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ABSTRACT

In this paper we study weighted norm inequalities for the commutators [b,Sn] where b is a BMO
function and Sn denotes the «th partial sum of the Fourier series relative to a system of orthogonal
polynomials on [—1,1] with respect to general weights. Results about generalized Jacobi and Bessel
Fourier series are obtained.

0. Introduction
Given a linear operator T acting on functions and a function b, and denoting by

Mb the operator of pointwise multiplication by b(x), the commutator of this operator
and T is defined by

[b, T]f(x) = [Mb, T\f(x) = *(*) Tf{x)-T{bf){x).

The first results on this commutator were obtained by Coifman, Rochberg and
Weiss [7]. They proved that if H is the classical Hilbert transform (and also for more
general singular integrals) and 1 < p < oo, then [b, H] is bounded in LP(U) if and only
if 6eBMO([R). The boundedness of the commutator has been studied by, among
others, Bloom [5] involving some weights and where b belongs to an appropriate
weighted BMO space, and by Segovia and Torrea [24], who obtained a vector-valued
commutator theorem for operators T including the Hilbert transform, and whose
results apply to the Carleson operator, Littlewood-Paley sums, U.M.D. Banach
spaces, parabolic differential equations and approximate identities (for further
references see [25, 26]).

Frequently, the boundedness of the commutator is related to the analytic
behaviour of some operator. Let (X, d/j) be a a-finite measure space and B a real
Banach function space on (X, d/n). Consider the partial sums of Fourier series relative
to the orthonormal polynomials on L\X,dfi), that is, for feL\X,d/j) and xeX, we
have

SJ(x)= Kn(x,y)f(y)dfi(y),
Jx

where Kn(x,y) is the corresponding kernel. Let B be the complexification of B and,
for each beB, define Tn(b) = Me»SnMe-b. Then

Tn(b)(f)(x)= f exP[b(x)-b(y)]Kn(x,y)Ay)dii(y).
Jx

The boundedness of the operators Tn{b ) is equivalent to a weighted norm inequality
for the operators Sn.
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On the other hand, for this particular sequence {TJneN of operator valued
functions, the uniform boundedness in a neighbourhood of 0 e B implies the Gateaux-
differentiability (see [6,15]) and the Gateaux-differential of Tn at 0 in the direction
beBis

In particular, these ideas (which came out in [7]) show that certain weighted norm
inequalities for a basic operator T give information about the commutator [b, T].

The purpose of this paper is to study the uniform boundedness of the commutator
of the partial sums of Fourier series with respect to a class of weights which includes,
as a particular case, generalized Jacobi Fourier series.

In the first step, we find necessary conditions for the uniform boundedness of the
operators [b, Sn] in Lp(dfj); also, for the uniform weak boundedness [b, Sn]: Lp(d^i) -*•
LpK(d[i) or the restricted weak boundedness [b,Sn]: Lpl(d^)^Lpco(d^).

Here, Lpr(d/j) stands for the classical Lorentz space of all measurable functions
/ satisfying

Wf\\*-'w = (£ J V P / * ( 0 ] r f y' ' < oo for 1 ^p < oo, 1 ^ r < oo,

ll/IL'-w* = ll/ILs«w = sup;1/p/*(/) < oo for 1 ^p ^ oo,
t>0

where/* denotes the nonincreasing rearrangement of/. We refer the reader to [27] for
further information on these topics.

In the second step, we find sufficient conditions for the uniform boundedness of
[b,Sn] in Lp(dfj), which, in many cases, coincide with the necessary conditions
previously found. We are concerned with the case dfi = wdx, where w is a positive
weight function.

We shall distinguish two cases: firstly, polynomial systems with uniform bounds
(the class Jif defined below), where we follow the ideas of Coifman, Rochberg and
Weiss. This is the case of Jacobi weights (1 —x)*(\ +x)fi with a,/? ^ —\. Fourier Bessel
series also fall in this scheme.

Next, we consider a more general setting (the class <#), where these techniques do
not work well and a more detailed examination of the kernels is required. Here, we
reduce the problem to the boundedness of [H, b] (where H is the Hilbert transform)
in weighted Lp spaces, by inserting Ap weights.

We shall need weighted estimates for the partial sums of the Fourier series. The
problem of finding conditions on weights u, v such that

\WSJ\\LP(W) ^ C\\vf\\LP(w) V O 0 , V / e I W (1)

has been solved only in some particular cases. For instance, Badkov gives in [2]
necessary and sufficient conditions for (1) when u — v and both u, w are generalized
Jacobi weights; earlier results can be found in [21, 22, 28,18]. For the two weight
case, see [12,9,10]. Hermite and Laguerre series have been considered by Askey and
Wainger [1] and Muckenhoupt [19].

Bessel series have been studied by Wing [28], Benedek-Panzone [3, 4] and the
authors [11].

In this paper we shall see that the boundedness of the commutator for this type
of series holds when the partial sums of the Fourier series are bounded.
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1. Notation and main results

Let dfi(x) = w(x)dx, with weL}(dx) and w > 0 a.e. in [— 1,1]. Let {pn}n>0 be the
sequence of orthonormal polynomials with respect to pi.

For feL1(w), let Snf denote the nth partial sum of the Fourier expansion of/in
W o o t h a t i s>

SJ(x) =

Throughout this paper, C will denote a constant, independent of «,/, but possibly
different from line to line.

Let 1 < p < oo and — co ̂ a < b ̂  co. The class ^4p(a, 6) consists of those pairs
of weights (w, v) such that

where / ranges over all finite intervals / c («, £) and |/| stands for the length of the
interval /. A weight u is said to belong to Ap if (u, u)sAp. We refer the reader to [8]
for further details on Ap classes.

We say that (u,v)eA*p(a,b) for 8 > 1 if (i/,i>*)eAp(a,b). With this definition we
mean that a power of u and v greater than 1 belongs to Ap. We use the same exponent
3 although it can change in each ocurrence.

We shall take B to be the space of functions of bounded mean oscillation (BMO)
on [— 1,1]. If beLx(dx), the mean of b on an interval / is

1
6 / = 777

The function b is said to have bounded mean oscillation on [— 1,1] if

is finite, where the supremum is taken over all intervals / ^ [— 1,1]. The space BMO
of real-valued functions (modulo constants) having bounded mean oscillation on
[— 1,1] is a Banach space with || • ||+ as its norm.

THEOREM 1. Let w be a weight on [-1,1] with w > 0 a.e., {Sn}n>0 the Fourier
series relative to dfi(x) = w(x)dx, U, V two weights, U, V"1 > 0 a.e. Let £eBM0,

and suppose that there exists some constant C > 0 with

for each n ̂  0 andfeLq'\w) {where 1 < p < 00, 1 < q < 00; either r = p or r = 00;
either s = q or s = 1). Then,

Let w(x) be a weight function on [ — 1,1], pn{x) the corresponding orthonormal
polynomials and qn(x) the orthonormal polynomials with respect to (1 — x2) w(x). We
say that w belongs to the class Jf of weights if it satisfies
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(i) w(x) > 0 a.e.,
(ii) 1/^)1
(iii) |^n(x)|
The class #P contains the generalized Jacobi weights

where a,/? ̂  —f, yt ̂  0 (for i = 1,2,..., N), — 1 < xx < • • • < xn < 1, 0 is positive and
continuous on [—1,1] and p(d)/SeLl(0,2), p being the modulus of continuity of 0
(see, for example, [2]).

THEOREM 2. Let 1 <p < oo, w e / , £/am/ F6e weights on [-1,1] and66BMO.

j ( - l , 1),

((1 -x2)p/i Uvwx-Vl\ (1 - x ^ K ' w ^ ^ e ^ j C - 1 , 1 ) (2)

for some S > 1 (where S = 1 w/ien (/ = F), then the commutator [b, Sn] is bounded from
Lp(Vpw) into Lp(Upw) uniformly in n.

For generalized Jacobi weights with a,/? > - 1 , yt ^ 0, the orthogonal polynomials
do not have uniform bounds. We extend the class Jf of weights and say that a weight
w belongs to the class .# if w(x) = (1 -x) a ( l +x)pwx(x), where

(i) w(x) > 0 a.e. and there exist e > 0 and positive constants Cx and C2 such that
Q < wi(x) < Q f°r aU *e(l—e, 1) and

(ii) |/?B(x)| ^ C ( l - x + fln)-
W2+1/4)

(iii) \qn(x)\ ̂  C{\ - x + an)-
(a/2+3/4)(l +x + bny

m+m) w^x)'112, where {an} and {bn}
are positive sequences such that limn an = limn bn = 0.

THEOREM 3. Let I <p < oo, we Jp, U(x) = (1 -x) a ( l +X)6W(JC), V(x) = (1 -JC)^

(1 +x)Bv(x) with u > 0 a.e., y > 0 a.e. awo1 5«c/i that Cx < u(x), v(x) < C2 for
xe(l-e,\)andxe(-\,-\+E). IfbeBMO,

V 2

a-A . \\ a+l

for some S > 1 (with S = 1 w/ie« u = v), then the commutator [b, Sn] is bounded from
Lp(Vpw) into Lp(Upw) uniformly in n.

As a consequence of these results for generalized Jacobi weights, we obtain the
following.
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COROLLARY 1. Let \<p<co, w(x) = (\-x)"(l+x)ilYl?_1\x-xi\
y< with

U(x) = ( l - x U

Then the commutator [b, SJ is uniformly bounded from Lp(Upw) into Lp(Upw) for
each beBMO if and only if

\p

b (6 l)(l

\P

n 1 <? m
) \ 2)

2)

2)

in];

<

<

I Vi
>'

min<

min

+n
2 1

i «+i]
4 ' 2 J '

for ; 1 9 A/

(3)

(4)

(5)

and

COROLLARY 2. W/f/i the same notation, the inequalities (3), (4), (5) are also
necessary for the weak and restricted weak (p,p)-boundedness of the commutator [b, Sn]
for each beBMO.

REMARK. Notice that, in contrast to this situation, the operators Sn are of
restricted weak type when w is a Jacobi weight and p is an endpoint of the open
interval determined by (3), (4), (5) (see [13]).

2. Proofs of the theorems

Proof of Theorem 1. For each 0 < L < K < oo, let us define

0{L) = {xe[-\, l];\b(x)\ < L), <§{K) = {*e[-l, \);K<\b(x)\}.

Then, for each xe^(K), ye^{L) we have
(*) sgn (£(*)-60)) = sgn 6(*);

(*) \b(y)\ <L< (L/K)\b(x)\, so that

\b(x)-b(y)\ > \b(x)\-\b(y)\ > ((K-L)/K)\b(x)\.

From the hypothesis it follows that

w{y) dy,, Sn - Sn_J (ir1/) (*) = pn(x) J [b(x) - b(y)]pn(y) v

where the {pn} are the orthonormal polynomials with respect to w(x) dx. Now, take
0<L<AT<oo and f{y) = [sgnpn(y)] Xg»(L)(y)\Ky)l where h is any function in
LQ's(w). Here and in the sequel, xA denotes the characteristic function on a measurable
set A. For each xe^{K), we have

- b(x)\ \Pn(y)\ v(yr XMW \Ky)\ "00 dy= |-P»(*)sgn&(*)
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Thus,

IS T

MbSS](-1f)\\ ^ W

and therefore

K-L
WrP.r, AP V^Y^r.hLh , ^ C\\f\\r9s,n HL (tv) H r n A,{P(L) IIL (to) ^ \\J IIL ( t

\\Xv(K)bupn\\Lv,r(w) WXfHnbv^pJtf.r^ ^ C. (6)

for each heLQS(w). By duality,

Also,
K-L
KL

In a similar way, taking f{y) = [sgnft(^)]sgn/?n(j)^(K)(>
i)|/i(>')|, and xe^(L), we

obtain

Now, by a result of Mate, Nevai and Totik (see [17]),

C||£nrl/2(1-*T1/4IL'V) < liminf \\gpn\\Lp(w)

for any measurable function g. A similar property holds in Lp-co(w) (see [13]). Then,
taking lim inf in (6) and (7) we have

\\X<$(,K)buw ( 1 — x ) \\Lp'r(u)) \\X&(L)bv w ( 1 — x ) \\L<I''*\W) < oo»

\\XP(L)DUW \L X ) \\Lp'r(w) \\Xg(K)®v w M x ) \\LQ'S'(W) ^ ° 0

for each 0 < L < K < oo. Since ft£L°° we have ̂ ( K ) ft # 0 for every isT > 0 and there
exists some Lo > 0 such that /^(L) ft # 0 for every L > Lo. Now, M, y"1 > 0 almost
everywhere, so that for Lo < L < K < oo the above norms cannot vanish and as a
consequence they cannot be oo either. This proves the theorem.

Proof of Theorem 2. Write

W^AJ — \i —X ) U\X) W{X) , V\X) — 1̂ —X ) V\X) W\X) ,

The following lemmas will be proved below.

LEMMA 1. Assume that WGJF and let U and V be as above and satisfying
(U,V)GAS

P and (u,v)eAd
p for some S>\. Then \\USJ\\PiW^C\\Vf\\Ptyft where C

depends only on the Ap constants of(u,v) and {u,v).

LEMMA 2. Let (wl5 vj e Apfor some S > 1 and ft e BMO. Then there exist S > 1 and
y > 0 such that {e^u^ e^v^ e As

pfor all s with \s\ < y, and the Ap constant is independent
ofs.
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Now, for a fixed function beBMO and ne N, put TJ= ezbSn(e-zbf) for zeC . Let
us show the analyticity of this operator-valued function. From the hypothesis and
Lemma 2 it follows that (esbu, e8bv) e As

v and (esbu, esbv) e Ap for all s such that |s| < y.
Then, by Lemma 1, we have \\esbUSnf\\p w ^ C\\esbVf\\p w. Therefore, for \z\ < y we
have \\UTJ\\PtU ^ C\\ Vf\\PtU. Then, Tze J?(Lp(Vpw), Lp(Upw)) for \z\ < y. Moreover,
the constant C in the last inequality is independent of z for \z\ < y. So, the application Tz

is bounded (with the operator norm) in \z\ < y. Then, in order to prove the analyticity
in \z\ < y it is enough to show that the mapping zi—• <7^/,g> is holomorphic for every
/ i n a dense subspace of Lp(Vpw) and every g in a dense subspace of the dual of
Lp(Upw) (see [14, p. 365]).

I f / ,g are bounded functions we can differentiate the expression

<TJ,g>= P f e*Wx)-b^Kn(x,y)J{x)g(y)U(x)pw(x)w(y)dxdy

by differentiating under the integral sign, since the derivative of the integrand can be
dominated by

Ce^x)-b(y)\b{x)-b{y)\ \Kn(x,y)\ U(x)pw(x)w(y),

which is integrable on [—l,l]x[—1,1]. This follows from a suitable handling of
the hypothesis (integrability conditions which are implicit in the A8

p conditions (2),
6eBMO and weJfT).

Besides, this process shows that

Therefore, [b,Sn] is a bounded operator from Lp(Vpw) into Lp(Upw). Moreover, by
Cauchy's integral theory, the norm of [b, Sn] is controlled by the maximum of the
norms of Tz (which are independent of n), when z ranges in a circle, and hence the
norms of [b, Sn] are independent of n. This concludes the proof of Theorem 2.

Proof of Lemma 1. The main idea of this proof comes from [21] (see also [12]).
We use Pollard's decomposition of the kernels Kn{x,y), that is,

Kn(x,y) = rn Tltn(x,y) + sn T2n(x,y) + sn T3n(x,y),
where

T1<n(x,y) = pn+1(x)pn+1(y),

and {rn}, {sn} are bounded sequences. In fact, for any measure dfi on [—1,1] with
y! > 0 a.e.,

limrn = -f, limsn = f
n

(this can be deduced from [21] and either [23] or [16]). Therefore, we can write
SJ= rn Whnf+sn WxJ-sn WzJt where

= pn+1(x) pn+1fw,

w,x), W3<nJ{x) = (\-x*)qn(x)H(pn+1fw,x),

and H is the Hilbert transform on the interval [—1,1]. Thus, the study of Sn can be
reduced to that of Win (for / = 1,2,3).
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Case / = 1. By using the uniform estimates for/?ra and qn and Holder's inequality
with \/p + \/p' = 1, we have

^ c\\ u(X) w(X)-v\\ -x2r i / 4 i i P , . ii nxr1 w(x)-v\i -x2r i /4iiP-,. II vnVtW.
From the Av conditions in the hypothesis it follows that

U(x)p w{xf-m (1 - x2yp/i e L\dx), (V(x)p w(xy-p/2 (1 - x
2)m)~p'/p e L\dx),

that is,

\\U(x)w(x)-^(\-x2)-i'XtW < oo, WVixywixY^il-x^X^ < oo.

Therefore ||UWltJ\\PtW^C\\Vf\\PiW.

Case i = 2. Since ((l-x2)-p/iw1-p/2Up,(\-x2ypl*w1-p/2Vp)€Ap(-\,\) for
some 3> 1, the Hilbert transform is bounded from Lp((l—xa)-p/*w1-p/2Vv) into
Lp((l -x2)-p / 4 w 1 -^* ' ) (it is a consequence of [20, Theorem 3]).

Write g(y) = (1 -f)qn{y)Ay)w{y). Then

< C\\ V{\ - x 2 ) - 1 " w-v%g\\PtW ^ C\\ Vf\\VtW.

Case i = 3. This can be done in a similar way using the second v4£-condition.

Proof of Lemma 2. For any interval /, write /(/) = (\/\I\)jIf{x)dx. The
condition {ultv^eAp can be written as I(u{)I(vi"lp~1))p~1 ^ C for each interval. It is
known [20] that there exists 3 > 1 such that (i/^vfjeAp if and only if there is some
aeAp with C1u1 ^ a ^ C2vv where J and the Ap constants depend on each other.
In order to prove that {e^u^e^v^eA^ it is enough to show that esbaeAp uniformly
in s.

Since aeAp, by the reverse Holder's inequality there exists £ > 1 such that (fe Ap.
As beBMO (and also -beBMO), by the John-Nirenberg inequality there exists
X > 0 small enough such that esbeAp for \s\ < X uniformly in s, that is, with an Ap

constant independent of s (see [8]).
By Holder's inequality with l/e+ \/e' = 1, we have

I(e8bo)

Therefore

I(e'ba)I((e'ba)-inp-1))p-1

for every s such that |s| < X/e'.

LEMMA 3. Le/ R,SeU, an > 0, limnan = 0, / e [ - l , 1]. Then,
(a) |JC - t\R (|JC — f | + a n ) 5 6 ^4P( —1,1) uniformly in n if and only if — I < R<p — 1,

-1 <R + S<p-\;
(b) /or a product of terms of this type, these conditions are applied separately to

each factor.

For the proof of this lemma, see [13].
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Proof of Theorem 3. Coming back again to Pollard's decomposition we have
[b,Sn] = Zdl1[b,WiJ, where

f1 f1

[b, Wln]f= bpn+1 Pn+1fw-pn+1 pn+lfbw,
J-i J-i

[b, W2Jf= pn+x[b,H]{(\-f)qnfw), [b, WzJf= (l-x*)qn[b,H](pn+1fw).
We consider each operator separately.

(i) Boundedness of[b, W2 n]. Write

k = Up\pn+1\
pw and i*n=V*\qn\-'(\-j<*)-pwl-p.

Now \\U[b, W2Jf\\p>w ^ C\\ Vf\\PtW if and only if \\[b,H]g\\PiXn ^ C\\g\\Vt^ with some
constant C independent of n. In order to prove this last inequality, we use the idea
of inserting weights ^n, that is, finding functions 0n such that C1 Xn ^ $n ^ C2//n and
<pnsAp uniformly, that is, with an ^-constant independent of n. By using the
estimates for pn and qn we have

Xn < Cuvw\-Vl\\ -x)ap+a(l

Hn ^ Cvvw\~vl\\ -

x (1 -

It is not difficult to see, from the hypothesis, that we can take a real number R such
that Ap— p + <x(\ —p) < R^ap + tx with — 1 < R < p— 1 and choose S such that

R + S ^
-1 <R + S<p-\.

Now, it is a straightforward calculation to verify that

C(l-x)ap+a{\-x+an)-pW2+m) ^ ( l - x f ( l

We can also take R and 5 such that

Bp-p+P(\ -p)^R^ bp+p,
Bp-p+p(\-p)+p(lP+l) ^ R + S^bp+p-p

-\ <R<p-l, -1 <R + S<p-\,
so that

If we write an(x) = (1 -x)R(l -x + an)
s and pn{x) = (1 + x ) ^ ( l + x + ^n)s ' we

have Cl n ̂  Mpw}-p/2any9n and vpw\-p/2anpn ^ C/in. As {upw\-pl\vpw\-pl2)eAp, there
exists a positive function <j> satisfying C1u

pw\~p/2 ^ <j> ^ C2v
pw\~p/2 and 0pwJ"p/2ey4p.

Besides, there are positive constants Cx and C2 such that Cx ̂  0(JC) ^ C2 for
all j ce (—1, -1 +e) and x e ( l —e, 1). On the other hand, having in mind that an > 0,
limnan = 0 and - 1 < R <p— 1, —1 < R + S <p—\, from Lemma 3 it follows that

an = (\-x)R(\-x + an)
seAp uniformly.

Also, it is clear that an is bounded below and above by positive constants on the
interval [— 1,1 — e]. In a similar way we obtain that PneAp uniformly and there exist
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positive constants C1 and C2 such that Cx < fi(x) < C2 for all xe[ — 1 +e, 1]. Then,
splitting in pieces the integrals appearing in the Ap condition it can be shown that
(f)n = (f>pw{~pl2(xn/3neAp uniformly. Since the commutator of the Hilbert transform
with a function beBMO is bounded with Ap weights (see [5]), then

\\[t>,H]g\\p,Xn ^ C\\[b,H]g\\VtK ^ CM,,*. ^ CMp.^

and the boundedness of [b, W2 J follows.

(ii) Boundedness of[b, W3<n]. We can prove that there are positive constants C15

C2 and weights y/n uniformly in Ap, such that

cx u(xy(i-x*y\qn(xTw(x) < ¥n(x) ^ c% v(xy\Pn+1(x)rw(xy-»,
y/neAp uniformly,

and we proceed as before.

(iii) Boundedness of[b, Wln]. We have [b, Wln)f= AJ+BJ, where

pn+1fw, Bnf=pn+1\ (b-bQ)pn+1fw

and Q stands for the interval [—1,1]. Moreover,

\\UAnf\\p<w=\\(b-bQ)Upn+1\\p, Pn+JW

< W-bQ) UPn+l\\p,« \\Pn+1 V-X-.u, II Vf\\v,w.
Let S > 1 satisfying the Ap hypothesis, e > 0, and \/p = \/s+ \/pS+ \/p(\ +e). From
the definitions of Xn, an, fin and Holder's inequality we have

\\(b-bQ)UPn+1\\p,w = \\(b-

From the Ap hypothesis, \\[upw\-p/2]s\\{l(pS) < C. Now, e > 0 can be taken small
enough so that ||aB/?JH^ < C. Finally, from the John-Nirenberg theorem, there
exists some C such that \\{b — bQ)\\s ^ C||!>||#. Putting these inequalities together, it
follows that \\(b-bQ) Upn+l\\PtW < C. In an analogous way \\pn+1 V-l\\p,w < C. Thus\p,w

The operators £ n / c a n be handled in the same way as before.

Proof of Corollaries 1 and 2. (a) If re 1R and pr + cn+ 1 = 0 , from the definition
of Lp'°°(xa), it is not difficult to see that II xr#(o, AJM II L ^ Z " ) = C, f° r s o m e constant
C > 0 independent of A > 0. Therefore,

||xr log (1/|JC|)^(O,DWII t".-<x-) > Clog (I/A),

so that ||xrlog(l/|x|)^(0il)(x)||Iip.oo(z«) = oo. Now, if the restricted weak boundedness
[b, Sn]: Lv' 1(w) -* Lv' n(w) holds uniformly in n for each b e BMO, from Theorem 1 we
have

log;

log

\x-t\

1

< oo,

< 00

for each re[—1,1], since b(x) = l o g l x - ^ e B M O . This leads to (3), (4), (5), which
proves Corollary 2 and, as a consequence, the 'only if part of Corollary 1.
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(b) Suppose now that (3), (4), (5) hold. From Lemma 3 and the fact that
generalized Jacobi polynomials belong to the class J f (if a,/? ^ — \, yt ^ 0) or the class
<# (for any a,/? > — 1, yi ̂  0), it is easy to show that the hypotheses of Theorem 2 or
Theorem 3 also hold.

3. Fourier-Bessel series

Let us now consider the Bessel function Ja of order a > — 1 and let {ara}*=1 be the
increasing sequence of the zeros of Ja. The Bessel system of order a, O'"}*_15 where

fn(x) = 21 'V^ajr14K x) for n > 1,

is orthogonal and complete in L2((0, \),xdx). Let Sa
nf denote the «th partial sum

operators

Sa
nf(x) = t cJHx), ck = ck(f) = [jl(y)f(y)ydy.

k-l JO

THEOREM Y. Let U, V be two weights on (0,1). If there exists some constant
C > 0 such that

\\U[b,S«n](V-lf)\\,r>,r(xdx) ^ C\\f\\L9,sixdx)

for each n ̂  0, fe LQ- s(x dx) (where \<p<oo,\<q<co; either r = p or r = oo ;
either s = q or s = 1), then

for each

log

ae[

1
x —

- 1 ,

11 ~1/2

! ] •

r(xdx)
< CO, log

1
\x — a\

< 00
Lq's\xdx)

The proof is similar to that of Theorem 1, if we replace the previously mentioned
results of [17] and [13] by the analogous results for Fourier-Bessel series (see
[10, Lemma 2; 11, proof of Theorem 3]).

In a similar way to the case of weights in the class 3/f we obtain the following.

THEOREM 2'. Let 1 < p < oo, a ̂  — \, let U and V be weights on (0,1) and
beBMO. If(x1-mU(xy,xl-p/2V(xy)eAs

p(0, \)for some S > 1 (where S=\ifu = v),
then the commutator [b,Sa

n] is bounded from W(Vvx) into Lp(Upx).

This can be proved in a similar way to Theorem 2, using [11, Proposition 1]
instead of Lemma 1. Also, for — 1 < a < —| a result analogous to Theorem 3 can be
stated. Finally, Theorems 1' and 2' give the following result.

COROLLARY. Let \ <p < OD, <x^ — f, and

m

U(x) = xa(\ -xf f] \x-xk\
b* for a,b,bkeU.

Then the following conditions are equivalent:
(a) WUSIWWL'M < C\\f\\L,lxM)for each fe Lp(x dx) ;
(b) \\USl(U-lf)\\L,..{xM> < C\\f\\LV(xdx)for eachfeU(xdx);
(c) \\VSl(U-'f)\\L^(xdx) ^ C\\f\\L^(xdx)for eachfeU\xdx);
(d) |l/p + i(a-l)| <i -\<pb<p-\, -1 <pbk<p-\ for 1 ^k^m.
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