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Abstract In the analytical approach to the main problem in satellite theory, the consider-
ation of the physical parameters imposes a lower bound for normalized Hamiltonian. We
show that there is no elliptic frozen orbits, at critical inclination, when we consider small
values of H , the third component of the angular momentum. The argument used suggests
that it might be applied also to more realistic zonal and tesseral models. Moreover, for almost
polar orbits, when H may be taken as another small parameter, a different approach that will
simplify the ephemerides generators is proposed.

Keywords Satellite theory · Main problem · Normalization · Critical inclination ·
Frozen orbits · Very eccentric orbits

1 Introduction

Deprit reporting to the Commission 7 of IAU at the XIX General Assembly in Delhi (Deprit
1985), and in a satellite Workshop (Coffey et al. 1986a), presented the answer to the problem
of the critical inclination in satellite theory. Considering Brouwer’s Hamiltonian, the second
order truncation of the normalized system, they had found that two pitchfork bifurcations,
stemming from circular orbits, relate with the families of orbits with stationary perigee in
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70 S. Ferrer et al.

the averaged main problem of the satellite theory; this connection elucidates the nature of
the critical inclination. The issue was fully documented in Coffey et al. (1986b), which we
refer to as the CDM paper (See also Cushman 1983, 1988, 1991).

Mainly concerned with the qualitative dynamics of almost circular orbits, an open problem
since the early work of Orlov, and after resolving it, CDM left unfinished the study of the
“evolution” of the stable and unstable orbits of stationary perigee with the variation of the
integral H , as well as the study of the possible existence of other solutions. Indeed, formulas
241 and 242 in CDM paper, based on Newton–Raphson method, are local and lose their
meaning when H becomes small (the fact that H is ‘hidden’ in q = H2/µ may explain why
this has passed unnoticed). The same ought to be said in relation to the work of Cushman
(1983, 1991) on this problem; in his analysis the only lower limit for |H | is to be positive. In a
recent publication of Chang and Marsden (2003) this issue still passes without any warning.
To our knowledge what we communicate has not been published before.

In this note we point out that, in our view, research done both in the zonal and tesseral
approach to satellite theory requires reconsideration, taking into account: (i) the radius of
the planet, (ii) the values of the third component of the angular momentum and, (iii) the
domain of convergence of the normalized Hamiltonian of the problem used in those studies.
In order to make the note shorter we refer our comments to the main problem. The paper is
organized as follows. In Sect. 2 we first fix notation presenting the Hamiltonian in polar-nodal
variables. Moreover, we refer briefly to the normalized Hamiltonian including explicitly the
Coffey–Deprit model, the third order truncation in closed form of the eccentricity. It serves
to identify a rough lower bound estimate for G, the norm of the angular momentum, for
the validity of the normalized Hamiltonian. In Sect. 4.1, we come back to this Hamiltonian
function.

In Sect. 3 we refer to the relative equilibria. The previous mentioned papers paid no atten-
tion in their studies to the role played by α, the equatorial ‘radius’ of the planet, one of the
physical parameters of the problem. It is worth mentioning that collision orbits had been
already taken into account by Hough (1981). First we gather some basic expressions for non-
impacting and grazing orbits in the bounded ‘zero order satellite problem’ (an infinitesimal
point mass around an oblate planet) basic for astrodynamics implications. Then, we show
that first order normalization and the search for relative equilibria, gives already a lower
bound for H , apart from the relation between inclination and eccentricity for frozen orbits
(critical inclination). As an astrodynamics limit we refer also to frozen-grazing orbits. The
second truncation (Brouwer model) is essential in order to identify two pairs of stable and
unstable elliptic frozen orbits bifurcating from circular orbits, as we have mentioned above
(CDM paper). In particular, our point in this note is that the claim of CDM (p. 387) about the
relative equilibria as function of H has to be modified in the sense that there are no relative
equilibria when H is small (see Sect. 4). But having said this, it has to be stressed that CDM
expressions are valid for relative equilibria corresponding to non-impacting orbits.

In Sect. 4, we consider the case when H is small. First the Coffey–Deprit Hamiltonian is
used. Taking the model by itself, we find ‘new relative equilibria’ (G̃, g̃). Nevertheless, we
see that G̃4 ≈ J2, i.e., they are out of the domain of convergence, according to the lower
bound identified in Sect. 2. In other words, those solutions belong to the truncated model but
not to the averaged system. In Sect. 4.2 we briefly approach the problem from a different
angle. For the case of the family of almost polar orbits (say |H | ≤ √

J2), we propose to treat
the problem considering the perturbation split in first and higher order terms. This lead us to
the conclusion that the only relative equilibria are circular orbits.

Some related questions, like comparing with numerical studies of Broucke (1994), are not
tackled in this note. Indeed, he considered large values of |J2| = 0.2 and reported that the
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A note on lower bounds for relative equilibria 71

family of almost polar orbits seems to maintain the pattern coming from the critical inclina-
tion. This, as well as the persistence or not of our claim when other harmonics coefficients
are taken into account, is now under study.

A final comment is due here. Perturbed Keplerian systems with an axial symmetry, after
been normalized, have to be reduced in order to bring the system finally to the twice reduced
space. All this was explained in detail by Cushman using regular and singular reduction the-
ory. However, in this note we do not need to make use of the proper coordinates (invariants)
of this space. For the evolution of the elliptic relative equilibria the local chart defined by the
Delaunay variables (g, G) is sufficient.

2 On the main problem and its normalization

In Cartesian coordinates x, X the Hamiltonian function of the so called main problem of the
artificial satellite theory (see Brouwer 1959) is usually given by

H = H(x, X;µ, α, J2)

= 1

2
(X2 + Y 2 + Z2) − µ

r
+ J2

1

2

µ

r

(α

r

)2
(

3
z2

r2 − 1

)
, (1)

and the corresponding differential system defined in Ω ⊂ (R3 − {0}) × R3, where r =√
x2 + y2 + z2, µ is the gravitational constant, α is its equatorial radius and J2 is the oblate-

ness coefficient of the planet (a small positive quantity). Thus, although the non-Keplerian
part is factorized by the quantity J2 µα2, we prefer to maintain explicit their presence.

Apart from the Hamiltonian function itself which is an integral, the Hamiltonian sys-
tem defined by (1) has an axial symmetry, which is made manifest immediately if we use,
for instance, cylindrical coordinates. In other words, the third component N of the angular
momentum vector x × X is a second integral (later in the note we write N = H ). Although
considerable effort has been put in searching for a possible third integral, so far only the
case Θ = ‖x × X‖ = |N |, called equatorial main problem, reduces to a 1-DOF system.
Thus, our Hamiltonian function defines generically a 2-DOF system. In the open domain
I = {(x, X)| 0 < Θ, N < Θ} ⊂ Ω of ‘inclined orbits’ (that is excluding the possibility
of rectilinear and equatorial trajectories), the Hamiltonian function, written in polar-nodal
variables, (r, θ, ν, R,Θ, N ), is given (see Deprit 1981) by

H = 1

2

(
R2 + Θ2

r2

)
− µ

r
− J2

µ

r

(α

r

)2 1

2
(1 − 3s2 sin2 θ), (2)

where s = √
1 − (N/Θ)2, and ν is a cyclic variable. Our interest focuses on the restric-

tions to the problem associated with α and J2. More precisely, α relates to conditions for
bounded non impacting orbits, i.e., characterizing the set of bounded orbits where r ≥ α.
The influence of J2 is related to the validity of convergence and relative equilibria of the
normal form, which is obtained as power expansion of J2. Note that some authors, deal-
ing with the problem with numerical methods, have considered the problem defined by the
function (2), studying the influence of large values of J2 in the model. We will restrict our
considerations to the region of phase space defined by negative values of the Hamiltonian.
In other words to bounded motions of elliptic perturbed type. Then, we will use ‘Delaunay
variables’ (�, g, h, L , G, H), the Hamiltonian version of the classic ‘orbital elements’ (see
Delaunay 1867; Chang and Marsden 2003).
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2.1 The Coffey–Deprit normalized Hamiltonian. A rough lower bound
for convergence

Coffey and Deprit (1982) presented the normalization of the main problem in closed form as
a function of the eccentricity, up to third order, a long standing open question since the time of
Brouwer (1959). That achievement came after a Lie transform was found by Deprit, dubbed
as Elimination of the Parallax, which allowed to simplify powers (α/r)n , with n ≥ 3, to
(α/r)2. More recently Healy (2000) has published a new Delaunay normalization reaching
up to order 6. For this note, we do not need to consider order higher than three. From Coffey
et al. (1982) we borrow

K =
3∑

n≥0

εn

n! Kn + O(ε4), (3)

where

K0 = − µ2

2L2 ,

Ki = η
µ2

L2

(
α2µ2

G4

)i ∑
0≤2k≤i Pi,2k(s2, η) cos 2kg with i ≥ 1,

(4)

and ε = J2. The coefficients Pi,2k
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4
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2
,
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(
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are polynomials in s = sin i = √
1 − H2/G2 and η = G/L . As usual, primes in the vari-

ables have been dropped. Note that associated with the Hamiltonian we have another power
series W defining the generator of the Lie–Deprit transformation. In fact two, related with
the Elimination of the Parallax and the Delaunay normalization (for details see Coffey and
Deprit (1982) and Healy (2000)).
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A note on lower bounds for relative equilibria 73

As we know the previous expression is formal in the sense that nothing is said about its
convergence. Nevertheless, some of the studies done with the truncated normalized Hamil-
tonians (we give details later) have considered even the possibility of small values of G. But,
then, the following question arises: which of the equilibria belonging, for instance, to the
Brouwer’s model may be connected to the higher order averaged problem?, and to the full
problem? When, (looking for relative equilibria) we only see G as a root of a polynomial
equation, and we open the possibility for small values, we are dragged into the problem
of the region of validity of the normalized Hamiltonian and expressions related to it. The
issue of the validity of the normalized Hamiltonian has always been in the literature. As an
example, the following paragraph, borrowed from Hori and Kozai (1975), put the situation
this way: “The case of a large e and a small a that is the case of a small angular momentum G
seems to offer another difficulty. In fact if G is small, the motion of the satellite approaches
rectilinear and the perturbations would increase because of a close approach to the earth (if
the earth be an oblate point mass). In view of a finite size of the earth, this case is realized by
the motion of a missile rather than a satellite. This is a case where the averaging principle is
not applied.”

But having declared that, they really could not go further, trying to answer the question,
without closed form expressions. We think one of the most valuable aspects of the closed
form normalization of Coffey and Deprit (3) is that it goes directly to the core of the prob-
lem. Each term of the series expansion is made of two parts. One which contains G in the
denominator, and the other part which may be considered as a polynomial function of three
variables P(η, s, C), (where C = cos g). In other words, the form itself of the normalized
Hamiltonian gives a first rough estimate condition for convergence

J2α
2µ2 � G4. (5)

Let us just mention that Healy uses β = 1/(1 + η) when he presents the expressions of the
normal form. It is easy to see in those expressions that they always appear as (e2β) j and
e2β = 1 − η; they may be put as polynomials in η. At the sixth order contribution (see
p. 108) there is one factor in the terms factorized by cos 2g of the form e2/η which (if not a
typographical error) is not giving the full expression a polynomial form, as in the previous
orders. Whether it is an error or not, it does not change this note. Moreover, notice that the
question of convergence raised in this note may be also considered taking into account others
of the formal expansions, like the one giving the elimination of the parallax. The reason for
having chosen the normalized Hamiltonian is because it relates to the literature on the subject,
and also because we have identified values which are relevant for the conclusion. Probably
the same can be obtained using other expansions.

3 Relative equilibria: putting things in the astrodynamics context

The main problem or any model for satellite theory differs from the classic two-body system
by its very nature. Meanwhile in the two-body model both bodies are taken as point masses,
the satellite problem requires to keep in mind that one of the bodies cannot be taken as a
point. Although the considerations of this note focus on satellites around planet-like bodies,
we think some of them may be extended to a body with a more general type of figure.

Why the conditions for impacting or grazing orbits are not considered usually as the lower
bound in satellite dynamics in Celestial Mechanics is an issue not easy to explain for us. It
is even rather surprising if we consider that the topic of ballistic arcs and the possibility of
using perturbation theories in its study was already discussed in the 70s (see for instance
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Peters 1970; Hori 1973). A possible explanation might be that mathematics oriented papers
in orbital dynamics, using techniques coming from the classic n-body problem, have under-
estimated this aspect; their only concern has always been the possibility of collisions (when
at least one of the relative distances becomes zero), a question fully studied in that problem.

Apart, of course, from the beginning and end of a mission, in the astrodynamics com-
munity lower bounds (grazing orbits) is the natural ingredient for any mission design and
control analysis. With that severe constraint taken into account, the issue of convergence is
no longer a problem. Nevertheless the constraint defining the normalized Hamiltonian puts
limits to integrals of the problem; an aspect, as we said in the Introduction, which has passed
unnoticed.

3.1 Zero order approximation. A lower bound for L

As we know from any textbook on astrodynamics, the zero order of the satellite theory deals
just with the physical constraint introduced by α. By zero order we mean to look first at our
oblate planet as a sphere (J2 = 0) of radius α > 0 with homogeneous distribution of mass.
Three types of orbits are associated with the satellite problem: non-impacting, grazing, and
impacting orbits, these last ones including rectilinear. (We will not use the word “collision”
which is usually reserved for conditions such that the particle reach the origin, when we
assume point masses).

Non-impacting orbits. They are defined by the relation between the semi-major axis a,
the eccentricity e and the equatorial radius:

a(1 − e) > α.

From this we get a > α, 0 ≤ e < 1 − α/a. In Delaunay variables: L2 = µa and
G = √

µa(1 − e2), the conditions are

µα < L2 and

√
µα

(
2 − µα

L2

)
< G ≤ L . (6)

Grazing orbits. Those orbits are characterized by

a(1 − e) = α.

From this we get a ≥ α, 0 ≤ e = 1 − α/a < 1. In Delaunay notation

µα ≤ L̃2, and G̃ =
√

µα

(
2 − µα

L̃2

)
. (7)

When we deal with the two-body problem (α = 0) we have G̃ = 0.
As an orbit is defined by the three integrals (L , G, H), and considering the value of G for

grazing orbits given by Eq. 7, we propose to introduce the value

H0 = ±
√

µα
(

2 − µα

L2

)
.

Then, in contrast with the Kepler problem, the bounded motions around a sphere suggest
to consider the domain of the norm of the angular momentum divided in two regions:
(i) G ∈ (|H0|, L] where we guarantee no impacting conditions and, (ii) G ∈ [|H∗|, L],
where 0 ≤ |H∗| < |H0|. In this case we have impacting orbits when |H∗| ≤ G < |H0|.
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A note on lower bounds for relative equilibria 75

3.2 First order approximation: frozen-grazing orbits

Now we transfer the previous relations (6) and (7) to the averaged main problem of the arti-
ficial satellite theory and its relative equilibria. In other words, the inequalities above should
be taken as the zero order contribution of relations to be expanded in powers of J2. As we
see below first order gives some basic expressions.

The first order truncated normalized Hamiltonian is

K(1) = − µ2

2L2 + J2
α2µ4

G3L3

1

4

(
1 − 3

H2

G2

)
, (8)

and the corresponding reduced system

Ġ = 0, ġ = −J2
3

4

α2µ4

L3

1

G4

(
1 − 5

H2

G2

)
. (9)

Thus, at this approximation G is an integral of this system. Note that the range of values of
G satisfies

| K − K(1)| ≈ O(J 2
2 ),

in agreement with we have already said (see (5)).
Relative solutions of this system give elliptic orbits with stationary perigee at critical

inclination c2 = 1/5. We have

G2
0 = 5H2, 0 � |H | ≤ L√

5
. (10)

Apart from the lower bound for H which is a consequence of the lower bound for G, the
upper bound seems to have been introduced by Cushman, referring it to Orlov. Then, if we
consider the mean motions of the system

�̇ = µ2

L3 + J2
3

4

α2µ4

G3L4

(
1 − 3

H2

G2

)
, ḣ = −J2

3

2

α2µ4 H

G5L3
, (11)

and replace the value G2
0 = 5H2 in Eq. 11 we obtain the following frozen mean motions

n(1)
� = µ2

L3 + J2α
2µ4 3

25
√

5

1

L4|H |3 , n(1)
h = −J2α

2µ4 3

50
√

5

1

L3 H4 .

These expressions show immediately that if (forgetting about the lower bound for H ) we
take small values for H , they have no meaning: the satellite in the averaged orbit will move
with a very different mean motion and the averaged ellipses will be very fast rotating. But
this ‘pathological’ situation is clarified when we realized that for values of H of the order
of J2 or smaller, the treatment of the problem and its normalization should be different (see
Sect. 4.2).

Then, considering astrodynamics applications, if we impose to G0 = √
5|H | the constraint

(7) given above, in order to have non-impacting relative equilibria the integrals L and H have
to satisfy the conditions:

H ∈ [H0,1, H0,0] =
[√

αµ

5

(
2 − αµ

L2

)
,

L√
5

]
and µα < L2, (12)

and the value of the eccentricity of the grazing orbits is

e = 1 − αµ

L2 .
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Fig. 1 Relevant lines in the
(L , H) plane: (a) the border
defined by H = L (circular
equatorial); (b) bifurcation line
H = L/

√
5 of circular orbits at

critical inclination, and; (c) line
of grazing frozen orbits
H =

√
(2 − 1/L2)/5, (we have

taken µ = 1, α = 1, and we only
present the case H > 0)

1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

(a)

(b)

(c)

L

H

In Fig. 1 we show the two relevant lines defining the interval given by (12) as function of L ,
joint with the line H = L which gives the border of the parameter domain.

3.3 Second order refinements

The first order analysis, based on K(1), has given us a ‘critical inclination’ where all the
ellipses have fixed perigee. Thus, at this order there is infinite number of relative equilibria;
in other words, the system is ‘degenerate’ and the analysis has to be pushed to the following
order dealing with K(2), trying to understand what really happens. As we said in Sect. 1, this
is what was done in the 80s by Coffey et al. They found two pitchfork bifurcations stemming
from circular orbits (Cushman 1988, gave later a more refined analysis). The corresponding
expressions giving the four relative equilibria, defining the corresponding ‘elliptic frozen
orbits,’ two stable and two unstable, are captured by the expressions Eqs. 241 and 251 of
CDM, (or the similar ones given by Cushman).

Far from circular orbits the reduced system may be studied with Delaunay variables. The
system defined by the Brouwer model is (see Eqs. 231 and 232 of CDM)

ġ = ∂K(2)

∂G
= 0, Ġ = −∂K(2)

∂g
= 0. (13)

Looking for equilibria it is easy to check that, apart from the poles of the S2-sphere which
always exist where the system is defined, all the other possible roots will be found when
g = kπ/2. From the two pairs g = 0, π and g = π/2, 3π/2 of the first equation, if we
replace in the second equation (13), we obtain two equations

N1 = 32(4 − 5s2) + J2
α2µ2

G4

[
γ0,0 + γ2,0 + γ0,1η + (γ0,2 + γ2,2)η

2] = 0

and

N2 = 32(4 − 5s2) + J2
α2µ2

G4

[
γ0,0 − γ2,0 + γ0,1η + (γ0,2 − γ2,2)η

2] = 0,
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A note on lower bounds for relative equilibria 77

respectively, where γi, j are given in CDM. We briefly reproduce the study done by CDM for
these equations, but in a slightly different form.

Let us consider N2 = 0 which corresponds to the unstable frozen orbits (the other equation
can be treated the same way). Replacing s2 = 1 − H2/G2, η = G/L and J ∗

2 = α2µ2 J2

we obtain a polynomial equation P8(G; L , H, J ∗
2 ) = 0 of degree 8 in G. Putting aside the

convergence constraint, we are interested in discussing the possible existence of other roots
|H | ≤ Gi ≤ L . We see that this equation is biquadratic in H . Thus, we obtain immediately
an expression H = H(G; L , J ∗

2 ) which shows that there is always one real root G2 satisfying
the dynamical constraint H < G2 < L , and that this root goes to zero when H goes to zero.

Instead of G2 = G(L , H ; J2) at critical inclination, we think it is more illustrative of the
characteristic of the equilibria, to see N2 = 0 as a relation between the eccentricity and the
inclination of the frozen orbits N2 = N2(c, e; L , J2) = 0. Denoting

J = α2µ2

L4 J2,

we have

c2 = (−189 + 96η + 175η2)J − 80η4 + 80
√

η8 + AJ + B J 2

5(11 + 72η + 63η2)J
, (14)

with

A = −1

5
(−25 + 3η + 14η2)η4,

B = 1

400
(2401 − 1248η − 3254η2 + 840η3 + 1225η4).

Although this function (14) is well defined for the whole range η ∈ [0, 1], it only has sense
in the range of convergence. At least for the non-impacting and grazing domain we may
simplify Eq. 14 computing the series expansion

c = 1√
5

(
1 + −9 + 7η2

20η4

α2µ2

L4 J2

)
+ O(J 2

2 ). (15)

In particular we may obtain the inclination of the frozen-grazing orbit replacing η for the
value given in Eq. 7

η̃ =
√

µα

L̃2

(
2 − µα

L̃2

)
,

although we do not print the expression. For instance, taking units µ = α = 1, for L = 2
we have η̃ = 0.661438. Moreover, note that the expression given by CDM can be obtained
readily from Eq. 15.

4 No frozen orbits for small values of H

When the third component of the angular momentum H is small, the previous analysis leaves
the evolution of elliptic frozen orbits as an open question, because convergence of the expres-
sions used has to be taken into account. In this section we present two approaches in order to
answer this question. First we consider the Coffey–Deprit model, trying to refine the domain
of convergence. We find again a lower bound for the normalization, but not refinement of the
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one given in Sect. 2. The second approach shows that, from the structure of the Hamiltonian,
we may conclude that there is not elliptic frozen orbits when H is small.

4.1 ‘New equilibria’ but not convergence

In Sect. 2, we have identified a rough lower bound for convergence. May that bound be
refined dealing with the relative equilibria of the Coffey–Deprit model? The finding of ‘new
equilibria’ will really mean another constraint for G, because no more roots can be added to
the second order analysis.

We consider the third order truncation (Coffey–Deprit model) of the normalized
Hamiltonian. Are there other equilibria when third order terms are included? It is not dif-
ficult to find a segment of values (Hl , Hu) of the integral H , functions of L and J2, where
we identify eight relative equilibria in the corresponding differential system. The explana-
tion is that the well known elliptic frozen orbits (stable and unstable relative equilibria in the
twice reduced space) of the second order truncation (Brouwer model), undergo two pitchfork
bifurcations, if they are approached within the third order approximation. As the reader will
see, we only show numerical evidence of the evolution of the number of equilibria and their
stability character.

The reduced system defined by the Coffey–Deprit Hamiltonian function Eq. 3 is

ġ = ∂K̃
∂G

, Ġ = −∂K̃
∂g

, (16)

where, dropping the Kepler part and rescaling in Eq. 3, we have

K̃ = K1 + 1

2! J2K2 + 1

3! J 2
2 K3.

Then, the equations satisfied by the equilibria may be written as

∂K̃
∂g

= P1(G; L , H, J2) sin 2g = 0, (17)

∂K̃
∂G

= P2(G; L , H, J2) + P3(G; L , H, J2) cos 2g = 0. (18)

Starting the search of frozen orbits at the north pole of the twice reduced space (using CDM
coordinates), as expected, there are frozen elliptic equilibria of Eq. 16 which evolve from
two pitchfork bifurcations of circular orbits as in the second order. The third order terms only
bring slight refinements to the expressions of the bifurcations lines already known. More-
over, the south pole of the reduced space is also an equilibrium, meanwhile the normalized
Hamiltonian is convergent.

Far from circular orbits the reduced system may be studied with Delaunay variables. What
we are after is the possible existence of other roots when we are far from the neighborhood of
circular orbits. From the previous system, searching for other equilibria out of the principal
meridians sin 2g = 0, first we ought to have

P1(G; L , H, J2) = 0.

Solving this equation and assuming G̃ = G̃(L , H ; J2) is one of the roots, if we replace in
Eq. 18 we will get

cos 2g = − P2(G̃, L , H ; J2)

P3(G̃, L , H ; J2)
.
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Fig. 2 A sequence of the switch of stable–unstable equilibria at the ‘elliptic frozen orbits’ zone when the third
order terms are taken into account. It is the result of two pitchfork bifurcations of elliptic orbits when H enters
and leaves the interval (Hl , Hu) from above. Stemming from unstable orbits at the meridian g = π/2, 3π/2
they migrate towards the stable equilibria at the meridian g = 0, π which become unstable. In these figures
we have fixed L = 2 and J2 = 0.01

What remains is to identify the range of values (L , H) in the plane of dynamical parameters,
such that

−1 ≤ − P2(G̃, L , H)

P3(G̃, L , H)
≤ 1.

In fact, what we need to obtain are the limit lines Hl = Hl(L; J2) and Hu = Hu(L; J2)

corresponding to −1 and 1, respectively. The result is presented in Figs. 2 and 3 which
gather our analysis. As neither the expression for G̃ nor the functions Hl = Hl(L; J2) or
Hu = Hu(L; J2) can be obtained explicitly, we do not show the numerical computations
carried out.

The explanation of what happens is as follows. We find a segment of values (Hl , Hu) of
the integral H , functions of L and J2, where we identify eight relative equilibria in the cor-
responding differential system. This means that the well known elliptic frozen orbits (stable
and unstable relative equilibria in the twice reduced space) of the second order truncation
(Brouwer model), undergo pitchfork bifurcations, if they are approached within the third
order approximation. Let us fix values for L and J2 and consider a value of H after the
two pitchfork bifurcations of circular orbits have taken place. Then, for a range of values
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Fig. 3 The relative influence of J2. As a zoom in the plane of dynamical parameters (L , H), we show bifur-
cations lines Hu = Hu(L; J2) and Hl = Hl (L; J2) when the third order influence is taken into account.
They correspond to the following values of J2: 0.2, 0.1, 0.01, 0.001, respectively. Note that in all of them
we restrict to the interval L ∈ [1, 3]

H < H we have still a ‘critical inclination zone’ with four equilibria: two stable E1,2 for
g = 0, π , and two unstable E3,4 for g = π/2, 3π/2, already known from the second order
analysis. Then, when H = Hu < H there is a pitchfork bifurcation of the equilibria E3,4

which become stable. For H ∈ (Hl , Hu) the ‘critial inclination zone’ is different: due to the
third order terms, we have the previous equilibria E1,2,3,4 which are stable and four new
equilibria E5,6,7,8 which are unstable. Then, there is a value H = Hl such that the equilibria
E5,6,7,8 reach E1,2 through a new pitchfork bifurcation, and for H < Hl the equilibria E1,2

become unstable; the other two remaining E3,4 continue to be stable. In short, we may say
that in this range of H there has occurred a ‘rotation of stability,’ which we present in Fig. 2.
Complementing the previous figure, in Fig. 3 we present a sequence which is a zoom in
the plane of dynamical parameters (L , H), where we show the two new bifurcation lines
when the third order influence is taken into account; they correpond to several values of J2:
0.2, 0.1, 0.01 and 0.001, respectively. Note that in all of them we restrict ourselves to the
interval L ∈ [1, 3].

Are there other equilibria in the Coffey–Deprit model? For the purpose of this note, we
do not need to answer that question. The existence of the equilibria E5,6,7,8 is sufficient.
According to perturbation theory, after the degeneracy of the first order is corrected with
the second order contribution, bringing the number of relative equilibria to a maximum of
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six, no more roots are expected if higher order terms of the normalization are included; only
changes of their values of the order of the small parameter. Thus, the existence of the previous
interval where new roots appear only means that we are out of the domain of convergence
of the normalized Hamiltonian. Those equilibria, proper of the Coffey–Deprit model, have
nothing to do with the main problem. Indeed, as a quick computation shows, when we look
for values of G̃ related to Fig. 2, we find that G̃4 ≈ J2, which contradicts condition (5).
Although, this does not infer an improvement of the lower bound. In other words, the values
of G̃ related to the previous interval, help to confirm the lower bound, intrinsic of the nor-
malization, previously identify. We conjecture that the inclusion of higher order terms will
bring new restrictions to the lower bound.

4.2 On the almost polar orbits

In order to put lower bounds for some formulas related to frozen orbits (apart from the men-
tioned grazing condition) do we really need to invoke lack of convergence in the expressions
used? As the proper expressions suggest, the question to answer is simply: what happens
when the integral |H | ∈ [0, L] takes very small values, say |H | ≤ √

αµJ2 ?
In our understanding this tells that, again, we should look at the Hamiltonian function (2)

of the main problem, but this time written explicitly

H = 1

2

(
R2+Θ2

r2

)
− µ

r
+J2

µ

r

(α

r

)2
[

1

4
(1 − 3 cos 2θ)+3

4

N 2

Θ2 (−1 + cos 2θ)

]
. (19)

Apart from the quadrature corresponding to the precessional motion of the node of the
orbital plane ν = ∫

(∂H/∂ N ) dt , we see that the function (19) defines a two-degrees of
freedom system H(r, θ, R,Θ) with respect to the orbital plane. The relevant point for us
is to see the Hamiltonian function as an uni-parametric family of Hamiltonians defined by
HN ≡ H(r, θ, R,Θ; J2, N ), i.e. where N (remember N is the name of the integral H in
polar-nodal variables) is taken as a parameter rather than as an integral. In other words,
denoting σ the dimensionless quantity

σ = J2
N 2

αµ
,

the main problem may be written as

Hσ = 1

2

(
R2 + Θ2

r2

)
− µ

r
+ J2

µ

r

(α

r

)2 1

4
(1 − 3 cos 2θ)

+ σ
µ

r

(α

r

)2 αµ

Θ2

3

4
(−1 + cos 2θ), (20)

with N < Θ. When we consider N ∈ (0,
√

J2αµ ], then σ is similar or even smaller than
J 2

2 . Then, after a Delaunay transformation and the corresponding normalization, it is easy
to see that on the S2(L , H) reduced orbital space the relative equilibria coming from (20)
reduce to the north pole, i.e., to a circular stable orbit at inclination cos I = H/L and the
flow as a rotation; moreover, the neighborhood of the south pole cannot be reached because,
as H is small, there is no convergence.

These comments seem to be extensible to the ‘frozen orbits’ of the zonal problem, where
other harmonic coefficients are considered (see Coffey et al. 1994), in particular for families
of almost polar orbits. In that case the normalization procedure may be simplified, but we
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will not touch that point in this note (Ferrer et al. 2007). Comparison with the study done by
Lara (1997) in the polar case is also in progress.

5 Conclusions

Coffey et al. and Cushman left unfinished their study of the critical inclination in satellite
theory: no analysis was made of the evolution of the elliptic frozen orbits emanating from
circular orbits when one of the integrals, the third component of the angular momentum,
takes small values. In this note we approach this issue and consider three related aspects
associated to relative equilibria analysis. The first aspect refers to the role of the physical
parameters; we point out that they define a lower bound for the domain of convergence of
the normalized Hamiltonian.

Moreover, we give expressions, function of the equatorial radius of the main body, in
order to identify conditions for non-collision frozen orbits. This issue was already in the
literature (see for instance Hough 1981a, b, well before the work of Cushman and Deprit
et al.), although no mention was made at the time.

The third aspect studied is the role played by the integral H . When it is rather small, say
of the order of

√
J2 or smaller, we show that there are not frozen orbits. Finally, we point out

that most of the contents of this note applies also when more realistic models are taken into
account, like the ones including other zonal or tesseral harmonics.
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