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Abstract

We study the uniform convergence for general Fractional Step Runge—Kutta methods in the integration of a class
of evolution problems which includes linear parabolic problems whose coefficients depend on time. Such analysis
is performed by suitably decomposing the contribution to the global error of this time integration procedure and
the contribution of some standard spatial discretization methods.
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1. Introduction

This paper is devoted to present and analyze a class of efficient and robust methods which includes the
classical Splitting methods (see [15,17]), Alternating Direction schemes (see [13,19]) or, more generally
Fractional Step methods (see [9]) used to discretize efficiently some parabolic problems.

From the classical methods (see [26]) until the most recent ones (see [14,16]), every method of this
type has been designed and analyzed separately, in close relation to the specific continuous problen
whose resolution is required. In [18], a framework to analyze this kind of methods for general parabolic
problems, as well as to develop new ones of higher orders, is proposed. The analysis carried out there
only covers the case of time independent coefficients. Here we extend such ideas to the case of evolutior
problems with time dependent coefficients.
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The main idea for analyzing, in a unified way, the Splitting, Alternating Direction or Fractional Step
methods is based in the fact that these methods are composed by a standard spatial discretization schen
of type Finite Differences or Finite Elements and a special class of Additive Runge—Kutta methods to
advance in time, called Fractional Step Runge—Kutta methods. For these methods we give suitable, eas\
to check, consistency and linear absolute stability properties which will be sufficient to ensure efficiency
and robustness for the integration processes described here.

In order to get results for a wide set of problems, we will consider an abstract linear evolution problem
whose coefficients may depend on time and we will obtain some uniform convergence results for the
totally discrete schemes derived from the combination of Fractional Step Runge—Kutta methods and some
standard discretization methods for elliptic problems of type Finite Differences or Finite Elements. To do
this, we will follow one of the techniques which Jorge proposed in [18] for studying the convergence of
Fractional Step schemes for linear evolution problems with constant coefficients.

Let u(¢r) be solution of an evolution problem with time dependent coefficients which admits an
operational formulation as follows:

du(r) L
ar =—L@)u@) +g@), 1)

u(to) = uo;

here L(t):D(L(t)) € H — H are, generally, unbounded differential operatatsfined on a domain
D(L(t)) dense on a Hilbert spadé, with scalar product(-, -)) and with associated norip- ||. Some

results concerning the existence, uniqueness and smoothness in timie) fcan be consulted in [5,12,
21]. For carrying out our analysis, we will assume that for evetpat the operators () are coercive

and maximal, i.e.,

(L@)v,v)) = allv)|?, witha >0, VveD(L{®))

andV f € H,3v € D(L(r)), suchthab + L(t)v = f,
and also that the operatofgr) are defined on the same domdML(¢)) =D C H for all t € [1p, T].
The practical meaning of this restriction is that only time independent boundary conditions are included
in the scope of our study.

A discretization of problem (1) by using a Fractional Step scheme departs from a natural decompo-
sition of the operator£.(¢) in n simpler addends:

L(t) = Z L (1), 2

i=1
where the operators;(r) : D; € H — H preserve some properties bfr); concretely, we will assume
that:

{Vi =1,...,n,3 >0 suchtha((L;(®)v,v)) > ;|2 Vv € D;
andvf e H,FveD;, suchthaw + L;(t)v=f,
and alsoD = (}_; D;.

@)

1 in the case of (1) is a parabolic problem, the operafoy, which contain the spatial derivative terms, will be elliptic
operators for alt € [#g, T'].
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For example, if we consider am-dimensional convection—diffusion problem of tyég‘-:‘: dAu —
Vu — ku + g, typically

9%u

ou
L,‘Ll = —dﬁ + U,‘a— +kl’I/t,

X; Xi

fori=1...,n beingky + --- + k, = k (wheren is the number of the spatial variables); thus, each
operatorL; contains only derivatives with respect to one of the spatial variables.

We will also consider a decomposition for the source tegtny = > !, g;(7), with g; :[t0, T] — H.
Using this decomposition together with (2) we will rewrite the problem (1) as follows:

du(?) .
D= ;(Li(t)u(f) — &),

u(to) =ug €D,

(4)

a Fractional Step Runge—Kutta method (abbreviated as FSRK) to discretize in time problem (4) is an
algorithm structured in the following way:

U°=uo(e D),

Ut =U" — 7> b (Liy (tn NU™ — i, (tn.)).
j=1 (5)

J
whereU™/ = U™ — 73 " a% (Li (ta ) U™ = g3, (tn 1)), forj=1,...s,
k=1

here,r denotes the time step which we have chosen constant for simplifying our preseritaticdnyill
be approximations to the exact solutiefy) at the instants,,.; = m + D)z, forallm =0, 1, ... and
U™J can be considered approximations to the exact solution at the intermediaterfimes(m +c;)t,
which are usually called stages of the method.

A FSRK method is determined by the coefficiem?’;, blj’ andc; with j,k=1,...,sandi; =1,...,n.
We will assume that a choice of these coefficients determines a unique FSRK method, although different
partitions on the derivative function L(t)u(z) + g(¢) can give different numerical approach&¥. In
order to connect this type of method with other one step methods of type Runge—Kutta we want to remark
that the FSRK methods form a special subset of semiexplicit Additive Runge—Kutta methods which were
introduced by Cooper and Sayfy in [10,11] and generalized by Jorge in [18] in the following form:

UO:uo,

urtl=um —¢ Zzbl] (Li(tm,j)Um’j - gi(tmej))’
1 i=1 j=1 (6)

whereU™J/ = U™ — ¢ Z Za;k (Li(ty ) U™ — gi(tn 1)), for j=1,....s.
i=1 k=1
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It is clear that if we impose on these methods the restrictions:

a;‘.k:o, Vi=1...,n, ifk>],

A +Z|aj-k| £0 forsome €{1,...,n)}
7 ™)

:>Z(|bl‘+2|ak‘)=0, Vk=1,...,s,
I#i

we obtain a scheme of type (5) whetefor all j =1, ..., s, are the indexes which verify the property
> - 121 1(|b |+ i1 lal;) =0.

Itis not dlfflcult to see that an additive Runge—Kutta method involveserlapped standard Runge—
Kutta schemes of type:
Ce | A
(b)T
where A = (aj.k), b= (b;) fori e {1,...,n}, C=diag(cs,...,c;) ande = (1,...,1)T € R*, in such
way that each one of them determines the contribution of the teth (r)u — g;(¢)) in the numerical
resolution of (1). In order to use a compact notation of type Butcher table for these methods we will
organize the coefficients of them as follows:
Ce | Al | A2 ... | A
T 2T T (8)
COHECHIEECE
This table can be reduced for an Additive method of type FSRK by avoiding the null columns in the
form:

iT

Ce | A
bT
where A=3"" Al bT=3" ()T andi’ = (i1, ..., i), beingi; € {1, ..., n} the index of the unique
non-null jth column of the extended matrices

Ai
< (bl)T> = Ry+lxs.

In scheme (5) we can observe that the use of FSRK methods for discretizing in time problem (1) reduces
it to a family of elliptic problems, one problem per stage, in the form:

(I + TkL; (tn )) U™ = F;, )

where F; only contains evaluations @f () and terms which are explicitly computed from the previous
stages, and wherg; () can be simpler thai(z). For example, for convection—diffusion problems, if
every operatol; (t) contains only derivatives with respect to one of the spatial variables, then problem
(9) is essentially one-dimensional; consequently, the analytical or numerical resolution of (5) requires
simpler methods than the classical time integrators (for example, semiexplicit RK methods) used to




B. Bujanda, J.C. Jorge / Applied Numerical Mathematics 45 (2003) 99-122 103

discretize (1), because the calculus of the stages with them would involve multidimensional elliptic
problems of type! + tkL(t, ;) U™/ = F;.

To analyze the convergence of the discretization in time, we combine consistency properties which we
will study here with the stability properties obtained in [6,7]. In this context, the linear absolute stability
is a suitable property to reach unconditional convergence.

To finish our study we carry out the discretization in space of the family of elliptic problems
resulting from the time discretization process (6) with the restrictions (7). To set the properties of
this combination we introduce an abstract formulation for a general discretization method developed
by Vainikko (see [25]), which includes Finite Differences and Finite Elements and we deduce some
t-independent convergence results for this spatial discretization stage.

The rest of the paper is structured in five sections. In the following section we show some results which
ensure that the time discretization procedure has unique soldfién =0, ..., T/t) and it is stable.

As well, we give some consistency results for the discretization in time and we use such results joint to
the stability ones developed in [6,7] to prove that it is convergent.

In Section 3 we introduce a general abstract formulation for spatial discretization of (6), (7) and we
study the convergence of the derived totally discrete scheme.

Section 4 contains the proofs of the main theorems of Sections 2 and 3 as well as some previous
technical lemmas together with their proofs.

Finally, in Section 5 we show two numerical tests where we check the results obtained in this paper.

2. Convergence of the discretization in time

In this section we will denote bg a generic constant independentrof
In order to show our analysis in a shorter form we will use the following tensorial notations:

given M = (m;;) e R andv = (v;) € R’, we denote

mlllH mJ_YIH UllH
M= : . : |eH™ and v=| : |eH’, (10)
mSlIH m”IH USIH

wherely is the identity inH,

Li(tm,l) 0 0
n 0 Li(tw2) ... 0 e
L (t)= ) ) ] e L(D;,H)™, Vi=1,...,n,
0 0 Li(tm,s)
ﬁm:(U’”’l,...,U’”*“‘)TeHS, (11)

Am T N .
G"(®)=(8i(tm1) ... &itny)) €H*, Vi=1,...,n.
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By using these notations we can write scheme (6) as follows:

Unrtt=yum — rZ ) (LM () T™ — G),

1

whereU” = eU" — t ZE(I:;”(r)ﬁm —-G".
i=1

In [7] it is proven that the operatad + 7 Z;’:lﬁi;"(r)) Dy, x -+ x Dy, = H* is invertible and its
inverse operatof/ + rZ?ZlA"I:;”(r))’l:HS — H* is bounded independently ofr € (0, 1o] if the
FSRK method has all its stages implicit, i.e.,

ai >0, foralli=1,...,s, (12)
and if {L;(1)}"_, is a system of operators fulfilling (3). As many of the classical Alternating Direction
or Fractional Step methods are designed in such way that their formulation as FSRK method has a first

explicit stage and the last stage gives direéty, i.e.,

all_O and ak'>0 foralli=2,...,s,

©,...,0, DA = (b)) foralli=1,...,n,

together with the additional property: # 0, we have studied also this case. It is proven in [7] that, in
this case, the operatof + ¢ Yo A"I:}"(r)) "Dy, X -+ X Dy, = Dy, % H* 1lis invertible and its inverse
is bounded independently of

The inversibility of these operators, together with notations (10), (11) permit us to write the solution
of scheme (6), (7) as follows:

(13)

Ut = R(—tLy (), ..., —tLr @)U
—1 Z ()L (v) (i +1 Xn:,ﬁi';(r)) _l<r n ﬁﬁ?(r))
i=1 j=1 k=1
Nt "
where -

n n -1
R(—tL} (), ..., —tL" (@) =T—-1) ( ')TIZ;"(r)(iJr T ZEIZ’;?@)) e,
i=1 j=1
is called transition operator.
To prove that the solution of scheme (6), (7) is bounded independenttycofO, o] in [6,7] the
decomposition (14) is used together with some additional results. Firstly it is seen that the operator

-1
Tiy =1 Z (0)TL (v) (1 +1 ZAJL’”(r)) ‘H' - H,

j=1

2 The norms considered iH* are the induced norms by the notm|| of H and any norm irR*.
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obtained from a FSRK verifying (12) is bounded (uniformlyzih A similar result is deduced for the
operator

n n -1
Tis =t Z (b")Ti;"(r) (I_ +1 ZAJﬁ’;?(r)) Dy, % H 1> H,
i=1 j=1
obtained from a FSRK verifying (13).
Besides, in [6,7] it is shown that{f;(¢)}"_, is a commutative system for alk [#o, 7], admits unitary

dilation and there exist constantsV/; such that

ILi(Yu — Liu| < |t — ¢ |Mi||Liu|, Vi=1,....n, Vi, €lto, T],
the transition operator can be bounded in the following form:

||§(—rﬁ’f(r), e, —rlA,Zl(r)) || < efr, (15)
whereg is a constant, usually positive, independent &f (0, tp]; this condition ensures the stability of
the discretization in time, at least in finite intervals of time. Some additional A-stability conditions, of
type strong A-stability together with small variations in time for the operalg¢s) allow to get negative
values forg and, consequently, preserve a contractive behaviour on the numerical solutions of scheme
(6), (7) and ensure the stability even in infinite intervals of time.

To study the consistency of the semidiscretization (6), (7), we define, as usual, the local error

1
"t = u(tm+1) -

being U *! the numerical solution obtained with only one step of scheme (6), (7) startinguftgm
and we say that the FSRK method is consistent of opdiy for sufficiently smooth data, it is verified
that

0m+1

Hem+1H < CtP*, Vm >0andvr € (0, 1) (16)

In the following theorem, which is proven in Section 4, we give sufficient conditions to get consistency
of orderp.

Theorem 2.1. Let (8) be a FSRK method satisfying the reductidns

(Cfe —kA/(C)fle=0, Vie{l,...,n), Vke{l, ... ,ko— 1}, (17)
together with the order conditions

, 1
b1) ' (C)te = ——, 18

(5) ©e= (18)
, . . d 1
bt T(C)PlAIZ(C)pz Al (C)Pre — . . ,
) H(V—]+1)+Zk:jpk

j=1
Vre{2,...,p}, V(1,...,i,) €{l,...,n}",
Y(p1,...,pr—1) €{0,..., p— 1) tandVp, € {ko, ..., p — 1},

19)

such thatl <r + Z,Ok <p,
k=1

3 |f there is not any reduction of type (17) we must consitee 1.
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and let us apply it to a problem of tygd) where the operator$L;(¢)}"_, satisfy(3), whose solution
satisfies the smoothness requirements

Jui P 0] <c, (20)
|Liul 0] <C, (21)
L& @) - LD 0u 0] <€, Vielt, T], (22)
Vie{2 ...,p}, Y1, ....i)e{d,...,n}),

V(o1 ....@-1) €{0..... p— 1)t andVg, € {ko, ..., p — 1},

!
such tha12<l+ng <p+2,
k=1

beingu; () = —L;()u(t) + & (1).
Then(16)is verified.

It is well known that if (1) is an operational formulation of an initial boundary value problem,
conditions (22) are generally not satisfied for high valuep ofinless severe compatibility conditions
between the initial and the boundary conditions are imposed. Such compatibility conditions, which
some authors call non-natural, joined with the smoothness of data are sufficient but not necessary to
ensure enough smoothness on the solution of (1). If conditions (22) are not satisfied the order-reduction
phenomenon will occur. This behavior is typical in discretizations of partial differential problems with a
numerical method with its internal stages which can be considered as approximations, of low order, of
the solution at intermediate time steps (see, for example, [22,24]).

Recently, several technigues have been developed to avoid the order reduction in classical time
discretization methods (see [1,20]). In[2,4] a clever correction of the boundary conditions for the calculus
of the internal stages permits avoiding the order reduction phenomenon for Rosembrock and Runge—
Kutta methods. In [3] similar ideas are used to avoid the order reduction of Fractional Step Runge—
Kutta time discretizations in the case of considering operaltera/ith time independent coefficients.
Nowadays, we are studying corrections of this type for the case of having time-dependent ope(ators

To end the study of the convergence of the semidiscrete scheme (6), (7) we define the global error
associated to the time discretization &S= sup, <y, llu(s,) — U™, and we say that scheme (6), (7)
is convergent of ordep if E* < Ct?, for sufficiently smooth functions(z) joining the last consistency
results and the stability property (15) it is not difficult to prove the following

Theorem 2.2. If the semidiscrete schen(®), (7), satisfieq15) and (16), then it is convergent of order.

3. Convergence of thetotally discrete scheme

In this section we will denote b a generic constant independent of the time stgmd also of the
spatial mesh sizé.

To obtain a totally discrete scheme of type Fractional Steps we must discretize in space the stationary
problems obtained in (6), (7). To study how this discretization process works we use an abstract
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formulation, which was proposed by Vainikko in [25] for a general discretization method. To introduce
this framework in our context in a simple way we will focus our attention in discretizing elliptic problems
of type
(I +7a},Li;(tn D)U™T = f™7, (23)
which come from the time discretization stage (6).
Let us first take a positive parametee (0, i), destined to tend to zero. For evérywe consider a
finite-dimensional spacé,.*
A discretization method of (23) reduces it to a linear system of type
(Ih + Ta};Lijh(l‘m,j))UZl’j = }:n,j, (24)

here the operators;, (1) € L(V,, V},) are discrete approximations of the operatbr&) fori =1, ..., n,
which must preserve their essential qualities; as \ﬁ,ﬁll’ will be discrete approximations (for example,
projections, restrictions to the mesh or interpolationsy'af .

It is expected thal/,, () € V, is a suitable approximation af(z) € D in a metric that we must precise.
To do this, we take for everg, V,, t) two connecting applications betwe@2 | J/_, D; or H andV,:®

rh(t):RC H—V,,
n, . H—V,,

and a norm| - ||, in V,, associated to the scalar prodyct, -)), satisfying the following compatibility
properties:

lim [ ul, = llul. YueR and limizgls=lgl. VgeH. (25)
By using these discretizations we obtain the totally discrete scheme:

U = ry,(to) (o),

U;',Hl =U -1 ZZZ)’] (Lih(fm,j)U;Zn’j - gih(fm,j)),
3 im1 =1 (26)

with U = U — ¢ Z Za;k(L,-h(tm,k)U,’f”k —gin(tnp)), forallj=1,...,s.
i=1 k=1

Note that the calculation of every stafjg-' of (6), (7) involved the resolution of a problem of type (23)
where

n j—1 noj
P ST TS o

i=1 k=1 i=1 k=1

4 1 will be the thickness of the mesh in Finite Differences and the diameter of the elements in Finite Elemeljtsaaihd
be spaces of discrete functions on a mesh in Finite Differences and will be subspdtés Binite Elements. Note also that
the dimension of these spaces will tend to infinity wheends to zero.

5 In Finite Differences, (¢) ands, use to be restrictions to the mesh nodes and in Finite Elements can be projections in the
subspacé/, or interpolations if sufficiently smooth functions are considered.
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Now we are approachingy™ with U,’,"'" by posing a linear system, which admits a similar expression,
in the form (24), where

n j—1 n j
' N '
p Il =U—1 ZZG}kLih(tm,k)U/T' +7 Zza}kgih(fm,k)-
i=1 k=1 i=1 k=1

Let us now introduce the concepts involved in the study of the convergence of problem (24) to problem
(23). We call local truncation error associated to the operatan, as the following operator

ot () = Ly (t)r (v — myLi(t)v,  Yv e D, (27)

and we say that.;,(r) is a consistent approximation df;(z) of orderq if for sufficiently smooth
functionswv the following bound is verified

|7 W), < chl. (28)

In similar way, we say thag,(¢) is a consistent approximation of ordegrof the source term, if for
sufficiently smooth (in space) functiogss), it holds that

|gn(t) — mug @), < Che. (29)

In order to obtain the convergence of the solution of a scheme of type (24) to the solution of (23) it is
necessary to impose some stability requirements. In this case we will imposg; ttatpreserve the
coercitivity of L; (1), i.e.,

(Lin(v,v)), Zvllvl;, YveVy, Yi=1...n. (30)
This property ensures that
H (I +taLin(tm,)) Hh <1 (31)

and consequently schemes (26) are stable. A classical reasoning, which is typical in the study of the
convergence of Finite Difference methods, permits to combine (31) with (28) and (29) to deduce the
convergence of the discretization scheme (24).

In order to study the convergence of the totally discrete scheme (26), let us dendig by
lrn (t)u(t,) — U;' |, the global error associated to it at the time We say that the discretization is
unconditionally convergent of orderin time and of ordeg in space if, for sufficiently smooth functions
u(t), it holds that

E;<C(h?+7t"), Vhel0 holandVm=1,2,...,T/z. (32)

In order to analyze the convergence of the total discretization in a clever way we have split the
contributions to the global errotE}’, of the temporal and spatial parts of the discretization; the
contribution of the space discretization stage will be studied by using an intermediate term which we
call local error of the space discretization.

Definition 3.1. We define the local error of the discretization in space as:
e = |rattyi™ = U,

where 4™ is obtained with one step of the semidiscrete scheme (6), (7) taking as starting value
U™t =u(t,—1) andU;" is obtained with one step of the totally discrete scheme (26) taking as starting

valueU" ™t = r, (ty—1)u(t_1).
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Thus, for every time step of scheme (26) we obtain the following convergence result:

Theorem 3.1. Let u(r) be the solution of problenfd) with {L;(t)u(¢)}!_; and {g;(r)}7_, sufficiently
smooth data, le(8) be a FSRK method, I€tL;;(r)}’_, be n discretization operators ofL;(¢)};_;
satisfying (28) and (30) let {g;,(¢)}/_; be n functions which discretizé¢g; (r)}7_, satisfying(29) and
let r, (r) and r;, connecting applications satisfying, for sufficiently smooth functios3, the following
properties

lrn (@) £ () = () fFD|, < Cle = 1'|h?, V1,1 €10, T,

(33)

|7n f () = ra(@) f @) ], < ChY, Vi € [to, T].
Then

ey <Cthi. (34)
In Section 2 we referenced some papers concerning the stability of the FSRK methods and revised the
conditions in which the stability bounglR(—7 L7 (7), ..., =1L} (7)) < ¢P™ is obtained. The results of
these papers are also applicable to obtain the bound

HE(—rﬁTh(r), cees —rinmh(r)) Hh <", (35)

where g is independent ofr and also of#, if the system{L;,(t)}!_, preserves some properties of
{Li(1)}!_,. For example, if L;,(1)}!_, is coercive, commutative, admits unitary dilatiéne [, T'] and

| Lin(Yun — Lin(@un |, < |t = ' M; | Lin (t)up |

oo Yi=1l...n, Vi, t' €ltg, T, Yu, €V,

with M; independent of:, and the FSRK method is A-stable the same reasoning used to prove
Theorem 1.1 in [7], permits to deduce (35).

A suitable combination of the stability and consistency properties of the time semidiscretization and
the convergence of the spatial discretization stage, permit us to reach the expected result of convergenct
for the total discretization scheme (26):

Theorem 3.2. If problem(4) has a sufficiently smooth solution and we use an A-stable FSRK method of
order p for the discretization in time and a discretization in space such that the connecting applications
satisfy(33) and preserve propertig84) and (35), then the global error verifie€32).

4, Proofsof main Theorems

In order to shorten and clear the proofs of the theorems of Sections 2 and 3 we first introduce and
prove two previous technical lemmas:

Lemma 4.1. Let (8) be a FSRK method and I§L;(7)}"_, be a system of operators fulfillingg). If
{Li(1), 8&(®)}]_1 SCP([to, T1; H), then the local error can be written as follows
eerl — S_erl _Tm Em, (36)

whereT™ = T/7,, if the FSRK satisfiefl2) or 7" = T}, if the FSRK satisfiefl3) and where
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ij kij 1—k(b) (©* ) (1)

+Zf((tm+1 §)+ Zbl (t’”/ OF ) fp+1)(§)d§’ (37)

— (r—1D!
p ‘L’k
EM = Z —'Ak”” +71m, (38)
k=1 """
with
Ak =N ((C) e — kA (CY T )uP (), VE=1,...,p, (39)
i=1
and Y™ = (v™1, m-)T e H* is such that
i [ = O S G = O i o
v ]_;/(T_t;aﬂﬂ wTU(de, V=1, ..., (40)
=1 =
bEingf: maxje{l ...... s }{tm Jo tm+1} t - maxle{l ...... s }{tm,l} and
t—¢ if¢ <,
t — =
=0 { 0 otherwise.
Proof. If we use notation (10), (11) for scheme (6), (7) we can rewrite the local error as follows:
" = u(tyi1) — uty) + T"eu(t,) + T <r > A (A;;"(f)) = ()G (7). (41)
i=1 i=1
In order to get (36), we introduce the contributions of the local error of quadrature formulae
= U(tyy1) —ulty) + 71 Z ij (Li(fm,j)u(l‘m,j) —&i (tm,j))’ (42)
i=1 j=1

as well, we will use the contributions to the local error of similar formulae for every stage

E™ = Uty ) —ultn) + 7YY abe(Li(tn )ttt k) = 8 (mi)) (43)
i=1 k=1
for j=1,...,s,and we group them in
gn= (&t e e v (44)
If we also group the evaluations of(z) at the intermediate steps, ;, for j =1,...,5s asi™ =
U(tm1), ..., u(tyy))T € H® then we can rewrite (42) and (43) in a compact form as follows:

= Utyr1) — ulty, )+rZ (LM (ou™ — G"(v)), (45)

i=1
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and

Em = (I_+1:ZA71:;”(7:)>Z/{’" —éu(ty) =1 Yy _AIG!"(1), (46)

i=1 i=1

if we removel(™ in (45) using (46) we obtain

" = u(tyyr) —ulty) + T"eu(t,) +TmE™ + T™ (r

(47)

Comparing (47) with (41) it is immediate to get (36).
Finally to obtain (37) and (38) foe”+! and 2™ respectively, it only rests to us to use the Taylor's
expansions

p

W) = 3 0,0 + / M W),

k=0

tm

Im
p \J

u(tm,,-)=2 (c,)" ©t,) + / (”” Lur ) de and
P— 1 k tm] 1

) (tm,j — &7

Lli(tm,j)zz (cj)k (k+1)(tm)+/]71)'u§p+l)(§)d§,

in expressions (42), (43) and (44) and regroup terms in function of the powers af

Lemma4.2. Let(8) be a FSRK method satisfying the order conditi¢i®); then, forallk = ko, ..., p — 1,
it holds that

Tm p—k-1 -1
- Z( ) i+ (—T)P T "’m(r><1+rZA1L’"(r)) (48)

i=1

for all A*™ defined by(39), being

n n l
wlhin(g) = Z (0)T L (7) (Z Ei;’(ﬂ) , (49)

i=1 j=1

and

j (‘E _ é-)pfkflfl dpfkflq/l,tm (é—)

Igl,tm —
) (p—k—1-1)! drr=*

de. (50)
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Proof. We first use the development

n -1
(1‘+ fZNigﬂ(r)> U
i=1

p—k—1 n ! n p—k n -1
=y (—rZElZﬂr)) u+<—rZA713;"(r)> (i+r2§i’}l(r)) u,

=0 i=1 i=1 j=1

to rewrite 22 = 37 ) (0)TLY(1)(T + 7 Y1, AJL" (x)) "L in the form

p—k—1 n -1
Z (—T)llpl’t’"(f) + (_.L.)P—kq,p—k,tm (1) (I_-FTZEIA,T(T)) ,
1=0 j=1
forallk=ko,...,p— 1.

Note that the second addend of the last expression appligd togives directly the second addend
of (48). To end the proof of (48) it only rests to us to check t#at” (r) A" = glin AL™ for all
k=ko,...,p—landforalll =0,...,p—k—1.

If we considern?!- (1) as function ofr, the following Taylor's expansion at the poift can be used:

p=k-l-1 T/ diglin(0)
1ty _ Lt
whin(r) = ,-E:o N a AT (51)
WhereM is

2

Z bll :01 m(Pl)(T)

o1l pria!
(P1evePLD (00 I =1
01+ +or41=J
n
% ZAlz 102 m(Pz)(.L,) Z Ai1+1(6)pl+1 7[1JETI+1)(T) (52)
i2=1 i1+1=1
. A o Lm
beingL!"" (v) = S22

As the operatord.”""”’(0) commute withA* and also with(C)' for all i,k = 1,...,n, and for all
j,1,m >0, we can rewrité’% as follows:

Z #@T(C)le(é),@.HM(G)PHl
(p15.-,0141)€{0, ...,

,01+ Fp141= ]
(i1,-iip1) €{L, .o} L

% Lm(Pl) (O)LW(PZ) (0) m(PHl) (o) (53)

ll+1

It is easy to check that the order conditions (19) ensure that

(bil)T(C)PlAiz (C)Pz . Ail+1 (C)le ((C)ke _ kAilJrz (C)k_le) — 0’
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forall k=ky,...,p—1,foralll=0,...,p—k—1,foral j=0,...,p —k —1 -1, for all

(p1, ..., piv1) € {0, ..., j}* such thatpy + - - - + p;41 = j and for all(iq, . .. 11+2) e{1,...,n}*2
Maklng use of this property, together with (53), it is immediate that it h@%iomk M =0, Vk =

ko,...,p—21,V¥l=0,...,.p—k—-1,Vj=0,...,p—k—-1-1. O

Proof of Theorem 2.1. We will use the decomposition (36)—(40) fef#+1. From expression (37) for
¢"*1itis immediate to deduce

|| S_m+1H < CTerl,

taking into account the order conditions (18) and the smoothness hypotheses (20).

Let us see now the obtaining of the same bound for the second addefttofhich is7” Z™. If we
use in expression (38) f&™ the reduction (17), which implied*™ =0e H* forallk=1, ..., ko — 1,
then:

p - .
™5 =ZET Akm oy, (54)
k=ko
Using the bounds fof™™ obtained in [7], together with the expression 6, given in (40), and the
smoothness requirements given by (20), we obtain that the second addend of (54) verifies

|7 ™| < CrPth

In order to obtain the corresponding bound for the first addend of (54) we use the decompaosition given
in Lemma 4.2 forT” A*™ with k = ko, ..., p — 1 to deduce that

p k p—1 k+1pkl

T
Ak = 3L > ofgimat (55)
k=ko k=ko !
1 _ n 71
4 orH Z (= ) P P—kin(g) (i +7 ZNI:?’ (‘L’)) Akm (56)
k=ko i=1
Tp
+ —T"AP™, (57
p!

From the expressions (50) and (52) &~ and the smoothness hypotheses (22), a bound of@ype?
is obtained for the addend given in (55).

To obtain a bound of type&t”+! for the addend given in (56), we will show that, for a&l=
ko, ..., p — 1, the following bound is verified:

n -1
(pl’—k,tm(r) <I_+TZAJI,:;”(T)) Ak,m

j=1

<C. (58)

To prove such bound, we first rewrite the operakdy*» (1) given in (49) as follows:

p—k+1
wrhin(r) = (ZAL%)) . Vk=ko,...,p—1, (59)



114 B. Bujanda, J.C. Jorge / Applied Numerical Mathematics 45 (2003) 99-122

this can be done thanks to the special coefficient structure of a FSRK which makes that

n

S (0) L (@) = (B Liy (). -, B L, (1))

i=1
and we can write it in the form

Ly (tm,1) 0 e 0
0 Ly, (tn e 0
(B u, ... b5 1y) . kz(. 2) . . |
0 0 oo Ly (tymys)
where the first tensor is". If we multiply it by (A)~*A and regroup products in the form
Lkl(tm,l) 0 ce 0
b"(A)” A 0 Ly, (tm . 0
[bT(A) l] A ) kz(‘ 2) . . |
0 0 oo Li(tms)

it results that the second square bracket is equalto, EI:;”(I) obtaining directly (59).
Secondly, we use that for dll=ko, ..., p — 1, the following equality is verified

" p—k+1 " -1 " -1, , p—k+1
(Zﬁi;ﬂ(f)) (i+rZElZ’}1(r)) = <i+rz,o7ﬁ';?(r)) (Zﬁi;ﬂ(f)) .
i=1 j=1 j=1 i=1
(60)
Finally, to obtain (58), we use the bounds fdr+ r }__; A/ L" (z))~* which appear in [7] and we take
into account that the components of the term

n p—k+1
( ZATIZ;"(f)) Al
i=1

contain linear combinations of elementary differentials which are bounded by the hypotheses (22).
It remains to verify (60) to end the proof of (58). We only prove that (60) is truepferk +1=1,
and for other values gh — k£ + 1 an inductive reasoning can be applied.
Following the same techniques developed in [7] for the obtaining of boundstof 7, Ai L (1)),
it is easy to prove that the operator

n -1 n
(iﬂzmmf)) (Zm;«f)) Dy x - x Dy, — Dy % -+ x D,

i=1 j=1

is bounded for any norm af*. Thus, by using th&D,, is dense irf for all k; € {1, ..., n}, this operator
can be extended, in a unique way, by preserving the linearity and the boundness to

n -1 n
(i+ T Zﬁir(r)) (Zﬁij’(r)) H' — H’.

i=1 j=1
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If the FSRK satisfies (12), as the non-null diagonal coefficients of the FSRK method gﬁ:sfyzj.j #0

for all j =1,...,s, then the operatod ', AiL"(7) is invertible; therefore, we can write for all
UEDkl X "'XDkS that

n n -1 n
(mef)) (i+r2ﬁ7i?(r)> u:(ZMT(r))
i—1 i=1

j=1
n -1 n n -1
+ ‘L'( Zﬁi';(f)) ( ZATi’;?(ﬂ) ( ZE[ZT@))} U
j=1

n -1 n
= <i+ T ZEij’(r)) ( Zﬁi?(f))u,
j=1 i=1

and considering the same extension argument by density, this equality is also rightfar Alt.

To obtain a bound of the same order for (57), we have carried out a similar process to the one used to
obtain (58), but in this case we consider the hypotheses (21) instead of (22).

If the FSRK satisfies (13), instead of (12), to obtain bounds of typ&** for (56) and (57) we can
not use thal\ = 2?21,07 is invertible. To obtain (58), we will take into account that, in this case, the first
component ofA*™ e H* is null and that the first row of the matriX is also null for alli =1, ..., n.
These two facts cause that the first components of (56) and (57) are null and also that the first columns
of operators/ 4+t Y/, AiL” (t))"*and}_/_, AiL"(r) do not play a role in the calculus of the bounds
of (56) and (57) resulting that

n -1
wrhin (7) (i +Ty A 127’(z)) Ak
i=1

n

n no_ p—k -1
= (b")TIZ:”(f)( ZAiiT(T)) (i +1 ilZT(f)) Ak,
i=1 i=1

i=1

where

) = (ol ... b 1) € HY,
aéle 0 0
; — aéZIH aéng e 0

i i i
asZIH as3IH e a IH
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Li(tm,Z) 0 c.. 0
Am 0 L[‘ tm ¢ — ¢ —
L; (v)= _ (, & € L(D;, H)Y ¢,
0 0 ... Li(tn,)

AR = (Akm AR T e Bt and T =Diag(ly, ..., Iy) € H .

Now, asA = Z?:l; is invertible, we can repeat the reasoning used for the all implicit stage case to
conclude (58) and also thit? /p!T™ AP || < CTP+L. O

Proof of Theorem 2.2. In order to introduce the contribution of the local truncation error, we decompose
it in the form
Juttn) = 0™ < Jut) = 0™ + 0" = U™
and using (16) and (15) we get the recurrence relation
|uttn) = U™ | < CTP* + &P |uty-1) — U
which permits us to deduce that:

’

’

(i) if B> 0,then|u(t,) —U"| < Cllje:,ffrl’“ and, using that + ¢#* < —B7, we deduce|u(z,,) —

Unl < cEre,
(i) If p=0,asef ™ =1, then|u(t,) — U™|| < Cmt’P L < CTtP.
(i) If B <0, then|u(z,) — U™|| < C—2-17, for all T € (0, 7o] andVm; therefore, in this case the

; 1—¢f10 : .
convergence is also reached for infinite periods of time.

Proof of Theorem 3.1. As we have that

amtl — u(ty) —1 Z Zbl] (Lj(lm,i)ﬁm’i — gj(tm,i))

j=1li=1

= utn) =7 »_ by (L, (. DA™ = gt (b)),

i=1

(U (tn) =T Y > B (Lin(tn ) U = gji(tm.))

j=1i=1

f]\m—ﬁ—l

= ru(tw)u(tn) = T Y b5 (L (DU = it ().
i=1

using hypotheses (29) and (33), the achievement of (34) is immediately reduced to prove that
| Lign (6 DU = 10y L ()™ ||, < CRY, Vi=1,....s. (61)

We proceed by induction in the number of the stages to get (61).
For the first stage we have thit-! is solution of

A

amt=u(,) — tallql(Lkl(tm,l)ﬁm’l - gkl(fm,l))§ (62)
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as well, U™ is solution of
Ut =t ultn) — 1@ (Lign(tn, ) 0" = gi0 (tn1)), (63)

With gi,n (tn,1) = 708ky (t.1) + O(h?).
By applying;, to expression (62), and subtracting it to (63) we deduce that

I Tallql(Lklh (tm,1) ﬁhm’l — Ly, (lm,l)ﬁm’l) Hh
< | (ratn) = 7n)utn) — Ut + ma™ |, + O(zh?)
<[ (rn ) = 70) () = @™ )|, + [rae)a™t = O], + O(zh?)
= | Tallql(rh (tn) = 70) (Liey (1, DA™ — 8y (1)) I,
+ [ran)i™t = ry DA™ |, + | ra e D@™ = T, + O(ch?); (64)

as the first two addends of (64) are boundedday:?, because of hypotheses (33), it only rests us to
obtain that

|7t ™ — O, < Ceht, (65)
to deduce (61) for = 1.
To prove it we again apply;, to (62) and we use (28) and (29), to deduce
(1 + tai Lign (1)) 7h (tm, )™
= 724 () — &™) + 74 (10, )™ + 7@ 8100 (B 1) + O(Th?).
As well, (63) can be written in similar form as
(1+ tai Lig (tm,l))ﬁhm’l = 1 (t)t (1) + T3 @11 (B2
Subtracting the two last expressions we obtain
(I + Ta3 Ly (D) (ra (1 )™ — T
= 1yt (ty) — TRU"™ + 13 (b, DA™ — 1 (1)1 (1) + O(Th?). (66)

As we have assumed (30), thg(V + fa’ﬂLklh(tm,l))_lllh < 1 is verified; thus, to prove (65), it remains

to prove thatr,u(t,,) — m,ia"™ + 1y, (t, 1) ™t — ry (t,)u(t,) is bounded byCth?; so, we rewrite this term
as follows:

(ra (tm,2) = rn(tn) )™ = (r () — 70) (u (t) — ™)
= (rh (tm,l) —Tn (tm))ﬁm’l - Tallci(rh (tm) - n’h)(Lkl(tm,l)ﬁm’l — 8k (tm,l)) (67)

and the compatibility properties (33) for(r) andm, give directly the expected bound.
We must note that the coefficient structure of a FSRK method, together with the bound (61 Tor
permit us to deduce:

_ ~m o =0, if k; £ kq,
Hfafll(Lk,-h(tm,i)Uh ’l—ﬂth,- (tm,i)u ’l) Hh { <Cohi. ik —k
X ) i — K1,
withi,r € {1, ..., s} and besides that
0, if k;j # k1,

| w6 (Lign () U = 7Ly (1, )@™ ), { Z Cthi, ifk=ks
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withi e {d,...,s}.
To end this proof by induction let us suppose that fo¥ all j the following bounds are true:

I al (Lk,-h(fm,i)ﬁhm’l — 7ty L, (b, )™ ") ||
”Tb;q (Lk,-h(fm,i)ﬁhm’l — mp L (1, )0™")

1T = r (™ |, < Chd,

Cthi,
Cth? and (68)

h

NN

I

forallr,i € {1,..., s} and we will obtain similar bounds f@™/ andU,"’. Suchjth stages are obtained
by solving:

0" = u(tn) = 7Y ahi (L ()™ = gy (tn.),

=1
and
4 k
=m,j m,l
U = r(tau(tn) =1 Y aiy (Lign ) UL = i (t0)).
=1

respectively.
The same process used for the first stage can be repeated join tage to arrive at the next relations

(1 7] Ly ) (O = 1 ™)
j-1
=T Z“fﬁ (Lklh (tm-,l)Uhm’l — Ly, (fm,l)ﬁm’l)
=1

+ rh(tm)u(tm) - T[hu(tm) + nhﬁm’j - rh(tm,j)ﬁm’j + O(Thq) (69)

Note that the induction hypotheses (68) ensures that the first addend of (69) is bounded:‘by
Therefore the last expression can be reduced to one with the form (66), with infénstead of 1,
and we can repeat the same reasoning used for the first stage to obtain now that

|7 (Lt DT — 7L (G )™ )],
< [[rasy (rntm) = 7) (L, o, DA™ = g, 1 ),
| @)™ =y o A" |+ [ ™ = T |, + O(zh)
and
| it ™ — T ||, < Cehd.
Finally, due to the coefficient structure of a FSRK method which makeszl’ghaio andb’]‘f =0if j #1,

we can to deduce that (68) is also trueffet j. O

Remark 4.3. If the FSRK verifies (13) instead of (12), then the proof of this theorem is similar, simpler
because in this casléh’"’1 = r,(ty)u(t,) andi™?! = u(t,) and to obtain the bound (61) it is sufficient
with using the property (28).
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Proof of Theorem 3.2. We decompose the global error as follows:
Ef < |ru(tmutn) = ru@a)i” |, + [ raa” = U, + 10 = Ui, (70)

the consistency result (16) and the compatibility properties (25) permit us to bound the first addend of
(70) as follows:

|7 )t () = ri ()™ ||, < CTPH

As the second addend of (70)éd8, it admits the bound”th? by hypotheses. For the third addend of
(70) we can use that

U — U =R(=tL},(0), ..., =t L (@) (1 (tm-1)tt (10—1) — U Y)

and taking into account (35), we deduce immediately
T = |, <P |rmtnvuttn-) — U, = EpF—.

Joining the last bounds, we get the following recurrence relation for the global errors
Ep <C(xt 4 th?) + M E),

which permit us to deduce that

(i) if B> 0thenEy < CTi< (x? +h) < CEAA (2P +ho).

(i) If B=0thenE] < Cmt(r? +h?) < CT(z? + h?).
(i) If B <O thenE;' < Cl_’e%,o(rl’ + h?), V1 € (0, 1] andVm and in this case we obtain again the
unconditional convergence even for infinite intervals of timel

5. Numerical examples

In this section we present two numerical tests which show the numerical behavior of the methods
obtained in this paper. Firstly we show a numerical test for the following reaction—diffusion problem:
2 2

ou 0“u 0“u
_dl(-x’yat) 2_d2(xay’t) 2+kl(xay’t)u+k2(-x’yat)u=f(xay’t)’
ot ox ay

Vx,y € £2 andVvr € [0, 5],

] wx.0,0) =u(x,1,1)=0, Vxel0,1]andvr < [0, 5],
u@,y,t)=u(l,y,t) =0, Vyel0, 1] andVvr €0, 5],
u(x,y,0 =x>(L —x)°>y?(1 —y)%, Vx,ye £,

with di(x,y,t) = QL+ e DA + ), dolx, y,1) = 2 — e )L + xy), ki(x,y, 1) = 1+ sin(wx)e’,
ko(x,y,t) =1+ y?, and the source ternfi(x, y,t) = e 'x(1 — x)y(1 — y) in the spatial range2 =
[0, 1] x [O, 1].

The total discretization has been realized by using A-stable FSRK method of Peaceman and Rachford
of order two (see [6,23]) for the time discretization and a standard central-difference scheme on a uniform
mesh with(N + 1) x (N + 1) for the spatial discretization. As both discretization processes spatial and
temporal are of the same order, the results that we show in Tables 1 and 2 have been obtained by takinc
the relationtN = C = 0.4 in order to preserve contributions of the same order in the discretizations in
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space and time. In Table 1, we show the numerical errors that we have estimated by using the double
mesh principle:
U2N,‘L’/2

(xi’yj’tm) s

En.= max |[UN"(x;, v, tw) —
XisYjslm
whereU" " (x;, y;, t,,) is the numerical solution obtained in the spatial nadev, j/N) and in the time
tw =mt andU-7/2(x;, y;, ,,) is the numerical solution obtained in the same point using a mesh with
(2N +1) x (2N + 1) points and time step/2. In Table 2 we show their corresponding numerical orders
of convergence, which we have computed with the formula

EN T
p=Ilog —.
2 EZN,T
Secondly, we present the following convection—diffusion problem:
du 9%u 8%u au au
. d b 9 t ~ 5 d 9 b t -~ o 9 b t -~ 9 b t -
a7 1(x, y )8x2 2(x, y )8y2+v1(xy )ax+vz(xy )By

+ki(x, v, Du +ko(x,y,Hu = f(x,y,t), Vx,ye 2 andVvre]0,5],
| u(x,0,1) =u(x,1,1) =0, Vx e[0,1] andVr < [0, 5],
u@,y,t)=u(l,y,t) =0, Vyel0, 1] andVvr €0, 5],
u(x,y, 00 =x31-x)°%°%1-y>3 Vvr,yeg,
with di(x,y, 1) = (2 —e )2 — y), do(x, y,1) = (2 — e (A + x), vi(x, y,1) = (2 + coqgnt)e™ ™),
va(x, y,1) = (2 =sin(mt)e )2+ y?), ki(x, y, 1) =1+ y?, ka(x, y,t) = 1+ sin(zx), and the source
term f(x, y,t) =e'x(1— x)y(1 — y) in the spatial range2 = [0, 1] x [0, 1].
In this case the total discretization has been realized by using the L-stable FSRK of third order which
appears in [8] to discretize the time variable and a standard upwind scheme on a uniform mesh with

Table 1
N=8 N=16 N=32 N =64 N =128 N = 256 N =512
2.3821E-5 58055E-6 14460E-6 3.6184E-7 9.0447E-8 22613E-8 5.6361E-9

Table 2
N=8 N=16 N=32 N=64 N=128 N =256
2.0368 20054 19986 20002 19999 20043

Table 3
N=8 N=16 N=32 N =64 N =128 N = 256 N =512
7.4403E-5 45183E-5 24429E-5 12920E-5 6.6653E-6 34315E-6 17590E-6

Table 4
N=8 N=16 N=32 N=64 N=128 N =256
0.7196 08872 09190 09549 09578 09641
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(N +1) x (N + 1) points for the spatial discretization. In this case, the results that we show have been
obtained by taking the relations/ N = 0.1 and with the same formulae used in Tables 3 and 4 to compute
Ey . andp, respectively.
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