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Abstract

There are several formulations of boundary integral equations (BIEs) used in the general numerical procedure known as boundary element

method (BEM). There are also several approaches to deal with contact problems using BEM. In this paper, a comparison between the

following procedures: the conventional discretization of the displacement BIE by collocations, the Galerkin discretizations of the symmetric

BIE formulation of the first kind and the non-symmetric BIE formulation of the second kind, is performed. Although several aspects of these

procedures are discussed, the emphasis is put on the accuracy of the results obtained with identical meshes. The comparison is carried out

including problems with analytical solutions or in the presence of singularities, covering conforming, advancing and receding contact

problems. Linear elements, conforming discretizations of surfaces in contact and absence of friction define the frame where the study is

performed. q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction and preliminaries

The application of boundary element method (BEM) to

the solution of elastic contact problems is advantageous in

comparison to finite element method (FEM), mainly due to

the following facts: non-linearities appear only on those

boundary parts of the solids that are in contact and the

variables appearing in contact conditions are unknowns

directly computed by BEM. The aim of this paper is to

contribute to the development and understanding of

different possibilities that BEM has in approaching contact

problems. A numerical comparative study of three basic

variants of boundary integral equation (BIE) formulations

of the so-called direct BEM applied to the solution of two-

dimensional frictionless contact problems is presented in

this paper.

Consider an elastic body D with boundary ›D subjected

to an external load. Each point x of the body suffers

displacements u(x ). Traction vector t(x ) is obtained by an

application of the traction differential operator Tn
x ; associ-

ated to a unit normal vector n(x ), to the displacements field,

tðxÞ ¼ Tn
xuðxÞ: Columns of the fundamental solution matrix

U(y,x ) represent displacement vectors at y originated by the

unit point forces applied at x in the directions of the

coordinate axes [15]. The following symmetry relations

hold for the fundamental solution matrix Uðy; xÞ ¼

Uðx; yÞ ¼ UTðy; xÞ; where T denotes matrix transposition.

Columns of the fundamental tractions matrix evaluated as

Tn
yUðy; xÞ represent tractions vectors at y originated by the

above-described point forces.

The first BIE formulation studied here is the one

traditionally used in BEM applications, defined by the

Somigliana displacement identity [17] denoted here as u-

BIE. For smooth boundary points x [ ›D, the strongly

singular u-BIE writes as

1

2
uðxÞ þ

ð
›D

ððTn
yUðy; xÞÞTuðyÞ2 Uðy; xÞtðyÞÞdSy ¼ 0 ð1Þ

where the integral is evaluated in the Cauchy principal value

sense [13,15].

The other two BIE formulations studied here, sometimes

called coupled BIE formulations, are obtained by combi-

nation of Somigliana displacement and traction identities
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[5] the latter being denoted here as t-BIE. For smooth

boundary points x [ ›D, the hypersingular t-BIE writes as

1

2
tðxÞ þ

ð
›D

ðTn
xðT

n
yUðy; xÞÞTuðyÞ2 Tn

xUðy; xÞtðyÞÞdSy

¼ 0 ð2Þ

where the integral is evaluated in the Hadamard finite part

sense [13,15]. The choice of a BIE applied at a point of the

boundary depends on the kind of boundary condition

prescribed at this point. The symmetric BIE of the first

kind [18] is obtained when u-BIE is applied on Dirichlet part

(where displacements are prescribed) and t-BIE on

Neumann part (where tractions are prescribed) of the

boundary, and vice-versa in obtaining the BIE of the second

kind [10].

There are some substantial differences between the three

BIE formulations above. It should be pointed out that each

of these BIE formulations has some advantages over the

other two. Some of these advantages are well known, like

simplicity of implementation of u-BIE in a BEM code,

symmetry of the linear system obtained by a Galerkin

discretization of the first kind BIE formulation (this

approach is usually called the symmetric Galerkin BEM

(SGBEM)), or the lowest condition number of the linear

system obtained by a collocation discretization of the

second kind BIE formulation. Additionally, some of these

advantages have been recently shown in a comparative

study of these BIE formulations for two-dimensional

Laplace equation [21], such as reliability of results by u-

BIE when errors are considered in the maximum and

integral L2 norms, and a relatively low value of error of the

results evaluated in the L2 norm obtained by the SGBEM.

For the solution of contact problems, a BIE formulation

has to be coupled with non-linear contact conditions. This

can be performed in several ways, a direct imposition of

these contact conditions solved by a trial-and-error method,

a penalty function and a Lagrange multiplier approaches

being the options most frequently used. A direct imposition

of contact conditions, originally developed for u-BIE by

Andersson et al. [1], and later by Parı́s and Garrido [16], is

applied for all BIEs studied in the present work.

Contact conditions for the frictionless contact problem

analysed here may be grouped into compatibility of normal

displacements condition, equilibrium conditions and fric-

tion condition

Compatibility : uA
n þ uB

n ¼ 0 ð3Þ

Equilibrium : tA
2 tB ¼ 0

Frictionless : tA
s ¼ tB

s ¼ 0

where n denotes the outward normal direction and s the

tangential direction to the boundary of each solid in contact,

see Fig. 1.

It is noteworthy that in order to maintain an advantageous

character of the coupled BIE formulations, namely

symmetry and the second kind character of the linear

operators associated to the first and second kind BIE

formulations, respectively, a special technique of equation

assembly is required. Developing previous works by Mantič

[12] and Khutoryanskiy [11], respectively, where such

assembly techniques were introduced for the first and

second kind BIE formulations in solution of multi-zone

problems (see also Refs. [8,19]), Vodička [20] has

introduced a transformation of contact variables which

yields a new assembling technique for solution of friction-

less contact problems by coupled BIE formulations. BIEs in

these formulations are considered in the local coordinate

systems defined by the unit outward normal and tangential

vectors (nK, sK), K ¼ A, B. The new unknown variables at

the contact zone, introduced in the above-mentioned

assembling technique, are associated to the elastic variables

defined in both solids, their physical meaning being

(neglecting a multiplicative constant) as follows: ðtA
n þ

tB
n Þ=2 represents contact pressure, uA

s þ uB
s represents relative

tangential displacement, and ðuA
s 2 uB

s Þ=2 and ðuA
n 2 uB

n Þ=2

represent average displacements. Table 1 explains how

different BIEs are used in the BEM formulations of the

frictionless contact problem studied in the present work.

Note that a different approach to contact problems in the

framework of SGBEM was introduced by Eck et al. [7].

It has to be pointed out that the above contact conditions

can be imposed either in a strong sense or in a weak sense.

The imposition in a strong sense of contact conditions is

made in a node-to-node scheme for conforming meshes in

contact [16] and in a node-to-point scheme for non-

conforming meshes [14]. Imposition in a weak sense

developed by Blázquez et al. [2] is working well for both

the cases of conforming and non-conforming meshes, no

problems having been detected for any of the situations

where the use of node-to-point approach produced poor

results, see Ref. [3]. It can be proved that for conforming

meshes, with a one-to-one correspondence of nodes in both

meshes in contact, the strong node-to-node and weak

approaches are in fact equivalent.

Selecting two appropriate fields of displacements and

applying the virtual work theorem the discretized weak

Fig. 1. Contact problem definition.
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compatibility condition takes the expression, see Ref. [2]

XNCA

k

ð
›DkA

ðNkAÞTNkA ds DukA
n

þ
XNCA

k

ð
›DkA

ðNkAÞTNB ds DuB
n

2
XNCA

k

ð
›DkA

ðNkAÞTNkA ds dk
n ¼ 0 ð4Þ

where NCA is the number of elements of body A that belong

to the contact zone, N kA is a matrix that contains the shape

functions of the element k of body A, NB is a matrix that

contains the shape functions of all elements of body B that

belong to the contact zone, DukA
n is a vector that contains the

increment of displacements of the nodes of the element k of

body A, DuB
n is a vector that contains the increment of

displacements of all nodes of body B that belong to the

contact zone, and dk
n is a vector that contains the normal

separation of the nodes of the element k of body A from

body B.

Selecting two appropriate fields of tractions and applying

the virtual work theorem, the discretized weak equilibrium

condition takes the expression

XNCB

k

ð
›DkB

ðNkBÞTNkB ds DtkB
i

2
XNCB

k

ð
›DkB

ðNkBÞTNA ds DtA
i ¼ 0 ð5Þ

where the meaning of the terms is similar to those used in

the compatibility equation.

Finally, the frictionless condition is imposed cancelling

the tangential stress in all the nodes of body A that belong to

the contact zone.

For the purpose of comparison, numerical solutions of

three typical contact problems obtained by the above three

basic BIE formulations are presented and analysed in the

present work. In some of these problems the final contact

zone size is unknown. Therefore, because of the non-linear

character of the contact conditions, an incremental approach

of resolution is required [16]. Due to the fact that the

problems analysed correspond to the frictionless cases, an

iterative (trial-and-error) approach may be used as well.

In an incremental approach, the increment size is

calculated as the amount of load that produces the first

change in the contact condition of a node. In an iterative

approach the load increment size is fixed, and so changes in

the contact conditions of many nodes may occur. A trial-

and-error procedure is then needed to generate solutions

satisfying equilibrium and compatibility conditions.

BEM codes applied in this study use discretizations by

means of continuous linear boundary elements [15]. The

comparison between the three BIE formulations is facili-

tated by using for each problem a unique discretization, with

a conforming mesh, i.e. the two surfaces to contact present

identical discretizations. Principal features of the BEM

codes used are the following: (i) u-BIE approach—

collocations of u-BIE at mesh nodes, numerical integrations

using eight Gauss points unless otherwise specified,

imposition of contact conditions in a weak sense and an

incremental procedure of application of load; (ii) coupled

BIE formulations approaches—the Galerkin discretization

of u-BIE and t-BIE, analytical integrations, a strong

imposition of contact conditions and an iterative procedure.

A summary of these features is shown in Table 2.

2. Applications

Three classic cases, covering the three conceptually

different contact situations, are going to be used as a

benchmark to compare the three approaches previously

Table 2

Principal features of the BEM codes

Formulation Discretization method Integration Imposition of contact conditions Solution approach

u-BIE Collocations Numerical Weak form Incremental

Coupled BIEs Galerkin Analytical Strong form Iterative

Table 1

Scheme of applications of equations in BEM formulations of the frictionless contact problem

Boundary part Equations applied in every BEM formulation

Conventional First kind system Second kind system

›DK
t u K-BIE t K-BIE u K-BIE

›DK
u u K-BIE u K-BIE t K-BIE

›Dc u A-BIE (u A-BIE)n þ (u B-BIE)n (t A-BIE)n þ (t B-BIE)n

u B-BIE (t A-BIE)s þ (t B-BIE)s (u A-BIE)s þ (u B-BIE)s

Contact conditions (t A-BIE) 2 (t B-BIE) (u A-BIE) 2 (u B-BIE)
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mentioned. The first corresponds to the indentation of a

cylinder against a foundation, a problem that corresponds to

the advancing contact problem solved by Hertz for the case

of an infinite foundation. The second problem corresponds

to the compression of a thin layer on a foundation, which is a

receding contact situation. Finally, the third problem

corresponds to the indentation of a punch against a

foundation, a conforming contact case involving singular-

ities in the stress field. Plane strain is considered in all the

problems studied.

2.1. Indentation of a cylinder against a foundation

The geometry, properties, loads and boundary conditions

are defined in Fig. 2. The concentrated load is applied by

means of a triangular distribution along the two elements

close to the axis y of symmetry. The presence of such an axis

permits the symmetry to be applied. The first and second

kind BIE formulations use it explicitly (putting elements

along the axis of symmetry), whereas in the u-BIE

formulation explicit and implicit (not putting elements

along the axis of symmetry but integrating along the whole

boundary) symmetry are applied, the second case being to

all effects comparable, in terms of results, to not considering

the presence of symmetry.

The load, as indicated in Fig. 2, is applied by means of a

parameter l, which varies from 0 to 1. The contact

algorithms associated to all approaches are able to look

for the best solution (length of the contact zone), in

accordance with the discretization performed, associated to

a value of l, applying a trial-and-error procedure. The

contact algorithm used in u-BIE formulation is additionally

prepared to detect the value of l required to reach the

contact at any node of the contact zone discretization

performed. The candidate zone to reach contact is modelled

with elements of identical length of value 0.00225 mm.

Fig. 3 represents the values of the contact pressure along

the contact zone for five different values of l (0.05, 0.25,

0.5, 0.75, 1.0). As can be observed, the results agree very

well with each other and with Hertz solution except, for

some cases, at the axis of symmetry and at the extreme of

the contact zone. This fact can be clearly appreciated in

Fig. 4 where relative contact pressure errors are represented

for the particular value of l ¼ 0.5, the case where the effect

is most attenuated.

At the axis of symmetry the errors that can be considered

significant are only associated, as can be more clearly

observed in Fig. 5 where only the maximum value of the

contact pressure is represented for different values of l, to

the use of explicit symmetry for the u-BIE formulation. An

increment in the number of the Gauss points (double the

number) to elucidate the reason for these errors did not

modify significantly the values found. These errors can be

associated to the presence of mixed boundary conditions at

the artificial corner originated by the application of the

explicit symmetry and are not associated to the contact

problem formulation or solution. Nevertheless, it is possible

to observe the beneficial effect that the Galerkin formulation

(used in first and second kind BIE formulation) has on the

Fig. 2. Advancing contact problem configuration.

Fig. 3. Contact pressure distribution for different values of l.
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accuracy at corners with mixed boundary conditions in

comparison to the collocation formulation used in u-BIE

formulation.

With reference to the errors close to the end of the

contact zone, clearly noticeable in Figs. 3 and 4, they are of

a different nature. First of all, it has to be recognized that the

length of the contact zone predicted by the numerical

analysis has to be greater than the length predicted by the

analytical formula for the same value of the load. This is

obvious due to the polygonal nature of the geometry of the

boundary in the numerical model, in contrast with the

curved geometry of the solid. Thus, the increment of load to

produce the contact along a pair of rectilinear elements will

always be smaller than in the case of curved surfaces where

the contact of the extremes would produce interpenetrations

along the elements (Fig. 6), avoidance of these requiring an

extra amount of load. (It has in any case to be mentioned that

the polygonal nature of the numerical model is only partially

taken into account, because only one value of the traction

vector is taken at the junctions of the elements, instead of

the two (ta and tb in Fig. 6), strictly speaking singular,

values of the traction vector at both sides of the artificial

corners, see Ref. [4].)

Once this fact is recognized, the errors for a value of

l that produces the entrance into the contact zone of a

certain node (zero value of the contact pressure at the

end of the contact zone) ought to be almost negligible.

To check the case of one particular value of l (0.3628)

that produces the incorporation of a node into the contact

zone, it has been represented (for clarity only for u-BIE

formulation) in Fig. 3. It can be noticed that in

accordance with the former explanation the numerical

contact zone is slightly bigger than the analytical contact

zone for the load considered. In terms of contact

pressure, only a certain error appears at the first node

inside the contact zone, having a value slightly higher

than the analytical. The reason for this small error is that

the linear element used is not able to capture the infinite

value of the slope of the stresses at the onset of the

contact zone, a very local error compensation appearing

Fig. 4. Relative contact pressure errors for l ¼ 0.5.

Fig. 5. Contact pressure at the axis of symmetry.
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at the neighbourhood of the end of the contact zone to

guarantee the global equilibrium of each solid.

When the value of l, as is the case for the other values

selected and represented in Fig. 3, corresponds to an

intermediate value between those corresponding to the

incorporation into the contact zone of two consecutive

nodes, the contact pressure at the final node of the contact

zone is not zero. In Fig. 3, the position of the following node

not still in contact, and consequently with zero value of the

contact pressure, has also been represented due to the fact

that along the element defined by these two nodes there is a

linear distribution of load due to the approximation

performed, although the element is not strictly in contact.

The correct value of the contact zone would be somewhere

in the middle of this element. It can again be observed that

the errors associated to the lack of accuracy of the

discretization performed for the particular value of l

considered (see for instance l ¼ 1) are balanced, with

respect to the analytical solution, very locally, involving the

first node (the first two at most) closest to the end of the

contact zone. A detailed view of such a local balance of

positive and negative errors of discretized pressures at the

end of the contact zone for two particular values of l, when

two consecutive nodes (numbers 14 and 15 in particular) are

incorporated into the contact zone, and also for an

intermediate value of l, is plotted in Fig. 7.

To quantify in any case these errors for values of l

associated to the incorporation of two consecutive nodes

into the contact zone, Fig. 8 represents the relative errors of

the contact pressure at the last node of the contact zone

(node number 14) for intermediate values of l. Due to the

fact, clarified above, that the values of l in the numerical

and analytical models are not coincident for a particular

point to reach the contact, relative increments of l

(associated to the numerical or analytical solution) between

the contact of the two consecutive nodes (the difference now

between numerical and analytical predictions is minimum)

are taken in the representation. It can be verified that the

error in the contact pressure has a local maximum at an

intermediate value of l and that it achieves a relatively

small value when the next node (number 15) is incorporated

into the contact zone.

All previously stated for the length of the contact zone

can be appreciated in Fig. 9 where the length of the contact

zone is represented versus l.

u-BIE predictions for the values of l that produce the

incorporation of a new node into the contact zone present

the small differences previously mentioned, whereas a pre-

fixed value of l may lead to certain differences of

predictions depending on the discretization performed, as

has been noticed by means of the results shown in Fig. 8.

2.2. Compression of a thin layer on a foundation

The geometry, properties, loads and boundary conditions

are defined in Fig. 10. The concentrated load is applied in a

similar manner to the previous problem. All results shown

correspond to considering implicit symmetry.

The nature of the problem leads to a final length of the

contact zone smaller than the original but independent of the

amount of load applied, that indicated in Fig. 10 being then

applied in one increment. The length of the contact zone is

controlled by the value of the first Dundurs parameter a [9]

whose expression is

a ¼
G2ð1 2 n1Þ2 G1ð1 2 n2Þ

G2ð1 2 n1Þ þ G1ð1 2 n2Þ
ð6Þ

where G1 and n1 are, respectively, the shear modulus and

Poisson ratio of the layer and G2, and n2 the corresponding

values of the foundation.

Fig. 11(a)–(c) represents, respectively, the distributions

of the contact pressures along the contact zone with the

three procedures for three values of a (0.4, 0 and 20.4). The

maximum values of the contact pressure for all the interval

of possible values of a (between 1 and 21) are represented

in Fig. 12.

The evolution of the size of the contact zone with the

variation of the relative stiffness of layer and foundation can

Fig. 6. Contact of: (a) two smooth curved surfaces; (b) two discretized

polygonal surfaces.

Fig. 7. Local view of pressure distributions at the end of contact zone.
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be observed in Fig. 13. The analytical solution of Keer et al.

[9] for the case of infinite domains is also represented in the

figure.

The results presented in the last three Figures require

some additional explanations. Fig. 11(c) only includes

results corresponding to u-BIE and the first kind BIE

formulations because the second kind BIE formulation leads

for a , 0 to significantly non-accurate results. It can be

observed in Figs. 11 and 13 that in all the range of a, with

the exception of a # 2 0.8, the length of the contact zone

predicted by u-BIE is smaller than the length predicted by

the first and second kind BIE formulations, which in turn are

very close to each other for a $ 0. This fact leads

coherently to finding higher values of the maximum contact

pressure with u-BIE in Figs. 11 and 12.

It can be observed that in the range of positive values of

a, the predictions of the three numerical approaches

coincide with each other and with Keer et al. solution. In

contrast, for negative values of a (the layer is stiffer than the

foundation), some differences in the numerical predictions

appear, these not always being close to Keer et al. solution.

It could be thought that these discrepancies might be due to

the different adaptation of the mesh (common for coherence

to all cases independently of the value of a ) to the nature of

the problem. Thus, for a . 0 the contact zone is very small

and the mesh, prepared to capture the contact zone in this

case, was refined only at the end of the expected contact

zone. A new mesh with elements of constant length along

Fig. 8. Relative errors in the contact pressure at the end of the contact zone for values of l that produce the contact between two consecutive nodes.

Fig. 9. Half length of the contact zone.

Fig. 10. Receding contact problem configuration.
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Fig. 11. Contact pressure distribution for different values of Dundurs parameter: (a) a ¼ 0.4; (b) a ¼ 0.0; (c) a ¼ 20.4.
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Fig. 12. Contact pressure at the axis of the symmetry.

Fig. 13. Half length of the contact zone.

Fig. 14. Contact pressure distribution for negative values of Dundurs parameter, a ¼ 20.6, 20.8, obtained by u-BIE using the original coarse and a fine mesh.
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the bottom side of the layer was generated, the results being

represented in Fig. 14 for the purpose of transparency for

u-BIE formulation only.

It can be seen that although the solution with this mesh

has slightly improved at the end of the contact zone,

capturing the solution in a more smooth way, it does not

alter significantly the former numerical solution. Arriving at

this point, it has to be noted that the numerical solution

obtained for the problem modelled is correct and that the

discrepancies with respect to the analytical solution are in

fact due to the different nature of the problems solved

analytical and numerically when a tends to 21. Thus, when

a is positive, the length of the contact zone (small) is not

affected by the length of the layer. However, when a is

negative the length of the contact zone is affected by the

length of the layer, infinite in the case solved analytically

and finite in the case solved numerically.

2.3. Indentation of a punch against a foundation

The geometry, properties, loads and boundary conditions

are defined in Fig. 15. All results shown correspond to

considering explicit symmetry.

The nature of the problem leads to a length of the contact

zone independent of the amount of load applied and

coincident with the original contact zone. The distribution

of pressures along the contact zone is represented in Fig. 16,

where a detail close to the corner is represented to observe

more clearly the effects on the results of the presence of a

singularity in the stresses.

It can immediately be noticed that the results are almost

indistinguishable in the three approaches along the whole

contact zone out of the area dominated by the singularity,

where u-BIE is the most sensitive approach whereas the

first and second kind BIE formulations smooth out in

some way the perturbations in the results originated by

the singularity.

It is appropriate to evaluate how the three approaches

estimate the representative parameters of the stress singular

field. To this end, the following general expression for the

stresses and particularly for the contact pressure at the

neighbourhood of the corner is assumed

s ø
K

ð2prÞl
ð7Þ

where s is the contact pressure at a point placed at a distance

r from the corner, l is the order of the singularity and K is

the generalized stress intensity factor. The local solution at

the neighbourhood of the corner is known [6] presenting a

value of l ¼ 0.2260.

Considering that the former expression in Eq. (7) can be

written in the form

log K ø log sþ l logð2prÞ ð8Þ

Fig. 17 represents the estimated values of log K evaluated

by means of the second member of Eq. (8), taking for l the

theoretical value previously mentioned.

Fig. 15. Conforming contact problem configuration.

Fig. 16. Singular contact pressure distribution.
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To help in quantifying the results shown in Fig. 17, Table

3 shows the results obtained for K (and also those predicted

for l, in order to compare with the analytical value) by

means of a least square approach, with points placed at three

intervals of values of r. R 2 denotes the correlation

coefficient.

Although the results are in all cases quite accurate in

evaluating l, it can be seen again that the first and second

kind BIE formulations are better equipped to deal with the

presence of singularities. u-BIE would require a finer

discretization for the case analysed.

3. Conclusions

The accuracy of numerical solutions of frictionless

contact problems obtained by the symmetric BIE formu-

lation of the first kind (SGBEM) and the BIE formulation of

the second kind has been compared with the solution

obtained using the conventional u-BIE formulation.

The conclusions listed below are based on the solution of

three problems associated to the three classic contact

situations: advancing contact (indentation of a cylinder),

receding contact (compression of a thin layer on a

foundation) and conforming contact (indentation of a

punch against a foundation). Some features associated to

each case are first considered, concluding with a general

view of the three procedures considered.

The case of the indentation of a cylinder against a

foundation, as representative of the advancing class of

contact problems, has been analysed in depth in order to

explain the differences found in the estimation of the contact

zone in comparison with the one evaluated analytically

using Hertz solution. In this respect, it has been shown that

in the solution of advancing contact problems it is more

appropriate to apply an incremental scheme rather than an

iterative one. Thus, the incremental approach allows the

load to adapt to a certain extension of the contact zone,

whereas the opposite cannot be done in an iterative

procedure due to the discontinuous nature of the possible

contact zones, in accordance with the discretization

performed. The accurate evaluation of size of the contact

zone affects the accuracy of the contact pressure at nodes

near the end of the contact zone, the lower errors appearing

Fig. 17. Estimated value of the logarithm of the generalized stress intensity factor.

Table 3

Singularity exponent and generalized stress intensity factor evaluation

u-BIE First kind BIE Second kind BIE

22 # log r # 0.1 l (error) 0.2115 (26.9%) 0.2170 (24.1%) 0.2186 (23.4%)

K 173.66 170.69 169.96

R 2 0.974696 0.995854 0.998243

2 1.75 # log r # 0.1 l (error) 0.2354 (4%) 0.2266 (0.27%) 0.2248 (20.52%)

K 168.91 168.80 168.73

R 2 0.999637 0.999661 0.999828

2 1.4 # log r # 0.1 l (error) 0.2320 (2.6%) 0.2234 (21.2%) 0.2226 (21.5%)

K 169.44 169.30 169.08

R 2 0.999972 0.999989 0.999989
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at load values corresponding to the incorporation of a new

node to the discretized contact zone.

With reference to the problem of indentation of a thin

layer against a foundation, it has been found that for a non-

negative Dundurs bi-material parameter a all BIE formu-

lations provide similar results, which agree with analytical

predictions. Nevertheless, significant differences appear for

negative values of a between numerical and analytical

solutions. It has been verified, using a refined mesh, that

these differences arise due to the differences in the geometry

in the problem solved numerically (finite dimensions of the

layer and foundation) and in that solved analytically (an

infinite layer on an infinite foundation). As could be

expected these differences increase with growing contact

zone length when a approaches its lower limit value 21.

In order to compare numerical solutions of the

indentation of a punch against a foundation, parameters

defining the singular behaviour of the contact pressure

have been evaluated obtaining results that fit the

analytical predictions well. u-BIE formulation seems to

be more sensitive to the singular nature of the stress state

that typically appears in conforming contact problems.

In short, the study carried out has shown that solution by

the first and second kind BIE formulations discretized by the

Galerkin approach provides a similar degree of accuracy to

that obtained by solution of such problems using conven-

tional collocation discretization of u-BIE. In fact, in

configurations with corners or stress singularities, these

novel approaches seem to be less sensitive to the presence of

these singularities. The only problem found is in solving

problems involving thin solids with relatively high stiffness

when applying the second kind BIE formulation. The

solution can be unstable and acceptable results can be

obtained only for very fine meshes. The reasons for the

appearance of this spurious behaviour ought to be clarified

in the near future in order to have confidence in the

application of this scheme.
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[2] Blázquez A, Parı́s F, Mantič V. BEM solution of two-dimensional

contact problems by weak application of contact conditions with non-

conforming discretizations. Int J Solids Struct 1998;35:3259–78.
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