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Abstract

We study the uniform convergence for general Fractional Step Runge–Kutta methods in the integration o
of evolution problems which includes linear parabolic problems whose coefficients depend on time. Such
is performed by suitably decomposing the contribution to the global error of this time integration procedu
the contribution of some standard spatial discretization methods.
 2002 IMACS. Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper is devoted to present and analyze a class of efficient and robust methods which incl
classical Splitting methods (see [15,17]), Alternating Direction schemes (see [13,19]) or, more ge
Fractional Step methods (see [9]) used to discretize efficiently some parabolic problems.

From the classical methods (see [26]) until the most recent ones (see [14,16]), every method
type has been designed and analyzed separately, in close relation to the specific continuous
whose resolution is required. In [18], a framework to analyze this kind of methods for general pa
problems, as well as to develop new ones of higher orders, is proposed. The analysis carried o
only covers the case of time independent coefficients. Here we extend such ideas to the case of e
problems with time dependent coefficients.
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The main idea for analyzing, in a unified way, the Splitting, Alternating Direction or Fractional Step
methods is based in the fact that these methods are composed by a standard spatial discretization scheme
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of type Finite Differences or Finite Elements and a special class of Additive Runge–Kutta meth
advance in time, called Fractional Step Runge–Kutta methods. For these methods we give suita
to check, consistency and linear absolute stability properties which will be sufficient to ensure effi
and robustness for the integration processes described here.

In order to get results for a wide set of problems, we will consider an abstract linear evolution pr
whose coefficients may depend on time and we will obtain some uniform convergence results
totally discrete schemes derived from the combination of Fractional Step Runge–Kutta methods a
standard discretization methods for elliptic problems of type Finite Differences or Finite Elements
this, we will follow one of the techniques which Jorge proposed in [18] for studying the converge
Fractional Step schemes for linear evolution problems with constant coefficients.

Let u(t) be solution of an evolution problem with time dependent coefficients which admi
operational formulation as follows:

du(t)

dt
= −L(t) u(t)+ g(t),

u(t0)= u0;
(1)

hereL(t) :D(L(t)) ⊆ H → H are, generally, unbounded differential operators1 defined on a domain
D(L(t)) dense on a Hilbert spaceH , with scalar product(( ·, · )) and with associated norm‖ · ‖. Some
results concerning the existence, uniqueness and smoothness in time foru(t) can be consulted in [5,12
21]. For carrying out our analysis, we will assume that for everyt , that the operatorsL(t) are coercive
and maximal, i.e.,{((

L(t)v, v
))

� α‖v‖2, with α > 0, ∀ v ∈ D
(
L(t)

)
and∀f ∈H,∃v ∈ D

(
L(t)

)
, such thatv +L(t)v = f,

and also that the operatorsL(t) are defined on the same domainD(L(t)) ≡ D ⊆ H for all t ∈ [t0, T ].
The practical meaning of this restriction is that only time independent boundary conditions are in
in the scope of our study.

A discretization of problem (1) by using a Fractional Step scheme departs from a natural dec
sition of the operatorsL(t) in n simpler addends:

L(t)=
n∑
i=1

Li(t), (2)

where the operatorsLi(t) :Di ⊆H → H preserve some properties ofL(t); concretely, we will assum
that: {∀i = 1, . . . , n,∃αi > 0 such that

((
Li(t)v, v

))
� αi‖v‖2,∀v ∈ Di

and∀f ∈H,∃v ∈ Di , such thatv +Li(t)v = f,
(3)

and alsoD =⋂n
i=1Di .

1 In the case of (1) is a parabolic problem, the operatorsL(t), which contain the spatial derivative terms, will be ellip
operators for allt ∈ [t0, T ].
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For example, if we consider ann-dimensional convection–diffusion problem of type∂u
∂t

= d∆u −
�v �∇u− ku+ g, typically

ach

) is an

ifferent

remark
h were
Liu≡ −d
∂2u

∂x2
i

+ vi
∂u

∂xi
+ kiu,

for i = 1, . . . , n being k1 + · · · + kn = k (wheren is the number of the spatial variables); thus, e
operatorLi contains only derivatives with respect to one of the spatial variables.

We will also consider a decomposition for the source term:g(t)=∑n
i=1gi(t), with gi : [t0, T ] →H .

Using this decomposition together with (2) we will rewrite the problem (1) as follows:
du(t)

dt
= −

n∑
i=1

(
Li(t)u(t)− gi(t)

)
,

u(t0)= u0 ∈ D,
(4)

a Fractional Step Runge–Kutta method (abbreviated as FSRK) to discretize in time problem (4
algorithm structured in the following way:

U0 = u0(∈ D),

Um+1 =Um − τ

s∑
j=1

b
ij
j

(
Lij (tm,j )U

m,j − gij (tm,j )
)
,

whereUm,j =Um − τ

j∑
k=1

a
ik
jk

(
Lik (tm,k)U

m,k − gik (tm,k)
)
, for j = 1, . . . , s,

(5)

here,τ denotes the time step which we have chosen constant for simplifying our presentation,Um+1 will
be approximations to the exact solutionu(t) at the instantstm+1 = (m + 1)τ , for all m = 0,1, . . . and
Um,j can be considered approximations to the exact solution at the intermediate times,tm,j = (m+ cj )τ ,
which are usually called stages of the method.

A FSRK method is determined by the coefficientsa
ij
kj , b

ij
j andci with j, k = 1, . . . , s andij = 1, . . . , n.

We will assume that a choice of these coefficients determines a unique FSRK method, although d
partitions on the derivative function−L(t)u(t) + g(t) can give different numerical approachesUm. In
order to connect this type of method with other one step methods of type Runge–Kutta we want to
that the FSRK methods form a special subset of semiexplicit Additive Runge–Kutta methods whic
introduced by Cooper and Sayfy in [10,11] and generalized by Jorge in [18] in the following form:

U0 = u0,

Um+1 =Um − τ

n∑
i=1

s∑
j=1

bij
(
Li(tm,j )U

m,j − gi(tm,j )
)
,

whereUm,j =Um − τ

n∑
i=1

s∑
k=1

aijk
(
Li(tm,k)U

m,k − gi(tm,k)
)
, for j = 1, . . . , s.

(6)
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It is clear that if we impose on these methods the restrictions:
i

ty

–

e will

in the

reduces

us
if
blem
quires
sed to


ajk = 0, ∀i = 1, . . . , n, if k > j,∣∣bik∣∣+ s∑
j=1

∣∣aijk∣∣ �= 0 for somei ∈ {1, . . . , n}

�⇒
s∑
l=1
l �=i

(∣∣blk∣∣+ s∑
j=1

∣∣aljk∣∣
)

= 0, ∀k = 1, . . . , s,

(7)

we obtain a scheme of type (5) whereij for all j = 1, . . . , s, are the indexes which verify the proper∑s
j=1

∑n
l=1
l �=ij

(|blj | +∑s
i=1 |alij |)= 0.

It is not difficult to see that an additive Runge–Kutta method involvesn overlapped standard Runge
Kutta schemes of type:

Ce Ai

(bi )T

where Ai = (aijk), bi = (bij ) for i ∈ {1, . . . , n}, C = diag(c1, . . . , cs) and e = (1, . . . ,1)T ∈ R
s , in such

way that each one of them determines the contribution of the term−(Li(t)u − gi(t)) in the numerical
resolution of (1). In order to use a compact notation of type Butcher table for these methods w
organize the coefficients of them as follows:

Ce A1 A2 . . . An

(b1)T (b2)T . . . (bn)T
(8)

This table can be reduced for an Additive method of type FSRK by avoiding the null columns
form:

iT

Ce A
bT

where A=∑n
i=1 Ai , bT =∑n

i=1(b
i )T andiT = (i1, . . . , is), beingij ∈ {1, . . . , n} the index of the unique

non-nullj th column of the extended matrices(
Ai

(bi )T

)
∈ R

s+1×s.

In scheme (5) we can observe that the use of FSRK methods for discretizing in time problem (1)
it to a family of elliptic problems, one problem per stage, in the form:(

I + τkLij (tm,j )
)
Um,j = Fj , (9)

whereFj only contains evaluations ofgi(t) and terms which are explicitly computed from the previo
stages, and whereLi(t) can be simpler thanL(t). For example, for convection–diffusion problems,
every operatorLi(t) contains only derivatives with respect to one of the spatial variables, then pro
(9) is essentially one-dimensional; consequently, the analytical or numerical resolution of (5) re
simpler methods than the classical time integrators (for example, semiexplicit RK methods) u
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discretize (1), because the calculus of the stages with them would involve multidimensional elliptic
problems of type(I + τkL(tm,j ))U

m,j = Fj .
hich we
bility

lems
ties of
eloped
some

which

joint to

nd we

revious

aper.
To analyze the convergence of the discretization in time, we combine consistency properties w
will study here with the stability properties obtained in [6,7]. In this context, the linear absolute sta
is a suitable property to reach unconditional convergence.

To finish our study we carry out the discretization in space of the family of elliptic prob
resulting from the time discretization process (6) with the restrictions (7). To set the proper
this combination we introduce an abstract formulation for a general discretization method dev
by Vainikko (see [25]), which includes Finite Differences and Finite Elements and we deduce
τ -independent convergence results for this spatial discretization stage.

The rest of the paper is structured in five sections. In the following section we show some results
ensure that the time discretization procedure has unique solution (Um, m= 0, . . . , T /τ ) and it is stable.
As well, we give some consistency results for the discretization in time and we use such results
the stability ones developed in [6,7] to prove that it is convergent.

In Section 3 we introduce a general abstract formulation for spatial discretization of (6), (7) a
study the convergence of the derived totally discrete scheme.

Section 4 contains the proofs of the main theorems of Sections 2 and 3 as well as some p
technical lemmas together with their proofs.

Finally, in Section 5 we show two numerical tests where we check the results obtained in this p

2. Convergence of the discretization in time

In this section we will denote byC a generic constant independent ofτ .
In order to show our analysis in a shorter form we will use the following tensorial notations:

givenM ≡ (mij ) ∈ R
s×s andv ≡ (vi) ∈ R

s, we denote

�M ≡
m11IH . . . m1sIH

...
. . .

...

ms1IH . . . mssIH

 ∈Hs×s and v̄ ≡
v1IH

...

vsIH

 ∈Hs, (10)

whereIH is the identity inH ,

L̂mi (τ )=


Li(tm,1) 0 . . . 0

0 Li(tm,2) . . . 0
...

...
. . .

...

0 0 . . . Li(tm,s)

 ∈ L(Di ,H )
s×s, ∀i = 1, . . . , n,

Û m = (
Um,1, . . . ,Um,s

)T ∈Hs, (11)

Ĝm
i (τ )= (

gi(tm,1), . . . , gi(tm,s)
)T ∈Hs, ∀i = 1, . . . , n.
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By using these notations we can write scheme (6) as follows: n∑

tion
s a first

t, in

lution

or

Um+1 =Um − τ

i=1

(
bi
)

T
(
L̂mi (τ )Û

m − Ĝm
i

)
,

whereÛ m = ēUm − τ

n∑
i=1

Ai
(
L̂mi (τ )Û

m − Ĝm
i

)
.

In [7] it is proven that the operator(Ī + τ
∑n

i=1 AiL̂mi (τ )) :Dk1 × · · · × Dks → Hs is invertible and its
inverse operator(Ī + τ

∑n
i=1 AiL̂mi (τ ))

−1 :Hs → Hs is bounded2 independently ofτ ∈ (0, τ0] if the
FSRK method has all its stages implicit, i.e.,

a
ki
ii > 0, for all i = 1, . . . , s, (12)

and if {Li(t)}ni=1 is a system of operators fulfilling (3). As many of the classical Alternating Direc
or Fractional Step methods are designed in such way that their formulation as FSRK method ha
explicit stage and the last stage gives directlyUm+1, i.e.,

a
k1
11 = 0 and a

ki
ii > 0 for all i = 2, . . . , s,

(0, . . . ,0,1)Ai = (
bi
)T

for all i = 1, . . . , n,
(13)

together with the additional propertyak1
ss �= 0, we have studied also this case. It is proven in [7] tha

this case, the operator(Ī + τ
∑n

i=1 AiL̂mi (τ )) :Dk1 × · · · ×Dks → Dk1 ×Hs−1 is invertible and its inverse
is bounded independently ofτ .

The inversibility of these operators, together with notations (10), (11) permit us to write the so
of scheme (6), (7) as follows:

Um+1 = R̃
(−τ L̂m1 (τ ), . . . ,−τ L̂mn (τ))Um

− τ

n∑
i=1

(
bi
)TL̂mi (τ )

(
Ī + τ

n∑
j=1

Aj L̂mj (τ )

)−1(
τ

n∑
k=1

AkĜm
k (τ )

)

+ τ

n∑
i=1

(bi )TĜm
i (τ ), (14)

where

R̃
(−τ L̂m1 (τ ), . . . ,−τ L̂mn (τ))= Ī − τ

n∑
i=1

(
bi
)TL̂mi (τ )

(
Ī + τ

n∑
j=1

Aj L̂mj (τ )

)−1

ē,

is called transition operator.
To prove that the solution of scheme (6), (7) is bounded independently ofτ ∈ (0, τ0] in [6,7] the

decomposition (14) is used together with some additional results. Firstly it is seen that the operat

T m
(12) ≡ τ

n∑
i=1

(
bi
)

TL̂mi (τ )

(
Ī + τ

n∑
j=1

Aj L̂mj (τ )

)−1

:Hs →H,

2 The norms considered inHs are the induced norms by the norm‖ · ‖ of H and any norm inRs .
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obtained from a FSRK verifying (12) is bounded (uniformly inτ ). A similar result is deduced for the
operator

of
s, of

cheme

d

tency
T m
(13) ≡ τ

n∑
i=1

(
bi
)

TL̂mi (τ )

(
Ī + τ

n∑
j=1

Aj L̂mj (τ )

)−1

:Dk1 ×Hs−1 →H,

obtained from a FSRK verifying (13).
Besides, in [6,7] it is shown that if{Li(t)}ni=1 is a commutative system for allt ∈ [t0, T ], admits unitary

dilation and there existn constantsMi such that∥∥Li(t ′)u−Li(t)u
∥∥�

∣∣t − t ′
∣∣Mi

∥∥Li(t)u∥∥, ∀i = 1, . . . , n, ∀t, t ′ ∈ [t0, T ],
the transition operator can be bounded in the following form:∥∥R̃(−τ L̂m1 (τ ), . . . ,−τ L̂mn (τ))∥∥� eβτ , (15)

whereβ is a constant, usually positive, independent ofτ ∈ (0, τ0]; this condition ensures the stability
the discretization in time, at least in finite intervals of time. Some additional A-stability condition
type strong A-stability together with small variations in time for the operatorsLi(t) allow to get negative
values forβ and, consequently, preserve a contractive behaviour on the numerical solutions of s
(6), (7) and ensure the stability even in infinite intervals of time.

To study the consistency of the semidiscretization (6), (7), we define, as usual, the local error

em+1 = u(tm+1)− Ŭm+1,

being Ŭm+1 the numerical solution obtained with only one step of scheme (6), (7) starting fromu(tm)

and we say that the FSRK method is consistent of orderp if, for sufficiently smooth data, it is verifie
that ∥∥em+1

∥∥� Cτp+1, ∀m� 0 and∀τ ∈ (0, τ0]. (16)

In the following theorem, which is proven in Section 4, we give sufficient conditions to get consis
of orderp.

Theorem 2.1. Let (8) be a FSRK method satisfying the reductions3

(C)ke− kAi(C)k−1e= 0, ∀i ∈ {1, . . . , n}, ∀k ∈ {1, . . . , k0 − 1}, (17)

together with the order conditions(
bi1
)T
(C)ρ1e= 1

ρ1 + 1
, (18)

(
bi1
)T
(C)ρ1Ai2(C)ρ2 · · ·Air (C)ρr e=

r∏
j=1

1

(r − j + 1)+∑r
k=j ρk

, (19)

∀r ∈ {2, . . . , p}, ∀(i1, . . . , ir) ∈ {1, . . . , n}r ,
∀(ρ1, . . . , ρr−1) ∈ {0, . . . , p − 1}r−1 and∀ρr ∈ {k0, . . . , p− 1},
such that1� r +

r∑
k=1

ρk � p,

3 If there is not any reduction of type (17) we must considerk0 = 1.
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and let us apply it to a problem of type(4) where the operators{Li(t)}ni=1 satisfy(3), whose solution
satisfies the smoothness requirements

lem,
s
which

ssary to
duction
ith a

rder, of

al time
alculus
Runge–
unge–

s.
rs
al error
7)
y

ationary
bstract
∥∥u(p+1)
i1

(t)
∥∥�C, (20)∥∥Li1(t)u(p)i2
(t)
∥∥�C, (21)∥∥L(*1)

i1
(t) · · ·L(*l−1)

il−1
(t)u

(*l)

il
(t)
∥∥� C, ∀t ∈ [t0, T ], (22)

∀l ∈ {2, . . . , p}, ∀(i1, . . . , il) ∈ {1, . . . , n}l,
∀(*1, . . . , *l−1) ∈ {0, . . . , p− 1}l−1 and∀*l ∈ {k0, . . . , p− 1},

such that2� l +
l∑

k=1

*k � p + 2,

beingu′
i (t)= −Li(t)u(t)+ gi(t).

Then(16) is verified.

It is well known that if (1) is an operational formulation of an initial boundary value prob
conditions (22) are generally not satisfied for high values ofp, unless severe compatibility condition
between the initial and the boundary conditions are imposed. Such compatibility conditions,
some authors call non-natural, joined with the smoothness of data are sufficient but not nece
ensure enough smoothness on the solution of (1). If conditions (22) are not satisfied the order-re
phenomenon will occur. This behavior is typical in discretizations of partial differential problems w
numerical method with its internal stages which can be considered as approximations, of low o
the solution at intermediate time steps (see, for example, [22,24]).

Recently, several techniques have been developed to avoid the order reduction in classic
discretization methods (see [1,20]). In [2,4] a clever correction of the boundary conditions for the c
of the internal stages permits avoiding the order reduction phenomenon for Rosembrock and
Kutta methods. In [3] similar ideas are used to avoid the order reduction of Fractional Step R
Kutta time discretizations in the case of considering operatorsLi with time independent coefficient
Nowadays, we are studying corrections of this type for the case of having time-dependent operatoLi(t).

To end the study of the convergence of the semidiscrete scheme (6), (7) we define the glob
associated to the time discretization asEτ ≡ supm�T/τ ‖u(tm)− Um‖, and we say that scheme (6), (
is convergent of orderp if Eτ � Cτp, for sufficiently smooth functionsu(t) joining the last consistenc
results and the stability property (15) it is not difficult to prove the following

Theorem 2.2. If the semidiscrete scheme(6), (7), satisfies(15)and (16), then it is convergent of orderp.

3. Convergence of the totally discrete scheme

In this section we will denote byC a generic constant independent of the time stepτ and also of the
spatial mesh sizeh.

To obtain a totally discrete scheme of type Fractional Steps we must discretize in space the st
problems obtained in (6), (7). To study how this discretization process works we use an a
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formulation, which was proposed by Vainikko in [25] for a general discretization method. To introduce
this framework in our context in a simple way we will focus our attention in discretizing elliptic problems

le,

e.

3)

t

s in the
of type(
I + τa

ij
jjLij (tm,j )

)
Um,j = f m,j , (23)

which come from the time discretization stage (6).
Let us first take a positive parameterh ∈ (0, h0], destined to tend to zero. For everyh we consider a

finite-dimensional spaceVh.4

A discretization method of (23) reduces it to a linear system of type(
Ih + τa

ij
jjLij h(tm,j )

)
U
m,j

h = f
m,j

h , (24)

here the operatorsLih(t) ∈ L(Vh,Vh) are discrete approximations of the operatorsLi(t) for i = 1, . . . , n,
which must preserve their essential qualities; as wellf

m,j

h will be discrete approximations (for examp
projections, restrictions to the mesh or interpolations) off m,j .

It is expected thatUh(t) ∈ Vh is a suitable approximation ofu(t) ∈ D in a metric that we must precis
To do this, we take for every(h,Vh, t) two connecting applications betweenR ⊇⋃n

i=1Di orH andVh:5

rh(t) :R ⊂H → Vh,

πh :H → Vh,

and a norm‖ · ‖h in Vh associated to the scalar product((· , ·))h satisfying the following compatibility
properties:

lim
h→0

∥∥rh(t)u∥∥h = ‖u‖, ∀u ∈ R and lim
h→0

‖πhg‖h = ‖g‖, ∀g ∈H. (25)

By using these discretizations we obtain the totally discrete scheme:

U0
h = rh(t0)(u0),

Um+1
h =Um

h − τ

n∑
i=1

s∑
j=1

bij
(
Lih(tm,j )U

m,j

h − gih(tm,j )
)
,

with Um,j

h =Um
h − τ

n∑
i=1

s∑
k=1

aijk
(
Lih(tm,k)U

m,k
h − gih(tm,k)

)
, for all j = 1, . . . , s.

(26)

Note that the calculation of every stageUm,i of (6), (7) involved the resolution of a problem of type (2
where

f m,j =Um − τ

n∑
i=1

j−1∑
k=1

aijkLi(tm,k)U
m,k + τ

n∑
i=1

j∑
k=1

aijkgi(tm,k).

4 h will be the thickness of the mesh in Finite Differences and the diameter of the elements in Finite Elements andVh will
be spaces of discrete functions on a mesh in Finite Differences and will be subspaces ofH in Finite Elements. Note also tha
the dimension of these spaces will tend to infinity whenh tends to zero.

5 In Finite Differencesrh(t) andπh use to be restrictions to the mesh nodes and in Finite Elements can be projection
subspaceVh or interpolations if sufficiently smooth functions are considered.
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Now we are approachingUm,i with Um,i
h by posing a linear system, which admits a similar expression,

in the form (24), where

roblem

r

3) it is

y of the
ce the

is
s

lit the
the
ich we

value
arting
f
m,j

h =Um
h − τ

n∑
i=1

j−1∑
k=1

aijkLih(tm,k)U
m,k
h + τ

n∑
i=1

j∑
k=1

aijkgih(tm,k).

Let us now introduce the concepts involved in the study of the convergence of problem (24) to p
(23). We call local truncation error associated to the operatorLi(t), as the following operator

τ
Li(t)
h (v)≡ Lih(t)rh(t)v − πhLi(t)v, ∀v ∈ Di , (27)

and we say thatLih(t) is a consistent approximation ofLi(t) of order q if for sufficiently smooth
functionsv the following bound is verified∥∥τLi(t)h (v)

∥∥
h
� Chq. (28)

In similar way, we say thatgh(t) is a consistent approximation of orderq of the source term, if fo
sufficiently smooth (in space) functionsg(t), it holds that∥∥gh(t)− πhg(t)

∥∥
h
� Chq. (29)

In order to obtain the convergence of the solution of a scheme of type (24) to the solution of (2
necessary to impose some stability requirements. In this case we will impose thatLih(t) preserve the
coercitivity ofLi(t), i.e.,((

Lih(t)v, v
))
h
� γi‖v‖2

h, ∀v ∈ Vh, ∀i = 1, . . . , n. (30)

This property ensures that∥∥(I + τakiiLkh(tm,i)
)∥∥

h
� 1 (31)

and consequently schemes (26) are stable. A classical reasoning, which is typical in the stud
convergence of Finite Difference methods, permits to combine (31) with (28) and (29) to dedu
convergence of the discretization scheme (24).

In order to study the convergence of the totally discrete scheme (26), let us denote byEm
h ≡

‖rh(tm)u(tm) − Um
h ‖h the global error associated to it at the timetm. We say that the discretization

unconditionally convergent of orderp in time and of orderq in space if, for sufficiently smooth function
u(t), it holds that

Em
h � C

(
hq + τp

)
, ∀h ∈ [0, h0] and∀m= 1,2, . . . , T /τ. (32)

In order to analyze the convergence of the total discretization in a clever way we have sp
contributions to the global error,Em

h , of the temporal and spatial parts of the discretization;
contribution of the space discretization stage will be studied by using an intermediate term wh
call local error of the space discretization.

Definition 3.1. We define the local error of the discretization in space as:

êmh = ∥∥rh(tm)ûm − Û m
h

∥∥
h
,

where ûm is obtained with one step of the semidiscrete scheme (6), (7) taking as starting
Um−1 = u(tm−1) andÛ m

h is obtained with one step of the totally discrete scheme (26) taking as st
valueUm−1

h = rh(tm−1)u(tm−1).
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Thus, for every time step of scheme (26) we obtain the following convergence result:

ised the
f

of

prove

n and
vergence

od of
ations

ce and
Theorem 3.1. Let u(t) be the solution of problem(4) with {Li(t)u(t)}ni=1 and {gi(t)}ni=1 sufficiently
smooth data, let(8) be a FSRK method, let{Lih(t)}ni=1 be n discretization operators of{Li(t)}ni=1
satisfying(28) and (30) let {gih(t)}ni=1 be n functions which discretize{gi(t)}ni=1 satisfying(29) and
let rh(t) andπh connecting applications satisfying, for sufficiently smooth functionsf (t), the following
properties:∥∥rh(t)f (t)− rh(t

′)f (t)
∥∥
h
� C|t − t ′|hq, ∀t, t ′ ∈ [t0, T ],∥∥πhf (t)− rh(t)f (t)

∥∥
h
�Chq, ∀t ∈ [t0, T ]. (33)

Then

êmh � Cτhq. (34)

In Section 2 we referenced some papers concerning the stability of the FSRK methods and rev
conditions in which the stability bound‖R̃(−τ L̂m1 (τ ), . . . ,−τ L̂mn (τ))‖ � eβτ is obtained. The results o
these papers are also applicable to obtain the bound∥∥R̃(−τ L̂m1h(τ ), . . . ,−τ L̂mnh(τ))∥∥h � eβτ , (35)

whereβ is independent ofτ and also ofh, if the system{Lih(t)}ni=1 preserves some properties
{Li(t)}ni=1. For example, if{Lih(t)}ni=1 is coercive, commutative, admits unitary dilation∀t ∈ [t0, T ] and∥∥Lih(t ′)uh −Lih(t)uh

∥∥
h
� |t − t ′|Mi

∥∥Lih(t)uh∥∥h, ∀i = 1, . . . , n, ∀t, t ′ ∈ [t0, T ], ∀uh ∈ Vh,
with Mi independent ofh, and the FSRK method is A-stable the same reasoning used to
Theorem 1.1 in [7], permits to deduce (35).

A suitable combination of the stability and consistency properties of the time semidiscretizatio
the convergence of the spatial discretization stage, permit us to reach the expected result of con
for the total discretization scheme (26):

Theorem 3.2. If problem(4) has a sufficiently smooth solution and we use an A-stable FSRK meth
orderp for the discretization in time and a discretization in space such that the connecting applic
satisfy(33) and preserve properties(34) and (35), then the global error verifies(32).

4. Proofs of main Theorems

In order to shorten and clear the proofs of the theorems of Sections 2 and 3 we first introdu
prove two previous technical lemmas:

Lemma 4.1. Let (8) be a FSRK method and let{Li(t)}ni=1 be a system of operators fulfilling(3). If
{Li(t), gi(t)}ni=1 ⊆ Cp([t0, T ];H), then the local error can be written as follows:

em+1 = ςm+1 − T mΞm, (36)

whereT m ≡ T m
(12) if the FSRK satisfies(12) or T m ≡ T m

(13) if the FSRK satisfies(13) and where
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ςm+1 =
p∑ τ k

k!
n∑(

1− k
(
bi
)T
(C)k−1e

)
u
(k)
i (tm)
k=1 i=1

+
n∑
i=1

t̃∫
tm

(
(tm+1 − ζ )

p
+

p! − τ

s∑
j=1

bij
(tm,j − ζ )

p−1
+

(p − 1)!

)
u
(p+1)
i (ζ )dζ, (37)

Ξm =
p∑
k=1

τ k

k!∆
k,m +Υ m, (38)

with

∆k,m =
n∑
i=1

((�C)kē− kAi
(�C)k−1

ē
)
u
(k)
i (tm), ∀k = 1, . . . , p, (39)

andΥ m = (υm,1, . . . , υm,s)T ∈Hs is such that

υm,j =
n∑
i=1

t̃ ′∫
tm

(
(tm,j − ζ )

p
+

p! − τ

i∑
l=1

aijl
(tm,l − ζ )

p−1
+

(p− 1)!

)
u
(p+1)
i (ζ )dζ, ∀j = 1, . . . , s, (40)

being t̃ = maxj∈{1,...,s}{tm,j , tm+1}, t̃ ′ = maxl∈{1,...,s}{tm,l} and

(t − ζ )+ =
{
t − ζ if ζ � t,

0 otherwise.

Proof. If we use notation (10), (11) for scheme (6), (7) we can rewrite the local error as follows:

em+1 = u(tm+1)− u(tm)+ T mēu(tm)+ T m

(
τ

n∑
i=1

AiĜm
i (τ )

)
− τ

n∑
i=1

(
bi
)

TĜm
i (τ ). (41)

In order to get (36), we introduce the contributions of the local error of quadrature formulae

ςm+1 = u(tm+1)− u(tm)+ τ

n∑
i=1

s∑
j=1

bij
(
Li(tm,j )u(tm,j )− gi(tm,j )

)
, (42)

as well, we will use the contributions to the local error of similar formulae for every stage

ξm,j = u(tm,j )− u(tm)+ τ

n∑
i=1

i∑
k=1

aijk
(
Li(tm,k)u(tm,k)− gi(tm,k)

)
, (43)

for j = 1, . . . , s, and we group them in

Ξm = (
ξm,1, . . . , ξm,s

)T ∈Hs. (44)

If we also group the evaluations ofu(t) at the intermediate stepstm,j , for j = 1, . . . , s as Um =
(u(tm,1), . . . , u(tm,s))

T ∈Hs then we can rewrite (42) and (43) in a compact form as follows:

ςm+1 = u(tm+1)− u(tm)+ τ

n∑
i=1

(
bi
)

T
(
L̂mi (τ )Um − Ĝm

i (τ )
)
, (45)
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and (
n

)
n

r’s
Ξm = Ī + τ
∑
i=1

AiL̂mi (τ ) Um − ēu(tm)− τ
∑
i=1

AiĜm
i (τ ), (46)

if we removeUm in (45) using (46) we obtain

ςm+1 = u(tm+1)− u(tm)+ T mēu(tm)+ T mΞm + T m

(
τ

n∑
i=1

AiĜm
i (τ )

)
− τ

n∑
i=1

(
bi
)

TĜm
i (τ ).

(47)

Comparing (47) with (41) it is immediate to get (36).
Finally to obtain (37) and (38) forςm+1 andΞm respectively, it only rests to us to use the Taylo

expansions

u(tm+1)=
p∑
k=0

τ k

k! u
(k)(tm)+

tm+1∫
tm

(tm+1 − ζ )p

p! u(p+1)(ζ )dζ,

u(tm,j )=
p∑
k=0

τ k

k! (cj )
ku(k)(tm)+

tm,j∫
tm

(tm,j − ζ )p

p! u(p+1)(ζ )dζ and

u′
i(tm,j )=

p−1∑
k=0

τ k

k! (cj )
ku

(k+1)
i (tm)+

tm,j∫
tm

(tm,j − ζ )p−1

(p − 1)! u
(p+1)
i (ζ )dζ,

in expressions (42), (43) and (44) and regroup terms in function of the powers ofτ . ✷
Lemma 4.2. Let(8) be a FSRK method satisfying the order conditions(19); then, for allk = k0, . . . , p− 1,
it holds that

T m

τ
=

p−k−1∑
l=0

(−τ)lβl,tm + (−τ)p−kΨ p−k,tm(τ )

(
Ī + τ

n∑
i=1

AiL̂mi (τ )

)−1

(48)

for all ∆k,m defined by(39), being

Ψ l,tm(τ )≡
n∑
i=1

(
bi
)TL̂mi (τ )

(
n∑

j=1

Aj L̂mj (τ )

)l
, (49)

and

βl,tm =
τ∫

0

(τ − ζ )p−k−l−1

(p− k − l − 1)!
dp−k−lΨ l,tm(ζ )

dτp−k−l dζ. (50)
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Proof. We first use the development( )

d

:

Ī + τ

n∑
i=1

AiL̂mi (τ )

−1

U

=
p−k−1∑
l=0

(
−τ

n∑
i=1

AiL̂mi (τ )

)l
U +

(
−τ

n∑
i=1

AiL̂mi (τ )

)p−k(
Ī + τ

n∑
j=1

Aj L̂mj (τ )

)−1

U ,

to rewrite T m

τ
=∑n

i=1 (b
i )TL̂mi (τ )(Ī + τ

∑n
j=1 Aj L̂mj (τ ))

−1 in the form

p−k−1∑
l=0

(−τ)lΨ l,tm(τ )+ (−τ)p−kΨ p−k,tm(τ )

(
Ī + τ

n∑
j=1

Aj L̂mj (τ )

)−1

,

for all k = k0, . . . , p− 1.
Note that the second addend of the last expression applied to∆k,m gives directly the second adden

of (48). To end the proof of (48) it only rests to us to check thatΨ l,tm(τ )∆k,m = βl,tm∆k,m for all
k = k0, . . . , p − 1 and for alll = 0, . . . , p− k − 1.

If we considerΨ l,tm(τ ) as function ofτ , the following Taylor’s expansion at the pointtm can be used

Ψ l,tm(τ )=
p−k−l−1∑
j=0

τ j

j !
djΨ l,tm(0)

dτ j
+ βl,tm, (51)

wheredjΨ l,tm (τ )

dτ j is

∑
(ρ1,...,ρl+1)∈{0,...,j}l+1

ρ1+···+ρl+1=j

j !
ρ1! · · ·ρl+1!

n∑
i1=1

(
bi1
)T(�C)ρ1

L̂
m(ρ1)

i1
(τ )

×
n∑

i2=1

Ai2
(�C)ρ2

L̂
m(ρ2)

i2
(τ ) · · ·

n∑
il+1=1

Ail+1
(�C)ρl+1

L̂
m(ρl+1)

il+1
(τ ), (52)

beingL̂m(j)i (τ )= dj L̂mi (τ )
dτ j .

As the operatorŝLm(j)i (0) commute withAk and also with(C)l for all i, k = 1, . . . , n, and for all

j, l,m� 0, we can rewritedjΨ l,tm (0)
dτ j as follows:∑

(ρ1,...,ρl+1)∈{0,...,j}l+1

ρ1+···+ρl+1=j
(i1,...,il+1)∈{1,...,n}l+1

j !
ρ1! · · ·ρl+1!

(
bi1
)

T
(�C)ρ1Ai2

(�C)ρ2 · · ·Ail+1
(�C)ρl+1

× L̂
m(ρ1)

i1
(0)L̂m(ρ2)

i2
(0) · · · L̂m(ρl+1)

il+1
(0). (53)

It is easy to check that the order conditions (19) ensure that(
bi1
)T
(C)ρ1Ai2(C)ρ2 · · ·Ail+1(C)ρl+1

(
(C)ke− kAil+2(C)k−1e

)= 0,
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for all k = k0, . . . , p − 1, for all l = 0, . . . , p − k − 1, for all j = 0, . . . , p − k − l − 1, for all
(ρ1, . . . , ρl+1) ∈ {0, . . . , j}l+1 such thatρ1 + · · · + ρl+1 = j and for all(i1, . . . , il+2) ∈ {1, . . . , n}l+2.

r

n given
Making use of this property, together with (53), it is immediate that it holdsdjΨ l,tm (0)
dτ j ∆k,m = 0, ∀k =

k0, . . . , p− 1, ∀l = 0, . . . , p− k − 1, ∀j = 0, . . . , p− k − l − 1. ✷
Proof of Theorem 2.1. We will use the decomposition (36)–(40) forem+1. From expression (37) fo
ςm+1 it is immediate to deduce∥∥ςm+1

∥∥� Cτp+1,

taking into account the order conditions (18) and the smoothness hypotheses (20).
Let us see now the obtaining of the same bound for the second addend ofem+1 which isT mΞm. If we

use in expression (38) forΞm the reduction (17), which implies∆k,m = 0 ∈Hs for all k = 1, . . . , k0 − 1,
then:

T mΞm =
p∑

k=k0

τ k

k! T
m∆k,m + T mΥ m. (54)

Using the bounds forT m obtained in [7], together with the expression ofΥ m, given in (40), and the
smoothness requirements given by (20), we obtain that the second addend of (54) verifies∥∥T mΥ m

∥∥� Cτp+1.

In order to obtain the corresponding bound for the first addend of (54) we use the decompositio
in Lemma 4.2 forT m∆k,m with k = k0, . . . , p− 1 to deduce that

p∑
k=k0

τ k

k! T
m∆k,m =

p−1∑
k=k0

τ k+1

k!
p−k−1∑
l=0

(−τ)lβl,tm∆k,m (55)

+ τp+1
p−1∑
k=k0

(−1)p−k

k! Ψ p−k,tm(τ )

(
Ī + τ

n∑
i=1

AiL̂mi (τ )

)−1

∆k,m (56)

+ τp

p! T
m∆p,m. (57)

From the expressions (50) and (52) forβl,tm and the smoothness hypotheses (22), a bound of typeCτp+1

is obtained for the addend given in (55).
To obtain a bound of typeCτp+1 for the addend given in (56), we will show that, for allk =

k0, . . . , p− 1, the following bound is verified:∥∥∥∥∥Ψ p−k,tm(τ )

(
Ī + τ

n∑
j=1

Aj L̂mj (τ )

)−1

∆k,m

∥∥∥∥∥� C. (58)

To prove such bound, we first rewrite the operatorΨ p−k,tm(τ ) given in (49) as follows:

Ψp−k,tm(τ )= bT
(
A
)−1

(
n∑
i=1

AiL̂mi (τ )

)p−k+1

, ∀k = k0, . . . , p− 1, (59)
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this can be done thanks to the special coefficient structure of a FSRK which makes that
n

e

).
∑
i=1

(
bi
)

TL̂mi (τ )= (
b
k1
1 Lk1(tm,1), . . . , b

ks
s Lks (tm,s)

);
and we can write it in the form

(
b
k1
1 IH , . . . , b

ks
s IH

)
Lk1(tm,1) 0 . . . 0

0 Lk2(tm,2) . . . 0
...

...
. . .

...

0 0 . . . Lks (tm,s)

 ,
where the first tensor isbT. If we multiply it by (A )−1A and regroup products in the form

[
bT
(
A
)−1]

A


Lk1(tm,1) 0 . . . 0

0 Lk2(tm,2) . . . 0
...

...
. . .

...

0 0 . . . Lks (tm,s)


 ,

it results that the second square bracket is equal to
∑n

i=1 AiL̂mi (τ ) obtaining directly (59).
Secondly, we use that for allk = k0, . . . , p− 1, the following equality is verified(

n∑
i=1

AiL̂mi (τ )

)p−k+1(
Ī + τ

n∑
j=1

Aj L̂mj (τ )

)−1

=
(
Ī + τ

n∑
j=1

Aj L̂mj (τ )

)−1( n∑
i=1

AiL̂mi (τ )

)p−k+1

.

(60)

Finally, to obtain (58), we use the bounds for(Ī + τ
∑n

j=1 Aj L̂mj (τ ))
−1 which appear in [7] and we tak

into account that the components of the term(
n∑
i=1

AiL̂mi (τ )

)p−k+1

∆k,m,

contain linear combinations of elementary differentials which are bounded by the hypotheses (22
It remains to verify (60) to end the proof of (58). We only prove that (60) is true forp − k + 1 = 1,

and for other values ofp− k + 1 an inductive reasoning can be applied.
Following the same techniques developed in [7] for the obtaining of bounds of(Ī+τ

∑n
i=1 AiL̂mi (τ ))

−1,
it is easy to prove that the operator(

Ī + τ

n∑
i=1

AiL̂mi (τ )

)−1( n∑
j=1

Aj L̂mj (τ )

)
:Dk1 × · · · × Dks → Dk1 × · · · × Dks ,

is bounded for any norm ofHs . Thus, by using thatDki is dense inH for all ki ∈ {1, . . . , n}, this operator
can be extended, in a unique way, by preserving the linearity and the boundness to(

Ī + τ

n∑
i=1

AiL̂mi (τ )

)−1( n∑
j=1

Aj L̂mj (τ )

)
:Hs →Hs.
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If the FSRK satisfies (12), as the non-null diagonal coefficients of the FSRK method satisfy
∑n

i=1 a
i
jj �= 0∑n i ˆm ll

used to

first

olumns
ds
for all j = 1, . . . , s, then the operator i=1 A Li (τ) is invertible; therefore, we can write for a
U ∈ Dk1 × · · · × Dks that(

n∑
i=1

AiL̂mi (τ )

)(
Ī + τ

n∑
j=1

Aj L̂mj (τ )

)−1

U =
(

n∑
i=1

AiL̂mi (τ )

)

×
[(

n∑
j=1

Aj L̂mj (τ )

)−1( n∑
j=1

Aj L̂mj (τ )

)

+ τ

(
n∑

j=1

Aj L̂mj (τ )

)−1( n∑
j=1

Aj L̂mj (τ )

)(
n∑

j=1

Aj L̂mj (τ )

)]−1

U

=
(

n∑
i=1

AiL̂mi (τ )

)(
n∑

j=1

Aj L̂mj (τ )

)−1(
Ī + τ

n∑
j=1

Aj L̂mj (τ )

)−1( n∑
j=1

Aj L̂mj (τ )

)
U

=
(
Ī + τ

n∑
j=1

Aj L̂mj (τ )

)−1( n∑
i=1

AiL̂mi (τ )

)
U ,

and considering the same extension argument by density, this equality is also right for allU ∈Hs.
To obtain a bound of the same order for (57), we have carried out a similar process to the one

obtain (58), but in this case we consider the hypotheses (21) instead of (22).
If the FSRK satisfies (13), instead of (12), to obtain bounds of typeCτp+1 for (56) and (57) we can

not use thatA =∑n
i=1 Ai is invertible. To obtain (58), we will take into account that, in this case, the

component of∆k,m ∈ Hs is null and that the first row of the matrixAi is also null for alli = 1, . . . , n.
These two facts cause that the first components of (56) and (57) are null and also that the first c
of operators(Ī + τ

∑n
i=1 AiL̂mi (τ ))

−1 and
∑n

i=1 AiL̂mi (τ ) do not play a role in the calculus of the boun
of (56) and (57) resulting that

Ψp−k,tm(τ )

(
Ī + τ

n∑
i=1

AiL̂mi (τ )

)−1

∆k,m

=
n∑
i=1

(
bi
)T

L̂
m

i (τ )

(
n∑
i=1

AiL̂
m

i (τ )

)p−k(
Ī + τ

n∑
i=1

AiL̂
m

i (τ )

)−1

∆k,m,

where(
bi
)T = (

bi2IH , . . . , b
i
sIH
)T ∈Hs−1,

Ai =


ai22IH 0 . . . 0

ai32IH ai33IH . . . 0
...

...
. . .

...

ais2IH ais3IH . . . aissIH

 ∈Hs−1×s−1,
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m


Li(tm,2) 0 . . . 0

0 Li(tm,3) . . . 0

 s−1×s−1

se to

pose

e

L̂i (τ )= ...
...

. . .
...

0 0 . . . Li(tm,s)

 ∈ L(Di ,H ) ,

∆k,m = (
∆
k,m
2 , . . . ,∆k,m

s

)T ∈Hs−1 and Ī = Diag(IH , . . . , IH ) ∈Hs−1.

Now, asA =∑n
i=1 Ai is invertible, we can repeat the reasoning used for the all implicit stage ca

conclude (58) and also that‖τp/p!T m∆p,m‖ �Cτp+1. ✷
Proof of Theorem 2.2. In order to introduce the contribution of the local truncation error, we decom
it in the form∥∥u(tm)−Um

∥∥�
∥∥u(tm)− Ŭm

∥∥+ ∥∥Ŭm −Um
∥∥,

and using (16) and (15) we get the recurrence relation∥∥u(tm)−Um
∥∥�Cτp+1 + eβτ

∥∥u(tm−1)−Um−1
∥∥,

which permits us to deduce that:

(i) if β > 0, then‖u(tm)− Um‖ � C 1−emβτ
1−eβτ τ

p+1 and, using that 1− eβτ � −βτ , we deduce‖u(tm)−
Um‖ � C eTβ−1

β
τp.

(ii) If β = 0, aseβkτ = 1, then‖u(tm)−Um‖ � Cmτp+1 �CT τp.
(iii) If β < 0, then‖u(tm) − Um‖ � C

τ0
1−eβτ0 τ

p, for all τ ∈ (0, τ0] and∀m; therefore, in this case th
convergence is also reached for infinite periods of time.✷

Proof of Theorem 3.1. As we have that

ûm+1 = u(tm)− τ

n∑
j=1

s∑
i=1

b
j

i

(
Lj(tm,i)û

m,i − gj (tm,i)
)

= u(tm)− τ

s∑
i=1

b
ki
i

(
Lki (tm,i)û

m,i − gki (tm,i)
)
,

Ûm+1
h = rh(tm)u(tm)− τ

n∑
j=1

s∑
i=1

b
j

i

(
Ljh(tm,i)Û

m,i
h − gjh(tm,i)

)
= rh(tm)u(tm)− τ

s∑
i=1

b
ki
i

(
Lkih(tm,i)Û

m,i
h − gkih(tm,i)

)
,

using hypotheses (29) and (33), the achievement of (34) is immediately reduced to prove that∥∥Lkih(tm,i)Ûm,i
h − πhLki (tm,i)û

m,i
∥∥
h
� Chq, ∀i = 1, . . . , s. (61)

We proceed by induction in the number of the stages to get (61).
For the first stage we have thatûm,1 is solution of

ûm,1 = u(tm)− τa
k1
11

(
Lk1(tm,1)û

m,1 − gk1(tm,1)
); (62)
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as well,Û m,1
h is solution of

m,1 k1
(

m,1 )

s to

s

Ûh = rh(tm)u(tm)− τa11 Lk1h(tm,1)Ûh − gk1h(tm,1) , (63)

with gk1h(tm,1)= πhgk1(tm,1)+ O(hq).
By applyingπh to expression (62), and subtracting it to (63) we deduce that∥∥τak1

11

(
Lk1h(tm,1)Û

m,1
h − πhLk1(tm,1)û

m,1)∥∥
h

�
∥∥(rh(tm)− πh

)
u(tm)− Û

m,1
h + πhû

m,1
∥∥
h

+ O
(
τhq

)
�
∥∥(rh(tm)− πh

)(
u(tm)− ûm,1

)∥∥
h

+ ∥∥rh(tm)ûm,1 − Û
m,1
h

∥∥
h

+ O
(
τhq

)
= ∥∥τak1

11

(
rh(tm)− πh

)(
Lk1(tm,1)û

m,1 − gk1(tm,1)
)∥∥

h

+ ∥∥rh(tm)ûm,1 − rh(tm,1)û
m,1
∥∥
h

+ ∥∥rh(tm,1)ûm,1 − Û
m,1
h

∥∥
h

+O
(
τhq

); (64)

as the first two addends of (64) are bounded byCτhq , because of hypotheses (33), it only rests u
obtain that∥∥rh(tm,1)ûm,1 − Û

m,1
h

∥∥
h
� Cτhq, (65)

to deduce (61) fori = 1.
To prove it we again applyπh to (62) and we use (28) and (29), to deduce(

I + τa
k1
11Lk1h(tm,1)

)
rh(tm,1)û

m,1

= πh
(
u(tm)− ûm,1

)+ rh(tm,1)û
m,1 + τa

k1
11gk1h(tm,1)+ O

(
τhq

)
.

As well, (63) can be written in similar form as(
I + τa

k1
11Lk1h(tm,1)

)
Û

m,1
h = rh(tm)u(tm)+ τa

k1
11gk1h(tm,1).

Subtracting the two last expressions we obtain(
I + τa

k1
11Lk1h(tm,1)

)(
rh(tm,1)û

m,1 − Û
m,1
h

)
= πhu(tm)− πhû

m,1 + rh(tm,1)û
m,1 − rh(tm)u(tm)+ O

(
τhq

)
. (66)

As we have assumed (30), then‖(I + τa
k1
11Lk1h(tm,1))

−1‖h � 1 is verified; thus, to prove (65), it remain
to prove thatπhu(tm)−πhû

m,1 + rh(tm,1)û
m,1 − rh(tm)u(tm) is bounded byCτhq ; so, we rewrite this term

as follows:(
rh(tm,1)− rh(tm)

)
ûm,1 − (rh(tm)− πh

)(
u(tm)− ûm,1

)
= (rh(tm,1)− rh(tm)

)
ûm,1 − τa

k1
11

(
rh(tm)− πh

)(
Lk1(tm,1)û

m,1 − gk1(tm,1)
)

(67)

and the compatibility properties (33) forrh(t) andπh give directly the expected bound.
We must note that the coefficient structure of a FSRK method, together with the bound (61) fori = 1,

permit us to deduce:∥∥τakir1(Lkih(tm,i)Û m,1
h − πhLki (tm,i)û

m,1
)∥∥

h

{= 0, if ki �= k1,

�Cτhq, if ki = k1,

with i, r ∈ {1, . . . , s} and besides that∥∥τbki1

(
Lkih(tm,i)Û

m,1
h − πhLki (tm,i)û

m,1)∥∥
h

{= 0, if ki �= k1,

� Cτhq, if ki = k1,



118 B. Bujanda, J.C. Jorge / Applied Numerical Mathematics 45 (2003) 99–122

with i ∈ {1, . . . , s}.
To end this proof by induction let us suppose that for alll < j the following bounds are true:

d

ns

pler
nt

∥∥τakirl (Lkih(tm,i)Û m,l

h − πhLki (tm,i)û
m,l
)∥∥

h
�Cτhq,∥∥τbkil (Lkih(tm,i)Û m,l

h − πhLki (tm,i)û
m,l
)∥∥

h
�Cτhq and∥∥Û m,l

h − rh(tm,l)û
m,l
∥∥
h
� Cτhq,

(68)

for all r, i ∈ {1, . . . , s} and we will obtain similar bounds for̂um,j andÛ m,j

h . Suchj th stages are obtaine
by solving:

ûm,j = u(tm)− τ

j∑
l=1

a
kl
j l

(
Lkl (tm,l)û

m,l − gkl (tm,l)
)
,

and

Û
m,j

h = rh(tm)u(tm)− τ

j∑
l=1

a
kl
j l

(
Lklh(tm,l)Û

m,l
h − gklh(tm,l)

)
,

respectively.
The same process used for the first stage can be repeated for thej th stage to arrive at the next relatio(

I + τa
kj
jj Lkj h(tm,j )

)(
Û

m,j

h − rh(tm,j )û
m,j
)

= −τ
j−1∑
l=1

a
kl
j l

(
Lklh(tm,l)Û

m,l
h − πhLkl (tm,l)û

m,l
)

+ rh(tm)u(tm)− πhu(tm)+ πhû
m,j − rh(tm,j )û

m,j + O
(
τhq

)
. (69)

Note that the induction hypotheses (68) ensures that the first addend of (69) is bounded byCτhq .
Therefore the last expression can be reduced to one with the form (66), with indexesj instead of 1,
and we can repeat the same reasoning used for the first stage to obtain now that∥∥τakjjj (Lkjh(tm,j )Û m,j

h − πhLkj (tm,j )û
m,1
)∥∥

h

�
∥∥τakjjj (rh(tm)− πh

)(
Lkj (tm,j )û

m,j − gkj (tm,1)
)∥∥

h

+ ∥∥rh(tm)ûm,j − rh(tm,j )û
m,j
∥∥
h

+ ∥∥rh(tm,j )ûm,j − Û
m,j

h

∥∥
h

+O
(
τhq

)
and ∥∥rh(tm,j )ûm,j − Û

m,j

h

∥∥
h
�Cτhq.

Finally, due to the coefficient structure of a FSRK method which makes thata
kl
ij = 0 andbklj = 0 if j �= l,

we can to deduce that (68) is also true forl = j . ✷
Remark 4.3. If the FSRK verifies (13) instead of (12), then the proof of this theorem is similar, sim
because in this casêU m,1

h = rh(tm)u(tm) and ûm,1 = u(tm) and to obtain the bound (61) it is sufficie
with using the property (28).
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Proof of Theorem 3.2. We decompose the global error as follows:
m

∥∥ m
∥∥ ∥∥ m m

∥∥ ∥∥ m m
∥∥

end of

of

he

ethods
m:

achford
uniform
l and
y taking
ns in
Eh � rh(tm)u(tm)− rh(tm)û h
+ rh(tm)û − Ûh h

+ Ûh −Uh h
, (70)

the consistency result (16) and the compatibility properties (25) permit us to bound the first add
(70) as follows:∥∥rh(tm)u(tm)− rh(tm)û

m
∥∥
h
� Cτp+1.

As the second addend of (70) isêmh , it admits the boundCτhq by hypotheses. For the third addend
(70) we can use that

Û m
h −Um

h = R̃
(−τ L̂m1h(τ ), . . . ,−τ L̂mnh(τ))(rh(tm−1)u(tm−1)−Um−1

h

)
and taking into account (35), we deduce immediately∥∥Û m

h −Um
h

∥∥
h
� eβτ

∥∥rh(tm−1)u(tm−1)−Um−1
h

∥∥
h

≡ eβτEm−1
h .

Joining the last bounds, we get the following recurrence relation for the global errors

Em
h � C

(
τp+1 + τhp

)+ eβkτEm−1
h ,

which permit us to deduce that

(i) if β > 0 thenEm
h � Cτ 1−emβτ

1−eβτ (τ
p + hq)� C eTβ−1

β
(τp + hq).

(ii) If β = 0 thenEm
h � Cmτ(τp + hq)� CT (τp + hq).

(iii) If β < 0 thenEm
h � C

τ0
1−eβτ0 (τ

p + hq), ∀τ ∈ (0, τ0] and∀m and in this case we obtain again t
unconditional convergence even for infinite intervals of time.✷

5. Numerical examples

In this section we present two numerical tests which show the numerical behavior of the m
obtained in this paper. Firstly we show a numerical test for the following reaction–diffusion proble

∂u

∂t
− d1(x, y, t)

∂2u

∂x2
− d2(x, y, t)

∂2u

∂y2
+ k1(x, y, t)u+ k2(x, y, t)u= f (x, y, t),

∀x, y ∈Ω and∀t ∈ [0,5],
u(x,0, t) = u(x,1, t) = 0, ∀x ∈ [0,1] and∀t ∈ [0,5],
u(0, y, t) = u(1, y, t) = 0, ∀y ∈ [0,1] and∀t ∈ [0,5],
u(x, y,0) = x2(1 − x)2y2(1− y)2, ∀x, y ∈Ω,

with d1(x, y, t) = (1 + e−t )(1 + y), d2(x, y, t) = (2 − e−t )(1 + xy), k1(x, y, t) = 1 + sin(πx)e−t ,
k2(x, y, t) = 1 + y2, and the source termf (x, y, t) = e−t x(1 − x)y(1 − y) in the spatial rangeΩ =
[0,1] × [0,1].

The total discretization has been realized by using A-stable FSRK method of Peaceman and R
of order two (see [6,23]) for the time discretization and a standard central-difference scheme on a
mesh with(N + 1)× (N + 1) for the spatial discretization. As both discretization processes spatia
temporal are of the same order, the results that we show in Tables 1 and 2 have been obtained b
the relationτN = C = 0.4 in order to preserve contributions of the same order in the discretizatio
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space and time. In Table 1, we show the numerical errors that we have estimated by using the double
mesh principle:

with
ers

r which
sh with
EN,τ = max
xi ,yj ,tm

∣∣UN,τ (xi, yj , tm)−U2N,τ/2(xi, yj , tm)
∣∣,

whereUN,τ (xi, yj , tm) is the numerical solution obtained in the spatial node(i/N, j/N) and in the time
tm =mτ andU2N,τ/2(xi, yj , tm) is the numerical solution obtained in the same point using a mesh
(2N + 1)× (2N + 1) points and time stepτ/2. In Table 2 we show their corresponding numerical ord
of convergence, which we have computed with the formula

p = log2
EN,τ

E2N,τ
.

Secondly, we present the following convection–diffusion problem:

∂u

∂t
− d1(x, y, t)

∂2u

∂x2
− d2(x, y, t)

∂2u

∂y2
+ v1(x, y, t)

∂u

∂x
+ v2(x, y, t)

∂u

∂y

+ k1(x, y, t)u+ k2(x, y, t)u = f (x, y, t), ∀x, y ∈Ω and∀t ∈ [0,5],
u(x,0, t) = u(x,1, t) = 0, ∀x ∈ [0,1] and∀t ∈ [0,5],
u(0, y, t) = u(1, y, t) = 0, ∀y ∈ [0,1] and∀t ∈ [0,5],
u(x, y,0) = x3(1 − x)3y3(1− y)3, ∀x, y ∈Ω,

with d1(x, y, t) = (2 − e−t )(2 − y), d2(x, y, t) = (2 − e−t )(1 + x), v1(x, y, t) = (2 + cos(πt)e−t ),
v2(x, y, t) = (2 − sin(πt)e−t )(2 + y2), k1(x, y, t) = 1 + y2, k2(x, y, t) = 1 + sin(πx), and the source
termf (x, y, t)= e−t x(1 − x)y(1 − y) in the spatial rangeΩ = [0,1] × [0,1].

In this case the total discretization has been realized by using the L-stable FSRK of third orde
appears in [8] to discretize the time variable and a standard upwind scheme on a uniform me

Table 1

N = 8 N = 16 N = 32 N = 64 N = 128 N = 256 N = 512

2.3821E−5 5.8055E−6 1.4460E−6 3.6184E−7 9.0447E−8 2.2613E−8 5.6361E−9

Table 2

N = 8 N = 16 N = 32 N = 64 N = 128 N = 256

2.0368 2.0054 1.9986 2.0002 1.9999 2.0043

Table 3

N = 8 N = 16 N = 32 N = 64 N = 128 N = 256 N = 512

7.4403E−5 4.5183E−5 2.4429E−5 1.2920E−5 6.6653E−6 3.4315E−6 1.7590E−6

Table 4

N = 8 N = 16 N = 32 N = 64 N = 128 N = 256

0.7196 0.8872 0.9190 0.9549 0.9578 0.9641
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(N + 1)× (N + 1) points for the spatial discretization. In this case, the results that we show have been
obtained by taking the relationτ 3

√
N = 0.1 and with the same formulae used in Tables 3 and 4 to compute

ation of

blems,
0.

y value
putación,

rabolic
lladolid,

lutivos de

tionary

t. Appl.

p. 35

(1983)

e–Kutta,

) 163–

ath. 20

2 (1979)

blems,

(1998)

n general,

ath. 15

52 (186)

rgence,
EN,τ andp, respectively.
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