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DIFFERENTIATION OF INTEGRALS IN R
!

J. M. ALDAZ (La Rioja)

Abstract. We show that the Lebesgue di�erentiation theorem does not hold
in R! with the \product" Lebesgue measure.

1. Introduction

The validity of the Lebesgue di�erentiation theorem beyond the setting
of Rn has been investigated by several authors. In the case of in�nite di-
mensional separable Hilbert spaces, since there is no analogue of Lebesgue
measure, these studies have usually considered gaussian measures instead.
D. Preiss proved that there exist gaussian measures for which the result fails
(cf. [3] and [4]), while J. Ti�ser showed in [5] that for certain gaussian measures
the Lebesgue di�erentiation theorem does hold. In [1], R. Baker constructed
a version �! of Lebesgue measure in the separable Frechet space R!, such
that �! is a translation invariant Borel measure which assigns to each rect-
angle �n(an; bn) its volume �n(bn � an) (whenever the product exists and is
�nite). A natural question to ask is how the di�erentiation of integrals be-
haves in this setting. We shall see that the Lebesgue di�erentiation theorem
fails in a somewhat surprising way: If f 2 L1(R!; �!), then for almost every
point with respect to �!,

lim
1

�!(C)

Z
x+C

fd�! = 0;

where C is a rectangle centered at zero with 0 < �!(C) <1, and taking the
limit simply means that diam(C)! 0. The analogous result also holds for
the corresponding maximal operator.

I am indebted to Professor A. Bravo Zarza for her help during the prepa-
ration of this paper.
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2. Preliminary de�nitions and results

2.1. Definition. By a rectangle in R! we mean a set of the form
�1
n=0In, where each In is an interval, which can be of in�nite length, or

degenerate, such as [a; a] or (a; a).

The basic result (see Theorem I of [1]) we need on the construction of
�! follows next. Let R be the class of all in�nite dimensional rectangles
R � R! := �1

n=0R of the form R = �1
n=0(an; bn), such that �1 < an 5 bn

<1 and 0 5 �1
n=0(bn� an) <1. De�ne � on R by setting �(R) = �1

n=0(bn
� an).

2.2. Theorem. Let E be a subset of R!
, and let the set function

�! be given by �!(E) := inf
�P1

n=0 �(Rn): for every n, Rn 2 R and E �

[
1
n=0Rn

	
, with the convention that inf ; =1. Then �! is a translation in-

variant Borel measure on R!
, satisfying �!

�
�1
n=0(an; bn)

�
= �1

n=0(bn � an)

for every �1
n=0(an; bn) 2 R.

2.3. Definitions. Let T be a subadditive operator with domain a linear
space of measurable functions on (X;�), and taking measurable functions
(possibly from another space) as values. Then T is of weak type (p; q), where
p; q 2 [1;1), if there exists a constant c such that for every f 2 DomT with

f 2 Lp(�), and every � > 0, �q�
��
jTf j > �

	�
5
�
ckfk

p

�q
. A rectangle R

is admissible if 0 < �!(R) <1. We use A to denote the class of admissible
rectangles.

3. Admissible rectangles

In this section we present some results about the measure of rectangles.
Denote by �n the projection from R! onto the n-th coordinate. Given a se-
quence fung of real numbers, to say that the product �nun is convergent only
means that the limit limn�

n
0uk exists. However, this de�nition gives a very

special role to zero (one zero su�ces to make the product converge, regard-
less of what the other factors do). To remove this inconvenience, quite often
a more restrictive de�nition is used: The in�nite product �nun is convergent
if there exists an m 2 ! such that the sequence of products

�
�n

k=0um+k

	1
n=0

converges to a strictly positive real number. With this de�nition, a necessary
condition for convergence is that limn un = 1. Note that if the limit exists in
the �rst sense, and 0 < �nun, then the product is convergent in the stricter
sense also. It follows that if �nIn 2 R \A, then limn jInj = 1. So we have

3.1. Lemma. Let R = �nIn 2 R. If �(R) > 0, then limn jInj = 1.
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It is to be expected that if we shrink an in�nite number of sides of
�nIn 2 R, by at least a �xed positive amount, then the new rectangle will
have measure zero. This is the content of the next lemma.

3.2. Lemma. Let R = �nIn 2 R, and let A be an in�nite subset of !.
Suppose there exists an a > 0 such that for every n 2 A, a 5 jInj. If n 2 A,

let Jn � In be an interval with jJnj 5 jInj � a, and if n 2 Ac
, set Jn := In.

Then �(�nJn) = 0.

Proof. Suppose �(R) > 0. Let ak = jIkj � jJkj. Then

�n

k=0jJkj

�n

k=0jIkj
= �n

k=0

�
1�

ak

jIkj

�
:

Since lim sup an

jInj
= a, letting n go to in�nity we get that lim�n

k=0jJkj = 0.

�

Next we show that no admissible rectangle is degenerate.

3.3. Proposition. Let R = �nIn be a rectangle with �!(R) <1. If

there exists an m such that jImj = 0, then �!(R) = 0.

Proof. Let fRjg be a sequence of rectangles such that Rj 2 R for every
j 2 !, R � [

1
j=0Rj, and

P1
j=0 �(Rj) = b <1. We may, without loss of gen-

erality, assume that for every j, R \Rj 6= ;. Fix a positive natural number
N . Choose m so that jImj = 0, and for each j 2 !, let R0

j
be obtained from

Rj by replacing �mRj with an open interval Hj such that Im � Hj
� �mRj

and jHj
j 5 N�1

j�mRjj. Since R � [
1
j=0R

0
j
, �!(R) 5 N�1b and the result

follows by letting N !1. �

Lemma 3.1 tells us that for every admissible rectangle �nIn from R,
limn jInj = 1. In fact, every admissible rectangle has this property.

3.4. Proposition. Let R = �nIn be an admissible rectangle. Then

lim jInj = 1.

Proof. First we show that lim infn jInj = 1. If lim infn jInj < 1, then
there exist a < b < 1 and a subsequence fnig such that for every i 2 !, we
have jIni j < a. Let an < bn be the extreme points of In, and let fRjg be a
sequence of rectangles from R such that R � [

1
j=0Rj and

P1
j=0 �(Rj) <1.

Let B be the rectangle de�ned by �nB = R if n 62 fni : i 2 !g, and �nB =�
an �

b�a
2
; bn +

b�a
2

�
otherwise. Since bn +

b�a
2
�

�
an �

b�a
2

�
< b, it follows

from Lemma 3.2 that for each j, R0
j
:= Rj \B is a rectangle with �(R0

j
) = 0.

But R � [
1
j=0R

0
j
, so �!(R) = 0, contradicting the fact that R is admissible.

Suppose next that lim supn jInj > 1. By translation invariance we may
assume that R is centered at zero, and as before, we choose a sequence fRjg

of rectangles from R with R � [
1
j=0Rj and

P1
j=0 �(Rj) <1. Let a > 0 be
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such that for some in�nite subset A of !, jInj > 1 + a whenever n 2 A. Now
there exists anm 2 ! with �!(R\Rm) > 0 (otherwise R would have measure

zero). De�ne B := R \Rm, and note that lim supn
���n(B)�� 5 1, by Lemma

3.1. Let z be the center of B, and let C = �z +B. Then C � R, since both
rectangles are centered at zero, and every side of C has length less than or
equal to the corresponding side of R. Pick N 2 ! with j�nCj 5 1 + a=2

whenever n = N , and de�ne Tn : R! R by setting Tn(x) =
�
2+a

2+2a

�
x if

n 2 A n fk < Ng, and Tn(x) = x otherwise. Let T be the linear transfor-
mation de�ned on R! by (Tn). Then T (R) is a rectangle centered at zero
which satis�es C � T (R) � R, since for every n 2 A n fk < Ng,

j�nCj 5 1 + a=2 5
���nT (R)�� 5 j�nRj:

Note next that if �!(Rj) = 0, then �!
�
T (Rj)

�
= 0, while if �!(Rj) > 0, then

T shrinks an in�nite number of sides of Rj by a �xed, positive amount, since

limn j�nRj j = 1. So by Lemma 3.2, we also have that �!
�
T (Rj)

�
= 0. But�

T (Rj)
	
is a cover of T (R), whence

0 < �!(R \Rm) = �!(C) 5 �!
�
[j T (Rj)

�
= 0: �

4. Behaviour of the Hardy{Littlewood maximal function,

and di�erentiation of integrals

Given a collection of rectangles Q, the symbol Q0 stands for those rect-
angles in Q which are centered at zero. Let C denote the family of admissible
cubes, that is, the cubes of side length one. Note that the collection of admis-
sible cubes is very small (and unsuitable to de�ne di�erentiation of integrals).
Nevertheless, the uncentered Hardy{Littlewood maximal operator

Mu

C f(x) := sup
fC2C :x2Cg

1

�!(C)

Z
C

jf jd�!

associated to C, satis�es no weak bounds.

4.1. Proposition. For every pair p; q 2 [1;1), the operator Mu

C does

not satisfy any weak type (p, q) inequality.

Proof. We show that �!
�
fMu

C �[0;1]! = 1=2g
�
=1. Since �[0;1]! 2

Lp(R!; �!) for every p 2 [1;1), this entails the result. For each n 2 !, let

Un = �n�1
0 (0; 1) � (1=2; 3=2) ��1n+1(0; 1):
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Then �!
�
Un n [0; 1]

!) = 1=2, and for i 6= j,
�
Ui n [0; 1]

!
�
\

�
Uj n [0; 1]

!
�
= ;,

whence �!([nUn) =1. But [nUn �

�
Mu

C �[0;1]! = 1=2
	
. �

However, for centered admissible rectangles the situation changes radi-
cally (see Corollary 4.6): The corresponding maximal operator vanishes on
L1(R!; �!). This is quite surprising, not only by comparison with the previ-
ous result, but also by considering the analogous situation in Rn: If n = 2,
then the Hardy{Littlewood maximal operator associated to the centered rect-
angles with sides parallel to the axes does not satisfy any weak type (1,1)
inequality (see [2]).

4.2. Definition. For a = 0 and x 2 R!, the a-star of x, denoted by Sa
x,

is the set Sa
x :=

�
(yn) 2 R! : yn 2 [xn � a; xn + a] save for a �nite number

of exceptions
	
.

4.3. Lemma. For every a 2 (0; 1=2) and all x 2 R!
, the a-star of x has

�!-measure zero.

Proof. Fix a 2 (0; 1=2), and select b 2 (a; 1=2). For each �nite subset

fn0; : : : ; nkg � !, and every j 2 !, write I
j
ni := (�j; j). Then the rectangle

R
j

fn1;:::;nkg
:= �k

i=0I
j

ni
��!nfn1;:::;nkg(xi � b; xi + b)

belongs to R and has measure zero. Therefore

Sa

fn1;:::;nkg
:= [j�

k

i=0I
j

ni
��!nfn1;:::;nkg[xi � a; xi + a] � [jR

j

fn1;:::;nkg

also has measure zero. Since the collection of �nite subsets of ! is countable,
and Sa

x = [fn1;:::;nkgS
a

fn1;:::;nkg
, where the union is taken over all �nite subsets

of !, it follows that �!(Sa
x) = 0. �

4.4. Lemma. Let a 2 (0; 1=2), let R be a rectangle from R with center

z, and let C be an admissible rectangle centered at zero. If x 62 Sa
z , then

�!
�
(x+ C) \R

�
= 0.

Proof. Fix R 2 R. Let z = (zn) be the center of R, let x = (xn) 62 Sa
z ,

and let C be an admissible rectangle with center zero. We may assume that
�(R) > 0. Write R = �nIn, C = �nJn, and for every n 2 ! de�ne Ln := In
\ (xn + Jn). Let A be an in�nite subset of ! such that for every n 2 A,
jzn � xnj > a. Since lim jInj = lim jJnj = 1 (Proposition 3.4), there exists an
N 2 ! such that for every n = N , we have jInj 5 1 + a=2 and jJnj 5 1 +
a=2. It follows that for every n 2 A n fk < Ng, jLnj < 1+ a=2� a = 1� a=2,
whence (x+ C) \R has �!-measure zero (Lemma 3.2). �

4.5. Theorem. If f 2 L1(R!; �!), then for every admissible rectangle

C centered at zero, and for almost every x 2 R!
,
R
x+C

jf jd�! = 0.
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Proof. Let f 2 L1(R!; �!). For each positive rational number r the set�
jf j = r

	
has �nite measure, so there is a countable cover fRr

n
g by rect-

angles from R with
P

n
�!(Rr

n) <1. Thus, ff 6= 0g can be covered by a
countable collection of rectangles fEng with En 2 R and �!(En) <1 for all
n 2 !. Let a 2 (0; 1=2), and let en be the center of En. Then �

!([nS
a
en
) = 0

(Lemma 4.3), so for almost all x 2 R!, every C 2 A0, and every n 2 !,

�!
�
(x+ C) \En

�
= 0 (Lemma 4.4). Therefore

�!
�
(x+ C) \ [nEn

�
= �!

�
[n

�
(x+ C) \En

��
= 0

and
R
x+C

jf jd�! = 0 for �!-almost every x. �

The centered Hardy{Littlewood maximal operator associated to the fam-
ily A of admissible rectangles, is de�ned by

MAf(x) := sup
fC2A0g

1

�!(C)

Z
x+C

jf jd�!:

4.6. Corollary. For every f 2 L1(R!; �!) and almost every x, we have

MAf(x) = 0.

Let C0 be the collection of bounded cubes in Rn with sides parallel to the
axes and centered at 0, directed by reverse inclusion (so C1 = C2 i� C1 � C2),
and let A0 be the corresponding collection of rectangles. The Lebesgue dif-
ferentiation theorem (for Rn) with respect to centered cubes tells us that

for every f 2 L1(Rn) and almost every x, limC0
1
jCj

R
x+C

f = f(x). It is well

known, however, that if we replace C0 by A0, then there exists a function
f 2 L1(R2) for which limA0

1
jCj

R
x+C

f fails to exist on a set of positive mea-

sure (see [2]). In R! the Lebesgue di�erentiation theorem with respect to
centered rectangles also fails but for a di�erent reason: the limit exists and
is zero almost always for every integrable function (Corollary 4.7). Note that
the admissible rectangles centered at a point x are not directed by reverse
inclusion: the intersection of two rectangles of positive measure with center
x is a rectangle with center x, but it may have measure zero (examples are
easy to �nd, even among rectangles from R, by looking at products that con-
verge conditionally but not absolutely). So by taking the limit we just mean
that the diameter of the rectangles goes to zero, where the distance is given
by any metric compatible with the product topology, such as, for instance

d
�
(xn); (yn)

�
=

1X
n=0

(1=2n)jxn � ynj

1 + jxn � ynj
:

It makes no di�erence in the results that follow whether or not we require
that the measure of the rectangles (in addition to their diameters) also go to
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zero. On the other hand, if we take the limit with respect to the collection
of uncentered admissible rectangles containing a given point, then it is easy
to see that in general the limit will not exist for integrable functions. Recall
that A0 denotes the family of admissible rectangles centered at zero.

4.7. Corollary. For every f 2 L1(R!; �!) and almost every x, we have

lim
A0

1

�!(C)

Z
x+C

fd�! = 0:

Proof. Apply Theorem 4.5 to f+ and f�. �

Thus, when di�erentiating integrals with respect to centered rectangles,
the only function f 2 L1(R!; �!) for which the limit gives the correct value is
the constant zero. But the di�erentiation of integrals of continuous functions
with respect to centered rectangles does recover the value of the function at
each point.

4.8. Theorem. Let f : R!
! R be measurable. If there is a contin-

uous function g : R!
! R with f � g 2 L1(R!; �!), then for almost every

x 2 R!
,

lim
A0

1

�!(C)

Z
x+C

fd�! = g(x):

Proof. Suppose �rst that f is continuous. Fix x 2R! and " > 0. Given
any open neighborhood V of x for which f(V ) �

�
f(x)� "; f(x) + "

�
, there

exists a � such that for every C 2 A0, if the diameter of C is less than �,
then x+ C � V . Thus

1

�!(C)

Z
x+C

��f � f(x)
��d�! < ":

The result for f measurable follows now from Corollary 4.7. �

4.9. Remark. We noted before that it was immaterial in the preced-
ing results whether or not we required that the measure of the rectangles
decreases to zero. On the other hand, this requirement does not, by itself,
guarantee correct di�erentiation for continuous functions. Consider for in-
stance the admissible rectangles of eccentricity bounded by a �xed b > 1,
where the eccentricity of �nIn is de�ned as

sup
i;j

jIij

jIjj
:
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Let f
�
(xi)

�
= x20. Pick x 2 R!, let C be any admissible rectangle centered

at zero, of eccentricity bounded by b, and let a be the length of �0C. By
Proposition 3.4, limn �nC = 1, so a = b�1. But now, by Fubini's Theorem

1

�!(C)

Z
x+C

fd�! =
1

a

Z
x0+a=2

x0�a=2

y2dy = x20 +
a2

12
= x20 +

1

12b2
:

Taking the lim inf as the measure of C decreases to zero (over admissible rect-
angles centered at zero, of eccentricity 5 b), we see that the value obtained
is too large for every x 2 R!.

5. Final remarks

5.1. Remark. Let � =
P

n

1 �xi . If E is a measurable set, we denote
by ]E the number of point masses contained in E. The centered discrete
Hardy{Littlewood maximal function associated to a family of rectangles D
with center zero, is de�ned as

MD�(x) := sup
R2D

](x+R)

�!(R)
:

Discretization results, which allow one to determine whether a maximal
convolution operator satis�es a weak type (1,1) inequality by studying its
action over �nite sums of Dirac deltas, are well known in the Rn setting
(see, for instance, [2], Theorem 4.1.1). However, such results do not extend
to R!. We have seen that the Hardy{Littlewood maximal operator asso-
ciated to centered rectangles maps every L1(R!; �!)-function to the zero
function. But it su�ces one Dirac delta to verify that its discretized version
is unbounded, even if we choose the family of rectangles D to be admissible
rectangles from R, of eccentricity b > 1, and with b as close to 1 as we wish.
Using translates of the sets Un = �n�1

0 (0; 1) � (0; b) ��1
n+1(0; 1), it is easy

to check that �!
�
fMD�0 = b�1g

�
=1.

5.2. Remark. Let � be the standard bounded metric onR, i.e. �(x; y) =

min
�
jx� yj; 1

	
. It may be thought that the pathological results we have

encountered are due to the fact that we are using the \wrong" topology on
R!, so nonempty open sets have in�nite measure and no nonzero function
in L1(R!; �!) can be approximated by a continuous function. After all, if
the relevant sets from a measure theoretic point of view are the rectangles,
perhaps it is more natural to use the uniform topology, generated by the
metric u(x; y) = supn �(xn; yn), and �ner than the product topology. (Even
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�ner, and still more natural in this context, is the box topology on R!, gen-
erated by the sets �n(an; bn).) But there cannot be a translation invariant
Borel extension of �! on R! with the uniform topology. To see why, as-
sume there exists such an extension, and call it �. The set A = �n(0; 1=2)

is open in the uniform topology. Letting B :=
�
(xn) : xn = 0 or xn = 1=2

	
,

we have �n[0; 1) = [x2B(x+A)[
�
(xn) 2 �n[0; 1): for some n 2 !, xn = 0

	
[

�
(xn) 2 �n[0; 1): for some n 2 !, xn = 1=2

	
. It follows from Proposition

3.3 that the last two sets have measure zero, so �
�
[x2B (x+A)

�
= 1. Let

f : [x2B(x+A)! 2! be de�ned by f(x+ y) = 2x for every y 2 A. Then
the inverse image of each singleton is open and has measure zero, whence
� � f�1 is a continuous, translation invariant probability de�ned on all the
subsets of the Cantor group 2!. But this contradicts Vitali's Theorem.

5.3. Remark. The space c0 of real valued sequences with limit zero is

contained in Sa
0 for every a > 0 (in fact, it is clear that c0 = \n=1S

1=n
0 ). So

c0 is �!-measurable and �!(c0) = 0. Hence, the same thing happens with

all the spaces `p for p 2 (0;1). On the other hand, `1 = [n

�
(�n; n)!

�
, so

�!(`1) =1.
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