. Soria—cf. Theorem 1 of [MS].) In this note, however, we will study lower
bounds only.

I am indebted to Prof. F. Soria for several useful conversations regarding this
subject, and to Prof. A. Bravo Zarza for her help during the preparation of this
paper.

Results. Recall from the introduction that C denotes the family of cubes in Rn

with sides parallel to the axes, and Co the collection of cubes centered at zero. Given

a finite sum n = EdXi of Dirac deltas, where the xi's need not be all different,

let f(a: + C) stand for the number of point masses from p, contained in x + C, i.e.,
$(x+C) := card{xij : Xij: € x+C], The discrete centered Hardy-Littlewood maximal
function is then defined as

The n-dimensional maximal operator M is said to satisfy a weak type (1,1) in-
equality if there exists a constant c such that for every f e L 1(R n) and every a > 0,
we have a | { M f > a}| < c||f||1.

From the viewpoint of weak type inequalities it makes no difference, first, whether
Mf > a is used instead of the strict inequality Mf > a, and second, whether open
cubes or closed cubes are used in the definition of the Hardy-Littlewood maximal
operator. For us it will be more convenient, when dealing with the discrete case, to
utilize the nonstrict inequality and closed cubes.

The result we present next is well known. We include the proof here for complete-
ness.

Lemma 1.1. Let c be a fixed constant. If there exists a finite sum n = EDXi of

Dirac deltas in Rn such that for some a >0, a|{Mu > a}| > ck, then there exists a
function f e L1(Rn) and a B > 0 with B | { M f >2 B}\ > c||f||1.
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P r o o f . Suppose u = £<$Xi and a > 0 are such that the inequality a|{Mp, ^

a}| > ck holds. We prove that for every e > 0 there exists an f e L1(Rn) with
||f||1 = k and {Mp > a} C {Mf > (1 + e)-1a}. Let £(C) denote the sidelength of
the cube C. For each x e {Mp > a}, select a cube Cx centered at x with

We make the additional assumption that t(Cx) > a 1 / n ; this is always possible to
do since each Cx must contain at least one point mass. Now a is strictly positive,
so d := sup{l(Cx ): x e {Mp, > a}} < oo. Given any e > 0, choose d ( s ) > 0
such that for every y e [a-1/n,d], (y + S)n/yn < 1 + e. Let Ei be the (closed)

cube centered at xi of sidelength d and define f := dn £ x£i. Replacing each

Cx by the cube C'x centered at x and of sidelength l(C'x) = l(Cx ) + d, we see that
{ M u > a } C {Mf > (1+e)-1a}. Pick s > 0 so small that a|{Mu > a}| > (1+£)ck.
Since ||f||1 = k, we get
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and setting B = a(1 + e)-1 , the conclusion follows.

In one dimension, it is sufficient to consider configurations of point masses for
which the set {Mp > a} is an interval: If it has more than one component, shifting
the masses contained in the leftmost component towards the right, by the minimum
amount that will make the first disconnection disappear, reduces the number of
components by one. Then repeat it till there is only one component left. This
procedure never leads to any losses in measure, though it may lead to no gain either,

4
as the following example shows: Set p, := ^,kiSXi, where x1 = 0, K1 = 6, X2 =

5.5, K2 = 1, X3 = 7, K3 = 1, X4 = 10, K4 = 3. It is not difficult to check that
4

[0,10] \ {M(£ ki6x.) > 1} = (4,4.5). If we leave the last three positions fixed, then

the minimum amount one has to displace x1 to make the disconnection disappear is

1 (to the right), so |{M(£><$*,) >1}| = |{M(6<51/2 + f><^) > 1l}

For n ^ 2, however, it is unclear which topological structure the set {Mp > a}
should have in order to maximize a\{Mp, ^ a}\. In [M] and [MS] the following
measures p, on Rn are considered: Given a large cube C, the measure p supported on
C is obtained by placing a Dirac delta at each point of the integer lattice contained
in C. We prove that for the plane and this particular type of measures, it is best to



Step 1. The set {Mur > a] n [0,T]2 is connected if and only if a <9.
Furthermore, if a > 9, tien a|{Mur > a}\ is not maximized.

P r o o f . Since the point masses have all integer coordinates, in order to evaluate
MHT(V) we only need to consider (closed) squares centered at V, such that for one
of their sides, either the projection onto the X-axis, or the projection onto the y-
axis, is an integer. Clearly, {MuT > t} O [0,T]2 is connected if and only if for
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Proposition 1.2. For n = 2, a > 0 and HT as above, in order to maximize
a|{MiT > a}|, a must be chosen so that {MJT > a} is not simply connected.

P r o o f . We break up the proof into five steps. The first shows that in order to
maximize a | { M j T >ot}|, a must lie in the interval (0, |], which in particular entails
that the set {Miy > a} n [0,T]2 is connected. The second step proves that if a < 9
and {MUT > A} is simply connected, then a < 1.462. It is shown in the third step
that taking a — | and T sufficiently large, we obtain a\{M/jT > a\ > 1.47(T+ 1)2.
The fourth step tells us that if a > 1, then a|{MUT > a}| ^ a(T+4)2, and the fifth,
that A | { M H T > t}| is not maximized when a < 1. These steps yield the result: We
only need to consider values of a in [1,9], and then the previous estimates imply
that if T is sufficiently large and {MzT > a} is simply connected, we have

choose a so that the set { M j t > a} is not simply connected. Having to consider sets
with nontrivial fundamental groups makes of course harder to compute the measure
of {Mj > a}, pointing out to new difficulties when trying to improve estimates
by this method. These considerations should be of particular relevance when, via
numerical methods, one tries to obtain experimental evidence on the behaviour of cn.
Numerical searches in the one dimensional case have been carried out in [DrGaSt].
Incidentally, the proof of the next proposition also yields that c2 > 1.47 > (1+2)2) .
However, we will see later on that a better estimate for c2 can be obtained in a
simpler way.

(T+1)n

As in [MS], Theorem 6, we define in Rn the measure HT : = E DXi , ci> where T is

a large natural number and Xi € Rn ranges over all points with integer coordinates
between 0 and T. What matters here is that we are placing point masses on a square
lattice. The fact that we are using integer coordinates is due to mere convenience,
which can be achieved simply by rescaling. Given a positive constant c =1, the
measure uCT is defined as before, save that contiguous masses are now placed at the
distance c.



0 < n, m < T - 1, the diagonals of the squares [n, n + 1] x [m, m + 1] are contained
in {MfT >i}. So in order to check whether {Mfir <Z a} n [0, T]2 is connected, it
suffices to study MuT on these diagonals. If a > |, then no point on the horizontal
lines y = m + 1 belongs to {M/j,T > a}, for if v = (n +1|,m +1|), then M J T ( V ) is
bounded above by one of the functions

or

(The functions hi correspond to what one would obtain if there were one Dirac
delta at each point of the integer lattice Z2.) These functions are maximized at
n = 0, so M(IT(V) < 9. On the other hand, it is easy to check, using centered
squares of sidelength at most 4, that M^T > 9 on the diagonals of the squares
[n, n + 1] x [m, m + 1], 0 < n,m < T - 1. Thus, {Mu T > a} n [0,T]2 is connected if
and only if a < 9.

Notice next that we can choose a so that {MUT > A] fi [0,T]2 is connected.
Otherwise we shrink the original integer lattice by the minimum amount k < 1
needed for {Mfikr ^ a} n [0, kT}2 to consist of only one component. Clearly, nothing
is lost by doing so. But kv E {M^kT ^ ot] if and only if v e {Mfir >K2a}, whence
a\{M(j,kT ^ ot}\ = k2a\{M{jT > K2a}|. Thus, from the viewpoint of maximizing
a\{MnT > Q}|, it makes no difference whether we shrink the lattice or lower a to
K2a.

Prom now on we always assume that a < 9.

Step 2. Ifi {MXT > o} is simply connected, then a < 1.462.

P r o o f . Since a < 9, we know from Step 1 that the diagonals of the squares
[n, n + 1] x [m,m + 1] are contained in {MjT > 1} for 0 < n, m < T — 1. So to
prove {MpT > a} is not simply connected if a > 1.462, it suffices to show that for
some integers i, j e [1,T — 2], there is an x e [i, i + 1] x [j, j + 1] \ {MJT > a}.
To see this, we study the value of MZT at each of the points (n1 + 0.415, n2 + 0.1),
where n1 and n2 are integers with 0 < n1, n2 < T. It is enough to consider squares
centered at (n1 + 0.415, n2 +0.1) such that one of their sides has integer projection
(as in the previous step). Depending on which of the sides has integer projection,
we obtain four functions of n e N: If it is the lower (horizontal) side, then
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If it is the upper side, then

If it is the left side, then

And if it is the right side, then

Now h1 attains its maximum at n = 1, and the other functions hi, at n = 0. So
M H T ( n 1 + 0.415, n2 + 0.1) = max{fi(n)} < max{h1(1), h2(0), h3(0), h4(0) < 1-462.
Taking x = (1.415, 1.1), the conclusion follows.

Step 3. If T is sufficiently large, then 8 |{MuT > 8 }| > 1.47(T + 1)2.

P r o o f . Set a = 8. Let a, b, and c be such that 8 = (2a)-2 = 2(2b)-2 =4(2c)-2.
Set

If x € A U B U C, by choosing a square centered at £ of sidelength 2a, 26, or 2c
respectively (for definiteness, if x € A n C, then take a square of sidelength 2a), we
see that M H T ( x ) >8. Therefore

whence 8|{MnT >8 }n[0,1]2| > 1.47. By translation we also get that for every pair
0 <n1,n2 < T, we have 8|{MrT > 8 }n [n1, n1+1] x [n2,n2 + 1]| > 1.47. Now the
number of unit squares with integer coordinates contained in [0, T]2 is T2, while the
number of integer lattice points is (T +1)2. Since lim T2/(T + 1)2 = 1, for T large

enough we have 8 |{MH T > 8}| > 1.47(T+ 1)2.

Step 4. If a > 1, then a | { M f j t T > a}| < a(T + 4)2.

P r o o f . By symmetry, it is enough to consider the behaviour of MUT at points
(x,y) such that x < 0 and for 0 < i < T, either y = i or y = i + 1. In every case we
have that
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for T > 100.

so

for every a > 0. And if the maximum is attained when n < T then

For d e (T, T] we distinguish two cases: If d is such that the maximum is attained
when n > T, then nothing is lost if we change ^T to the measure v obtained by
concentrating all the Dirac deltas at the point (T,T). But in this case,

First, we assume that |x| > 2 (else, the bound a|{MuT > ct}| < a(T + 4)2 from
Step 4 holds). For 2 < d < T we use the estimate max H(n) < 3. Then

So for a > 1, {MUT > a} C [-2, T + 2]2 and the conclusion follows.

Step 5. If a < 1, then a|{MnT > a}| is not maximized.

P r o o f . As we did in Step 4, we consider points (x, y) such that x < 0 and for
0 < i < T, either y = i or y = i +1, so MUT((X,Y)) < max H(n). We study the

behaviour of H(n ) for d := \x\ in different ranges, and we set a := SVLP{MIJ,T(V)},
where the sup is taken over all v lying on the boundary of the square [-d,T + d]2.
It then follows that {MuT > a} C [-d,T + d]2, so

If \x\ > 2, then
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This completes the proof of Step 5 and of Proposition 1.2.

Remark 1.3. Probably the simplest way of seeing that C2 > (1+21/2)2 is to
modify /UT so that the horizontal spacing of the Dirac deltas is | instead of 1. More
precisely, fix a = 1 and define VT by placing one Dirac delta at each of the points in
((3)ZxZ)n([0, (3)T] x[0,T]). Then it is clear that for each pair n1, n2 with 0 <n1 ,
n2 < T we have [(3)n1, (3)(n1 + 1)] x [n2,n2 + 1] C {MvT > 1}, from which c2 >3
quickly follows. The same construction shows that in Rn, cn > 3: Use spacings of
length| on the first axis, and of length 1 on all the others. The proof of the
proposition utilizes a more refined version of this basic idea, achieving slightly better
bounds.

Proposition 1.4. Let cn be the best constant appearing in the weak type (1,1)
inequality for the Hardy-Littlewood maximal function. Then for every n > 2 we
have

so

for T > 100. And if the maximum is attained when T < n < T, then

so

Again if the maximum is attained when n > T, then (T + 1)~2a|{M//r ^ «}| ^ 1
for every a > 0. li the maximum is attained when 0 < n < T, then

Finally, suppose d > T. Then on the boundary of [-d, T + d]2,
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Therefore lim inf cn > 47R2.

P r o o f . Set a = 1. Given any positive integer n, for i = 1, . . . , n, write a" = |

and a™ = 1+21/n if i > 2. We define in Rn the measure VT := E Dxi, where T is a

large natural number and Xi = (a 1 m i 1 , . . . , anm in) with mij € N, 0 < mij <T. As

in the proof of Proposition 1.2, we have that if we divide the number of rectangles

of the form [] [anm i,a?(m i + 1)] which are contained in ft [o-i,af(T - 1)] by the

number of masses in VT, the quotient tends to 1 as T -» oo (since lim (T-2)n =1).
This fact, together with translation invariance, entails that

By considering centered squares of sidelength either 1 or 21 / n , one easily checks that
([3, 2] U [5, 3]) x [(1 + 21/n)/2,1 + 21/n]n-1 < {MvT > 1}. Let A := (2, 5) x [(1 +
21/™)/2,1 + 2 1 / n] n - 1 . Suppose x =(x 1 , . . . ,x n ) e A. If for every i = 2 , . . . ,n ,
xi e [21/n,(3 + 21/n)/2], then thecube Cx centered at x of sidelength 2 contains
2n Dirac deltas, so MI>T(X) ^ 1. The same conclusion follows if for some i between
2 and n, x{ e [1±21/n, (3)1/n] U [31+21/n - (3)1/n,1 + 21/n]: Then the cube Cs,

centered at x and of sidelength 2(3) , contains 2n + 2n-1 Dirac deltas. Denote by
bn the measure of all the points in A which satisfy neither the first nor the second
condition considered above. Then

Therefore

Letting n -> oo we obtain

n
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