
L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 550 – 555, 2007.
http://www.springerlink.com/content/m210g77836215101/
© Springer-Verlag Berlin Heidelberg 2007

Securing Code in Services Oriented Architecture

Emilio Rodriguez Priego and F.J. García

Departamento de Matemáticas y Computación
Universidad de La Rioja

Edificio Vives, Luis de Ulloa s/n
E-26004 Logrono (La Rioja, Spain)

{emilio.rodriguez, francisco.garcia}@unirioja.es

Abstract. SOA proposed security mechanisms are only centered in the data
transmitted between service provider and consumer. However, it’s well known
that the biggest threats to the integrity of the information are precisely focused
not on the data directly but on the code that manages it. Our main statement is
that it will only be possible to reach an acceptable level of security if the protec-
tion mechanisms cover not only the data but also the code that process these
data. In this paper we present a new approach about mobile code security
based on the Services Oriented Architecture Reference Model and Web Ser-
vices technology. This new model allows the development of systems with
end-to-end security, where all elements (code and data) are secure.

Keywords: Web services security, mobile code security, Service Oriented
Architecture.

1 Introduction to the Problem

Nowadays, there is a growing interest in Web Services technology and Service Ori-
ented Architecture (SOA), whose Reference Model has been recently approved as an
OASIS standard [2]. In this model, a consuming entity requests from a supplier entity,
one or more services under a set of conditions (interaction, visibility, execution con-
text, policies and contracts). At the same time, security is one of the aspects that re-
quires more attention due to the application of this technology to environments where
information exchange is made through public networks like Internet, in which there
potentially exists diverse security threats. Recently different standard-based solutions
have been proposed to solve the problem of secure sending and reception of mes-
sages. According to SOA, the performed action details of the supplied service are not
typically visible by the consumer [1, 2]. Therefore SOA does not address the subjects
related to the realization of a service, like, e.g. securing it, delegating the effective
resolution of these problems to the supplier.

The proposed security mechanisms of the SOA model and the technology of web
services are centered in the transmitted data (message), and they put their focus on
end to end integrity, confidentiality, identity and authentication. These mechanisms
work well and in practice they reach the objective. However, it’s well known that the
biggest threats to the integrity of the information are precisely focused not on the data
directly but on the code that manages it [8,9].

 Securing Code in Services Oriented Architecture 551

Therefore, our main statement is that it will only be possible to reach an acceptable
level of security if the protection mechanisms cover not only the data but also the
code that process these data.

Independently of the web services development and SOA model, the security
problem of mobile code and its interaction with the environment in which code is
executed has been studied in the last years, particularly for the singular case of mobile
agents [6]. Both SOA and mobile code have specific and common aspects of security
but until now had not been treated jointly. The main contribution of this article is the
proposal of a new approach to the problem of the security of mobile code, named
“Web Services based Secure Code” (here-in-after WSbSC) that it’s based on SOA
Reference Model and the Web Services Architecture.

WSbSC allows for the improvement of security in a typical interaction between
consumer and provider without forcing the participants to necessarily know the details
of implementation of the services.

Our model is virtually applicable to any SOA situation in which an integral model
of security, involving data and code was required. However, in certain situations code
visibility, integrity and/or portability are more important, because code integrity, the
code in itself, the source of the code or all of these elements, take part or are ex-
changed as part of services provided by the supplier. Typical examples of these appli-
cation environments are distributed processes, hosting or rent of processes, auditing
and validation of code by certification entities, and so on.

Once the problem that we want to address has been stated, the rest of the paper is
organized in two main sections, each one describing its own objectives, resolution
outline and methodology. In Section 2, we provide a general description of the
WSbSC reference model. Section 3 presents the application of the model to a basic
SOA interaction. The last section summarizes the main contribution, related work, the
status of the research and indicates the future work.

2 WSbSC Reference Model

The reference model of WSbSC (here-in-after WSbSC-RM) is an abstract framework
for understanding significant relationships among service entities (providers and con-
sumers) that allows an integral (data and code) secure interaction, enabling the devel-
opment of specific architectures using consistent standards or specifications.

WSbSC-RM relies on SOA-RM and it adds new concepts and relationships to the
modeling of data and code exchange based on services.

The central concept in WSbSC-RM is the code, just as it has been defined tradi-
tionally but with some specific features: (1) the code can be portable: i.e., it can be
sent from one system to another without manual intervention; (2) the code can be
executed in any compatible execution environment; (3) transmission, load and execu-
tion of the code can be carried out in a safe way, applying the same basic principles of
secure transmission of data (identity, integrity and confidentiality); and (4) the code
can be verified in a secure manner.

There have been different proposals related to code portability, validation and exe-
cution in distributed environments [4,5,7]. Most proposals are based on hardware or
software techniques for execution in a local environment.

552 E.R. Priego and F.J. García

WSbSC-RM states that the transmission, reception, execution, load, compilation
and validity of the code are services that can be offered by systems potentially remote
and weakly coupled. As we see below, with WSbSC code is not only externally veri-
fiable [3], but also externally compilable and externally executable.

WSbSC-RM distinguishes the following actors:

− Author: it's the owner and creator of the code and its legal owner.
− Supplier: provides the code to a consumer and distributes it by author permission.
− Client: uses the code provided by a supplier.
− Verifier: verifies the code according to a security policy previously established.
− Compiler: given a code, it compiles another functional equivalent code.
− Processor: possesses an execution environment that executes the code.

All WSbSC-RM actors are service consumers or providers, from the point of view
of SOA-RM. Besides WSbSC-RM allows the modeling (recursively) of the actions
(local or remote) of a service by composing services offered by these actors and ac-
cording to code-centric policies and contracts. What is a key added factor of our ap-
proach with reference to SOA, is that actors playing the role of consumers in any
relationship to a provider may impose a certain security policy to regulate the service
that the provider is going to perform. This policy, and here is the contribution, does
not only affect the data (message) as SOA does, but also the service implementation.
This policy refers to one or several security aspects (such as integrity, confidentiality,
validity, and so on) and may specify a mechanism or set of mechanisms that the pro-
vider must implement to accomplish the policy. These security requirements can be
used by the consumer to select the most suitable provider in each case, depending on
the mechanisms the former can implement. The response to each service request will
include, as well as the result, metadata about the required, and fulfilled, policy.

Verifier

Author

SupplierClientProcessor

Compiler

[1]

[4]
[5][6][7]

[10]

[8]
[9]

[11]

[2]

[3]

A

BA

Graphical Notation

Entity that offers and/or
uses a service

A uses a service
from B

Fig. 1. General WSbSC-RM scenario

At this point, we have not studied yet all relationships between WSbSC-RM actors
like service actors, but we can illustrate these relationships by describing a general
example that shows some key concepts in SOA-RM: service, interaction, policies and
contracts, real world effect, etc. Fig. 1 shows this general scenario. Interactions in-
volve the following steps: (1) An author creates the code and sends it to a supplier for
distribution. (2) A client localizes and requests the code that satisfies its needs from
the supplier. (3) The supplier delivers the code. (4) The client requests the verification
of the code according to the client policy from a verifier. (5) The verifier delivers the
validated code. (6) If code is not compiled for the architecture in which is going to be

 Securing Code in Services Oriented Architecture 553

executed then the client requests its generation from a compiler. (7) The compiler
returns the compiled code. (8) The client can request validity of the compiled code
from the verifier. (9) The verifier returns the validated code. (10) The client requests
to a processor execution of the code. (11) The processor returns the result of the
process to the client.

At point (9) the code is associated to the verifier's signature that guarantees its in-
tegrity. The Processor can verify code integrity, or even correctness with respect to a
certain specification, before execution by means of that signature. Moreover, the
overall process can be checked if each actor signs its action. As a result, each step
generates metadata signed by the service provider, as well as its signature; e.g., the
result code of the compiler can include metadata related to that compilation. This
means that at the end of the process we can get a code qualified as "secure" since it's
created (author), provided (supplier), validated (verifier) and generated (compiler) by
trusted identified entities. This code, that we'll name Portable Secure Code (PSC) is
formally "portable" and "secure". We have that PSC = Code + PSC-cert (cert stands
from certificate). As you can see in Fig. 2, the PSC-cert accompanies the service re-
sult returned to the service consumer. This PSC-cert allows a client to test that the
code is PSC while the code itself is not revealed.

There can be diverse variations of this general scenario. For example, after the step
(2), the client asks the processor for the execution of the code and the processor man-
ages the communication with the verifier and the compiler to get the PSC.

We will use the following methodology to develop the model outlined here: (1) we
will describe in detail concepts and relationships among actors in the model and (2)
study in more detail the relationships with SOA and Web Services Architecture.

3 Service Implementation by WSbSC

In this section a specific use of WSbSC to offer an advanced level of end-to-end ser-
vice security is described. We consider a consumer entity that uses a service offered
by a provider entity. Fig. 2 shows how a provider entity relies on WSbSC to get a
higher security level.

PSC

Consumer Entity

Author

VerifierCompiler

Processor

Provider Entity

Supplier
[0]

[I]

[II]

[2]
[3][4]

[5] [6][7]

[8]

[9]

[1][10]

Consumer Policy

Result+PSC-Cert

Data input

Fig. 2. Service Implementation with WSbSC

554 E.R. Priego and F.J. García

Applying WSbSC, interactions in this basic scenario are: (I) a consumer entity
requests a service from a provider entity. The security policy of consumer entity es-
tablishes that the provider entity must implement the service using WSbSC and, there-
fore the provider entity must get a PSC of the service implementation to achieve this
policy. (0-9) The provider entity, if it hasn't done so previously, carries out the proc-
ess of creation, supply, validation and generation of the PSC and executes the service.
(II) It returns the result of the service together with the PSC-cert. Note that (0-9) illus-
trate another case in which the provider entity delegates in the supplier the process to
get the PSC.

By means of PSC-cert, the consumer entity can obtain an extra security level that
certifies that the service was created, supplied, verified, compiled and executed by
trust entities without being necessary to know the code itself. There can be diverse
variations: e.g., the provider entity could submit a copy of the code, encrypted with
the verifier's public key. If we suppose that both the consumer and the provider enti-
ties trust the verifier, then the consumer entity could request code validation to the
verifier. Code confidentiality is guaranteed by encryption, and the verifier's public key
encryption guarantees that only the verifier can decrypt, analyze and evaluate the code
validity. Periodical tests and the use of several verifiers can improve security even
more. To illustrate the work to be performed, the following listing outlines the struc-
ture of a PSC-cert in a simple case.

<wsbsc:psc xmlns:wsbsc=.. xmlns:uddi=.. xmlns:ds..>
<wsbsc:code EncodingType="Base64">cHVibG..</wsbsc:code>
<wsbsc:psc-cert>
 <wsbsc:AuthoredCode> ..</wsbsc:AuthoredCode>
 <ds:Signature ..> ..</ds:Signature>
 <wsbsc:SuppliedCode> (a) </wsbsc:SuppliedCode>
 <ds:Signature ..> ..</ds:Signature>
 <wsbsc:CompiledCode>.(a).</wsbsc:CompiledCode>
 <ds:Signature ..> ..</ds:Signature>
 <wsbsc:VerifiedCode>.(a).</wsbsc:VerifiedCode>
 <ds:Signature ..> ..</ds:Signature>
</wsbsc:psc-cert>
</wsbsc:psc>

AuthoredCode block is added at point 0 together with autor's signature of that
block. The following blocks are added in the same way by each actor when they have
finished their tasks. Note that sections marked with (a) consist of two main parts:
metadata related to the actor (description, e.g., by means of uddi business entity,
credentials, e.g., SAML authorization credentials, etc.) and metadata about its action,
e.g., for the compiler: the compiler environment, the target language, and so on.

This section has outlined one of the alternative interaction scenarios among
consumers and suppliers. In order to finish developing this section, we will (1) study
more alternative interaction scenarios, (2) select the most suitable web services
standards to implement PSC, (3) develop the WSbSC security model extending the
WS-SecurityPolicy model, and (4) we will develop an actual case relevant enough to
illustrate the different alternative scenarios.

 Securing Code in Services Oriented Architecture 555

4 Contribution, Related Work, Status and Future Work

Several solutions about mobile code has been proposed in the last years: e.g., [4,5,6]
focus on execution environment (compiler, verifier and/or processor). [7] and more
recently [10] suggest a contract between producer and consumer of mobile code. [11]
defines a model-driven approach for service-oriented software development.
The main contribution of this paper is the proposal of a new approach to the problem
of the security of mobile code, WSbSC, that it’s based on SOA-RM and the Web
Services Architecture. WSbSC provides a level of security that covers not only the
data but also the code that process these data.

A lot of work must be done, both to specify the demanded policy and the process
that must be preformed to implement it (perhaps using WS-SecurityPolicy or even
BPEL), and in order to select the standards to be used at each part of the PSC-cert
(SAML, WS-Policy, WS-Addressing, UDDI, and so on). As a future line of research
we are planning to extend the model to portable objects, i.e., securing the object state
as well as the code that manages that state (behavior), making this code PSC.

Acknowledgments. Partially supported by Comunidad Autónoma de La Rioja,
project ANGI-2005/19.

References

1. Web Services Architecture (February 2004) http://www.w3.org/TR/ws-arch/
2. Reference Model for Service Oriented Architecture v1.0 October 2006 http://docs.oasis-

open.org/soa-rm/v1.0/soa-rm.pdf
3. Seshadri, A., Luk, M., Perrig, A., van Doorn, L., Khosla, P.: Externally verifiable code

execution. Communications of the ACM (September 2006)
4. Franz, M., Chandra, D., Gal, A., Haldar, V., Reig, F., Wang, N.: A portable Virtual

Machine target for Proof-Carrying Code. In: Proceedings of the 2003 workshop on
Interpreters, virtual machines and emulators (June 2003)

5. Yau, S.S., Prasad, A., Zhou, X.: An Object-Oriented Approach to Containing Mobile and
Active Codes in Large-Scale Networks, words. In: Fourth International Workshop on
Object-Oriented Real-Time Dependable Systems (WORDS’99) (1999)

6. Claessens, J., Preneel, B., Vandewalle, J.: How can mobile agents do secure electronic
transactions on untrusted hosts? A survey of the security issues and the current solutions,
ACM Transactions on Internet Technology (TOIT) (February 2003)

7. Sekar, R., Ramakrishnan, C.R., Ramakrishnan, I.V., Smolka, S.A.: Model-Carrying Code
(MCC): a new paradigm for mobile-code security. In: Proceedings of the 2001 workshop
on New security paradigms (September 2001)

8. Whitman, M.E.: Enemy At The Gate: Threats To Information Security. Communications
of the ACM (August 2003)

9. Sima, C.: Are your web applications vulnerable? (October 2004) http://www. securitydocs.
com

10. Security of Software and Services for Mobile Systems (March 2006) http://www.s3ms.org
11. SENSORIA (October 2004) http://sensoria.fast.de/

View publication statsView publication stats

https://www.researchgate.net/publication/220940517

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

