
IS THE BROWSER THE SIDE FOR TEMPLATING?

Francisco J. García-Izquierdo
Dpto. de Matemáticas y Computación, Universidad de La Rioja, Logroño, Spain

francisco.garcia@unirioja.es

 Raúl Izquierdo
OOTLab: Laboratory of Object Oriented Technology, Universidad de Oviedo, Oviedo, Spain

raul@uniovi.es

Keywords: (J.8.n) Software engineering in Internet Applications, (J.8.s) Web site development tools, Web templates,

(J.8.q) Web browsers, (K.4.2.d) Handicapped persons/special needs.

Abstract: This article examines the feasibility of Browser Side Templating (BST) as valid alternative for Web devel-

opment, even when it comes to building accessible applications. With BST, templates are processed in the

browser using a JavaScript coded engine, thus providing significant performance improvements and making

the model-view separation a reality. However BST also has significant drawbacks. The BST dependence on

JavaScript affects the accessibility and hides the content of the delivered pages to search engines, hampering

Web visibility. Our paper confronts this dilemma and as its main contribution, proposes a technique that al-

lows BST to be accessible supported and semantically crawlable, while preserving all its advantages.

1 INTRODUCTION

Gone are the days when, to develop a dynamic Web

application, developers had to print the HTML code

directly out to the browser. Over recent years devel-

opment frameworks have enriched the catalogue of

tools at Web developers’ disposal, relaxing those

tedious code-writing tasks. Frameworks come in

several flavors and are suited for different program-

ming languages, but most of them use template sys-

tems in the context of a Model View Controller

(MVC) architecture for the Web. Not surprisingly,

as shown by several papers that have analyzed them

from diverse perspectives [1], template systems have

become the de facto standard for Web application

development. Despite most of them naturally placing

templates at the server-side, just as the title of this

paper suggests, here we are looking at the feasibility

of changing the side where templates reside.

Accordingly, here we analyze and evaluate the

benefits of browser-side templating (BST) systems.

In these, the processing engine is moved to the Web

browser. BST brings clear benefits, mainly related to

the high degree of model-view separation it pro-

vides. However, BST is not such a good choice by

itself, since its reliance on JavaScript poses signifi-

cant drawbacks related to the lack of accessibility

and the reduction of the semantic payload of the

pages delivered to the browser.

The novelty of this paper lies on the proposition

of a technique that retains all BST strengths, and

overcomes the mentioned weaknesses, allowing us

to conclude that BST does constitute a valid alterna-

tive to develop Web applications, even when acces-

sible applications are the case. Though we use our

own system, Yeast-Templates

(http://yeasttemplates.org/), as an example to present

the technique, it can be ported to other BST systems.

2 WHY BST? BEYOND SERVER-

SIDE TEMPLATING

Although the first papers on BST date back to 2003

[2], AJAX seems to have recently monopolized the

use of BST, in such a way that some authors refer to

it as an AJAX pattern [3]. Most existing BST sys-

tems (e.g. EJS http://embeddedjs.com/ or Jemplate

http://jemplate.net/) focus on making AJAX manipu-

lations easier, providing a template definition lan-

guage and a processing engine for the dynamic gen-

eration of HTML in the browser. But for us, this

relationship to AJAX is only an interesting but sec-

ondary use of BST. In fact, in this paper, we only

consider BST systems that, looking beyond AJAX,

were designed to build complete Web applications.

Yeast-Templates, JSON-Template

(http://code.google.com/p/json-template/) or JS-

Templates

(http://code.google.com/p/trimpath/wiki/JavaScriptT

emplates) are examples of such BST systems

In our opinion, BST deserves attention because it

is the most effective way to separate the model from

the view in Web applications. Although it doesn’t

appear so, BST has a lot to do with this concern. We

reached this conclusion in a previous work in which

we proposed the double-model approach [4], an

architectural modification of the MVC pattern. This

The double-model approach is based on the use

of a different and private model in both the view and

the business logic layers of the application. On one

hand, the view’s model, developed by the graphic

designers, which holds the data necessary for the

view rendering; and on the other hand, the applica-

tion’s model, which corresponds to the classical

model in MVC. Each layer can only use its model.

In particular, no access to the application’s model is

allowed from the view, this requirement being the

key for the separation achievement. A new compo-

nent called Transformer adapts both models taking

data from the application’s model and re-formatting

it as the view’s model mandates. The double model

approach is associated to the MVC+mT architecture:

application’s-Model, View, Controller, view’s-

model and Transformer [4].

Making each part of the application dependent

on its own model results in the protection of both

sides of the application from changes in the other,

which is the essence of the separation. Each part can

live isolated, being the Transformer, which can be

easily developed by the programmers, the only de-

pendent part.

We soon realized that the best way to implement

the double model approach was to use a different

technology in both the application server and the

browser. This would make any attempt of model

sharing impossible. BST naturally fits this schema,

by using JavaScript variables to implement the

view’s model and, by means of the transformers,

plugging it with any other technology supporting the

application’s model at the server side.

3 A DEEPER LOOK AT BST

BST templates are practically identical to any other

server side templates. A hosting HTML document

embeds data placeholders and processing instruc-

tions that are interpreted by the BST engine, which

replaces the placeholders by the actual data values.

Figure 1 shows a Yeast template in which the

HTML embeds the following BST code (Table 1

shows other BST samples):

<li yst="apply" ystSet="people">

$e.name$

This code wires bindings to view’s model data

declared in script blocks by the template designer.

Initially this model is populated with test values that

allow the template to be tested:

<script yst="model">

var people = [{name:'Fred Flintstone'},

 {name:'Barney Rubble'}];

...

</script>

When the template is processed, the following

output is produced:

Fred FlintstoneBarney

Rubble

To integrate the template into the final Web ap-

plication is extremely simple. The only action that

the application must perform is to replace the test

values of the view’s model in the template with actu-

al data taken from the application’s model. To do so,

the application data are first transformed into the

suitable JavaScript format imposed by the view’s

model. This task is performed by the Transformer,

which, continuing the example, and assuming that

the application’s model consists of an array of Per-

son objects having a name field, could be (using

some kind of pseudo-code):

out("var people = [");

for (i=0 to persons.length)

 out("{name:'"+persons[i].name+"'}");

out("];");

4 ANALYZING BST

That BST exploits the browser processing power is

only one of the interesting properties characterizing

BST. This section analyzes them in depth.

4.1 Designers - programmers independ-
ence

Due to its double-model conformance, BST provides

Web applications with effective model-view separa-

tion. Separation brings encapsulation, clarity and

reusability with it, but, in our opinion, the definitive

and pragmatic benefit it drives is the effective divi-

sion of labor between development teams, pro-

grammers and designers. Separation simplifies the

collaboration workflow solving a lot of interaction

issues between the teams [5], and reducing their

communication needs. This is especially true using

BST, because the double-model approach allows

designers to lead the graphic interface design, some-

thing that seems very logical but it is rarely en-

forced. By simply creating a set of templates, the

designers, the experts in aesthetics, impose the

view’s model, being the programmers, the pro-

gramming experts, responsible for providing and

maintaining the Transformers which adapt the appli-

cation’s model to it. The visual aspect of the tem-

plates may evolve while the project does, but the

view’s model does not need to change. Moreover,

the application’s model can be endlessly refactored,

but thanks to the transformers, in no case the chang-

es are propagated to the view. The view and the ap-

A Yeast Template Example

<html>

 <head>

 <script src="yst.js"></script>

 <script yst="model">

 people = [{name:'Fred Flintstone'},{name:'Barney Rubble'}];

 userName = "John";

 temperature = -2;

 </script>

 <style type="text/css">

 <!-- .grey {background-color: #DFDFDF;} -->

 </style>

 </head>

 <body>

 <p yst="value">Hello, $userName$</p>

 <p yst="if" ystTest="temperature<10">$userName$, you should wear your coat.</p>

 <li yst="apply" ystSet="people" class="$i%2!=0?'grey':''$">$e.name$

 </body>

</html>

Evaluate the value of the

expression between $.

Apply the element (<tr>) to each member of the

people array, evaluating the expresions between

$; e refers to each member of the array

View’s model

Template engine

Figure 1. Yeast template example showing its view's model. Yeast processing instructions are specified by a set of non-

standard HTML attributes inserted in the HTML elements (Yeast elements). The most important Yeast attribute is yst,

which specifies the type of processing that the element that carries it must undergo. There are eight possible values for

yst, covering evaluations (value), conditionals (if), iterations (apply), AJAX and sub-templates. Yeast expres-

sions are JavaScript expressions enclosed between a couple of $$ symbols. The example is explanatory enough, but

you can consult http://yeasttemplates.org/Doc.html for more details.

plication do not touch each other. They can be de-

veloped and maintained separately by different de-

velopment teams that always work in what they are

good at.

4.2 Rapid prototyping

Not only can the development teams work separate-

ly, but they can also work as they are used to doing

it. In our opinion, existing frameworks do not help to

properly manage designer-programmer interaction in

Web development projects, as they force them to

play roles that are not theirs. Clearly there are two

options for integrating the application look&feel in

the project. First, the designers just develop pure-

HTML prototypes, and then the programmers trans-

form them into templates. In our opinion this is not

the right way. Besides the waste of skilled pro-

gramming manpower, there is a high risk of desyn-

chronization between the templates and the original

prototypes. We definitely advocate for the second

option: designers should make the templates by

themselves. The problem now is that designers are

compelled to use development tools with which they

are unfamiliar. For example, in order to test their

designs, they depend on a connection to the server

where the application resides.

BST simplifies the template development, allow-

ing designers to get by on the tools they commonly

use: HTML and JavaScript. The template engine is

in the browser, the designers’ realm, so they can

even work disconnected from the applications server

View’s model <script language="javascript">
 var data = {
 customer: "John",
 products: [{ name: "iPhone", price: 499},
 { name: "Galaxy S", price: 500}]
 };
</script>

EJS

View <p>Hello <%= customer %></p>

<% for(var i=0; i<products.length; i++) {%>
 <%= products[i].name %> = <%= products[i].price %>
<% } %>

Processing target_div.innerHTML = new EJS({url: 'view.ejs'}).render(data);

Mustache

View var template = "<p>{{customer}}</p>"
+ " {{#products}}{{name}} = {{price}}{{/items}} "

Processing target_div.innerHTML = Mustache.to_html(template, data);

Mjt.Template

View <p>Hello $data.customer</p>

 <li mjt.for="product in data.products">
 $product.name + " = " + $product.price

Processing <body onload="mjt.run()" style="display:none">
 <!-- MJT code Here -->
</body>

Table 1. Examples of several BST systems (the code is equivalent and all share the same view’s model)

to evaluate their designs. Consequently, BST en-

courages the agile development of the view proto-

types, which can be integrated unmodified into the

final deliverable being promoted to the definitive

application views.

4.3 Performance improvements

Contrary to what might appear, the performance

benefits provided by BST are not based on the elim-

ination of the server-side processing. After all, the

server must transform the application’s model data

into the view’s model format, which can be a con-

siderable task, even though the resulting format is

more compact (only JavaScript values versus HTML

code). The response size reduction cannot be con-

sidered a relevant advantage either, because alt-

hough usually the size of the BST template may be

less than the expanded HTML, examples can be

found in which the size is larger due to the BST

boilerplate.

The definitive performance benefit is down to

the browser-side caching possibilities [2, 6], which

are orthogonal to and complement other caching

alternatives [7]. Most BST systems, e.g. EJS, Fly-

ingTemplates [6], allow the storage of the template

body (HTML with BST code) in String variables

that can be moved to separate JavaScript files, which

can be cached in the browser in the first template

load. Thus, the original template can be replaced by

a much more compact document containing the en-

gine, the view’s model data and, as body, a single

script tag that loads the file with the original tem-

plate body and triggers its processing. E.g. the fol-

lowing could be the skeleton of a cacheable version

of the Yeast template in Figure 1:

<html>

 <head>

 <script src="yst.js"></script>

Yeast Templates bechmarking

In benchmarking Yeast-Templates we considered a dy-

namic web page simulating the timeline of a Twitter user

(related material and more details about these tests can be

found in http://yeasttemplates.org/bench/). The page size

varies depending on the number of displayed tweets. We

considered 10, 40 and 80 tweets, comparing four imple-

mentations: JSP, Yeast, browser-side cacheable Yeast and

Accessible-Yeast (see Section 5). Experiments were run

using five identical Intel(R) Core(TM)2 Duo E8400 3 GHz

(2 Gb. RAM) computers, connected through a 100 Mb.

LAN. We used Apache JMeter 2.4 to measure the server

(Tomcat 6.0.26) throughput, configuring three slaves and

one master. Each slave invoked 20 simultaneous requests.

The transferred data is greatly reduced when Yeast is

used. E.g., for 10 tweets JSP size is 37.371 bytes, whereas

Yeast takes 10.383 bytes (3.476 when cached). Yeast im-

proves the throughput with respect to the JSP implementa-

tion by at least 98%, and even 138% if combined with

browser-side cache techniques (Figure 2). The throughput

decreases drastically when Yeast templates are processed

in the server due to the heavy computation that the time-

line template requires. Results are expected to be similar

for other BST systems, since the burden of the request

process is on the transformation from the application mod-

el to the view’s model, which is similar for every BST.

The previous tests were run assuming a template-body

cache hit of 100%, equivalent to downloading only the

skeleton of the template (see Section 4.3). This is only true

for frequently used templates but, due to the need to sepa-

rately download the body and the skeleton of the template,

browser caching techniques can be counterproductive for

less-used templates. Figure 3 depicts the effect of the tem-

plate-body cache hit ratio on the server throughput com-

pared to the JSP implementation. As expected, the

throughput decreases for lower cache hit ratios, but in this

experiment it is always greater than that of JSP.

Figure 2 Server throughput

Figure 3 Throughput for various cache hit ratios

 <script yst="model">

 people = ...

 </script>

 </head>

 <body>

 <script src="templ_body.js"></script>

 </body>

</html>

Where the content of the templ_body.js file is

the following:

body = '<p yst="value">Hello,$userName$

</p>...';

document.write(body);

This is the approach used in FlyingTemplates

[6]. The benchmarking section shows how the use of

a BST system as Yeast can improve server perfor-

mance compared to traditional technologies such as

JSP by up to 100%, or 120% if combined with

browser-side caching techniques. Similar results are

reported by other papers (see the related work sec-

tion.

4.4 BST drawbacks

BST drawbacks are related to the fact that the dy-

namic content of the final rendered template is not

part of the initial page content, but is generated with

the template JavaScript processing. Though in the

present AJAX-world it´s difficult to imagine the

Web without scripting, the use of JavaScript in Web

pages still causes controversy, above all when secu-

rity [8] or accessibility aspects are considered. De-

spite the fact that the latest available statistics show

that 95% of browsers have the use of JavaScript

enabled (w3schools.com), and that 89.52% of the

10000 top websites use JavaScript

(http://trends.builtwith.com-/docinfo/Javascript)

there exist other types of devices with limited Ja-

vaScript support (phones, assistive technologies,

search bots…). The unavoidable JavaScript based

processing model of BST has negative consequences

on the Web accessibility [9] and on the page seman-

tics.

4.4.1 BST is not accessible

The intensive use of JavaScript that characterize

BST does not conform to the Web Content Accessi-

bility Guidelines (WCAG), breaking the accessibil-

ity principle of “making resources accessible to all

users, regardless of the technical, physical or mental

restrictions on the client side” [9]. In BST, JavaS-

cript is not an enhancement but an essential ingredi-

ent. We cannot expect any kind of graceful degrada-

tion using a BST template in a browser without Ja-

vaScript. The page simply crashes, this constituting

a priority 1 violation of WCAG. Though WCAG 2.0

[10] and specifications such as WAI-ARIA [11] are

more “open-minded” than WCAG 1.0 in reference

to the use of technologies like JavaScript, criteria

imposed by the version 1.0 will prevail in the mid-

dle-term, since governmental regulations, inspired

mainly on WCAG 1.0, cannot be adapted immedi-

ately.

4.4.2 BST is not semantically crawlable

If accessibility is an important issue, this is an even

more devastating argument. When search robots,

which do not process JavaScript, reach BST docu-

ments they do not find the entire semantic payload

that the page must show to users. They only see a

mixture of HTML plus BST code that they don’t

know how to interpret, let alone index. The dynamic

content data, the view’s model, are confined inside

script blocks, usually ignored by Web crawlers. This

is a relevant factor, with direct economic impact.

Consider that much of the success of a company that

sells on Internet depends on its potential customers

finding its products using a search engine. The visi-

bility of the products will be negatively affected by

the use of BST

Unfortunately, both downsides are an insur-

mountable barrier that hinders the adoption of BST

systems to build complete Web applications and

apparently relegates them to be used in AJAX. We

cannot do anything to turn a BST page into an ac-

cessible and semantically crawlable document. But

we want to benefit from BST undeniable upsides

that speed up development and improve perfor-

mance. Our BST system, Yeast-Templates, solves

this seemingly intractable dilemma.

5 PROVIDING ACCESIBILITY

TO BST

The only way for a BST system to provide accessi-
ble content is to send the template processing back
to the server. Consequently, BST code is no longer
an impediment, simply because it is removed by the
server. Nevertheless, Yeast-Templates provides a
smart mode of work that makes that the server pro-
cesses the templates by default, but transparently, it
allows JavaScript-enabled clients to take advantage
of BST.

Related work on BST

In our opinion, the coverage of BST in the literature is only partial. To our knowledge, no work has covered in

depth all BST aspects treated in this paper. Though the first reference dates from 2003 [1], BST has not been for-

gotten by the literature. Recent references analyze the performance improvements resulting from the fact that the

browser not only processes the templates, but it can also cache them. Tatsubori and Suzumur [2] propose Flying-

Template, reporting server throughput increments ranging from 59% to 104%. Similarly, Benson et al. [3] present

Sync Kit toolkit, which even caches the view’s model in the browser using the HTML5 Web SQL Database. Nev-

ertheless, both papers forget to mention the accessibility issues discussed here.

Rabinovich et al. [1] is the only reference we know that considers the case of the client having JavaScript disa-

bled, proposing the server processing as a solution. Our proposal is more general since it does not need an explicit

link to the alternative version and detects the client capabilities without resorting to the User-agent header, which

doesn’t accurately inform about the client JavaScript capabilities.

None of the aforementioned papers dealt with the analysis of the separation between the model and the view in

Web applications, let alone with the contribution of BST to it. Model-view decoupling has been studied by Parr [4]

or Kojarski and Lorenz [5]. Parr formally analyzes this concern, proposing a set of rules for the achievement of

strict model-view separation. Kojarski and Lorenz differentiate between intra-crosscutting (tangled code) and inter-

crosscutting (code scattering).

References

[1] Rabinovich, M., Xiao, Z., Douglis, F., Kalmanek, C.: Moving edge-side includes to the real edge: the clients. In: USITS’03:

Proc. of the 4th Conf. on USENIX Symposium on Internet Technologies and Systems, Berkeley, CA, USA, USENIX Asso-

ciation (2003) 12–12

[2] Tatsubori, M., Suzumura, T.: HTML templates that fly: a template engine approach to automated offloading from server to

client. In: WWW ’09: Proc. of the 18th Int. Conf. on World Wide Web, New York, NY, USA, ACM (2009)

[3] Benson, E., Marcus, A., Karger, D., Madden, S.: Sync kit: a persistent client-side database caching toolkit for data intensive

websites. In: WWW ’10: Proc. of the 19th Int. conf. on World Wide Web, New York, NY, USA, ACM (2010) 121–130

[4] Parr, T.J.: Enforcing strict model-view separation in template engines. In: WWW ’04: Proc. of the 13th Int. conf. on World

Wide Web, New York, NY, USA, ACM (2004) 224–233

[5] Kojarski, S., Lorenz, D.H.: Domain driven web development with WebJinn. In: OOPSLA ’03: Companion of the 18th Annu-

al ACM SIGPLAN Conf. on Object-oriented Programming, Systems, Languages, and Applications, New York, NY, USA,

ACM (2003) 53–65

The question boils down to detecting the client’s

JavaScript processing capacity and, if it is disabled,

providing a version of the page without BST. In fact,

this is the spirit of the WCAG 1.0 checkpoint 6.3.

But Yeast-Templates goes a step further. Firstly, it

automates the generation of the alternative accessi-

ble version of the page, avoiding its desynchroniza-

tion during the maintenance. And secondly, it avoids

the need of an explicit link to the accessible version.

Although the idea seems simple, it's tricky to

implement. Our server-side BST infrastructure,

Yeast-Server API, must be extended with a compo-

nent that encapsulates a server-side JavaScript en-

gine responsible for the server processing of the

Yeast-Templates. We have implemented this com-

ponent, named Yeipee, using the Mozilla Rhino li-

brary, the only option available for Java, the plat-

form on which Yeast-Server runs. Other JavaScript

engines, such as Google's V8 or Mozilla's Spider-

Monkey are available for other BST systems. The

first obstacle in this development was that these en-

gines don't provide the infrastructure to process the

DOM of the templates, unlike browsers, which do

include this facility. Consequently, DOM manipula-

tion based BST systems cannot be processed on the

server. In our case, to avoid the DOM manipulation,

it was necessary to develop an alternative compil-

er/processor for Yeast-Templates.

Using Yeipee, Yeast templates are decomposed

into a set of fragments that may contain either raw

HTML or Yeast-Templates code. When a certain

template is needed, the Yeipee’s Rhino processor

loads and evaluates the actual view’s model data for

the response. Then Yeipee iterates over the template

fragments; if the fragment contains Yeast-Templates

code, the Rhino processor processes it with the pre-

viously evaluated model data, adding the result to

the overall resultant document; HTML fragments are

directly added to the response.

By removing the BST code, and returning only

HTML, Yeipee processors also remove all the ob-

stacles to accessibility. But, in turn, this processing

mode is perceptibly slower than the original (see the

benchmarking section) and incompatible with the

caching strategies that characterize BST. We are

losing the performance benefits that BST provides.

Fortunately, Yeast-Server needn’t always resort

to the Yeipee processing. We have devised a pro-

gressive enhancement mechanism in order to use

Yeipee processors transparently and only when it is

strictly necessary. By default, Yeast-Server process-

es templates using Yeipee. But the processed tem-

plate returned to the client now embeds a little script

used to detect if JavaScript is enabled. If this is the

case, in every request the browser attaches a parame-

ter (yst.yeipee=OFF) to disable the server

Yeipee processing. The script tries to set up a ses-

sion cookie to carry that parameter, but if cookies

are disabled, onClick and onSubmit event han-

dlers are registered respectively to the page links and

forms. When Yeast-Server detects that a certain re-

quest includes that parameter with that value it

changes its processing mode, omitting the Yeipee

processing and returning Yeast-Templates content.

If the user-agent isn’t JavaScript enabled then the

aforementioned enhancement script will not be exe-

cuted, the parameter won’t be included, and the re-

quest to the server will be processed with Yeipee.

Note that this is the case for Web crawlers which,

when accessing a Yeast-Templates page, will re-

trieve a server-side processed version of the page

with the complete semantic content.

To conclude, we want to emphasize that this

strategy delivers accessible content by default and its

application is transparent to the user and the devel-

opment teams, designers and application program-

mers. The overall result is that, without being penal-

ized with any extra task, developers keep taking

advantage of the BST development philosophy,

which gives them independence and agility in the

development, and applications continue to benefit

from BST performance improvements, relinquishing

to them only when it is unavoidable.

4 CONCLUSIONS

AJAX applications have traditionally used BST as a

tool for easily generating dynamic HTML fragments

with which to update page sections upon the receipt

of fresh data from the server. However, throughout

the paper, we have looked beyond AJAX, analyzing

the characteristics of BST to determine whether this

technology is applicable in general-purpose template

systems. We have found compelling advantages that

would recommend the adoption of BST: the double-

model conformance that speed up the development

process, and the provided performance improve-

ments, above all due to the caching possibilities of

this technology. But, we have also found a funda-

mental drawback related to the inaccessibility and

the loss of semantics in the delivered pages. The

main contribution of this paper is the proposition of

a smart technique to solve this problem without hav-

ing to relinquish the advantages of BST. Therefore,

our final conclusion is that BST constitutes a true

option to be used as core technology for template

systems, even when accessible applications must be

developed.

REFERENCES

[1] Parr, T.J.: Enforcing strict model-view separation in

template engines. In: WWW ’04: Proceedings of the

13th International Conference on World Wide Web,

New York, NY, USA, ACM (2004) 224–233

[2] Rabinovich, M., Xiao, Z., Douglis, F., Kalmanek, C.:

Moving edge-side includes to the real edge: the cli-

ents. In: USITS’03: Proceedings of the 4th confer-

ence on USENIX Symposium on Internet Technolo-

gies and Systems, Berkeley, CA, USA, USENIX As-

sociation (2003) 12–12

[3] Mahemoff, M.: Ajax Design Patterns. O’Reilly Me-

dia (2006)

[4] García-Izquierdo, F., Izquierdo, R., Juan Fuente, A.:

A double-model approach to achieve effective mod-

el-view separation in template based web applica-

tions. In: Web Engineering. Volume 4607 of Lecture

Notes in Computer Science. Springer Verlag (2007)

442–456

[5] Böttger, H., Møller, A., Schwartzbach, M.I.: Con-

tracts for cooperation between web service pro-

grammers and HTML designers. Journal of Web En-

gineering 5 (2003)

[6] Tatsubori, M., Suzumura, T.: HTML templates that

fly: a template engine approach to automated of-

floading from server to client. In: WWW ’09: Pro-

ceedings of the 18th International Conference on

World Wide Web, New York, NY, USA, ACM

(2009)

[7] Ravi, J., Yu, Z., Shi, W.: A survey on dynamic web

content generation and delivery techniques. Journal

of Network and Computer Applications 32(5) (2009)

943 – 960 Next Generation Content Networks.

[8] Yue, C., Wang, H.: Characterizing insecure JavaS-

cript practices on the web. In: 18th International

World Wide Web Conference. (April 2009) 961–961

[9] Kern, W.: Web 2.0 - End of accessibility? – Analysis

of most common problems with Web 2.0 based ap-

plications regarding Web accessibility. International

Journal of Public Information Systems 2008:2

(2008) 131–154

[10] Ribera, M., Porras, M., Boldu, M., Termens, M.,

Sule, A., Paris, P.: Web content accessibility guide-

lines 2.0: A further step towards accessible digital in-

formation. Program: electronic library and infor-

mation systems 43(4) (2009) 392–406

[11] Gibson, B.: Enabling an accessible Web 2.0. In:

W4A ’07: Proceedings of the 2007 International

Cross-Disciplinary Conference on Web Accessibility

(W4A), New York, NY, USA, ACM (2007) 1–6

Short author biographies

Francisco J. García-Izquierdo is an assistant pro-

fessor at the Universidad de La Rioja, Spain. Cur-

rently his research interests include web engineering,

web accessibility, modeling theories, and computer

science teaching. He has a PhD in computer science

from the University of Zaragoza. Contact him at

francisco.garcia@unirioja.es.

Raúl Izquierdo is an assistant professor at the Uni-

versidad de Oviedo, Spain. His research interests

include web engineering, interaction design, web

usability and compiler construction. Izquierdo has a

PhD in computer science from the University of

Oviedo. Contact him at raul@uniovi.es.

Complete contact information

Francisco J. García-Izquierdo

Mailing address:

Edificio Vives

C/ Luis de Ulloa, s.n.

Universidad de La Rioja.

26004-Logroño. Spain.

Phone/Fax: (+34) 941 299 260 / (+34) 941 299 460

Email: francisco.garcia@unirioja.es

Raúl Izquierdo

Mailing address:

Facultad de Ciencias.

C\ Calvo Sotelo s/n.

Despacho 238

Universidad de Oviedo.

33007-Oviedo. Spain

Phone/Fax: (+34) 985 103 172/ (+34) 985 103 175

Email: raul@uniovi.es

View publication statsView publication stats

https://www.researchgate.net/publication/224242295

