Using the Time Petri Net formalism for
specification, validation and code generation in
robot control applications

Luis Montano!, Francisco José Garcia* and José Luis Villarroel®

I CPS, Universidad de Zaragoza
Dpto. de Informadtica e Ingenieria de Sistemas
C/ Maria de Luna 3, 50015 Zaragoza, Spain
{montano,jlvillarroel} @posta.unizar.es

* Universidad de La Rioja
Dpto. Matemdticas y Computacion
C/ Luis de Ulloa s.n., 26004 Logrofio, Spain
fgarcia@siur.unirioja.es

September 2, 1999

Abstract

The main objective of this paper is to show the advantages of using
the Time Petri Net formalism for specification, validation and code gener-
ation in robot control applications. To achieve this objective we consider
as application the development of a control system for a mobile robot with
a rotating rangefinder laser sensor with two degrees of freedom to be used
in navigation tasks with obstacle avoidance. It is shown how the use of
the Time Petri Net formalism in the whole development cycle can fulfil
the reliability requirement of real-time systems, make the system develop-

ment easy and quick, strongly reduce the time for testing and the tuning

phase and, therefore, reduce the development cost significantly. It allows
verification of functional and temporal requirements, error detection in
the early stages of the development cycle and automatic code generation
avoiding coding mistakes. Experimental tests show that the theoretical
results obtained from the analysis of formal system models match the
real-time behaviour of the robotic system.

Keywords: Time Petri Nets, Real Time, Software Life Cycle, Mobile

Robots, Navigation.

1 Introduction

Most of the papers concerned with mobile robot navigation present methods
or techniques for controlling the robot motion or for integrating sensorial in-
formation, but do not explicitly consider either the real-time implementation
aspects, or any methodologies to model and develop such a complex control
system. Those systems are concurrent by nature, because there are different
tasks to be performed simultaneously: robot control, image processing, data
from rangefinder processing, decision making, planning, etc. Moreover, to prop-
erly and safely operate a mobile robot in a working environment they must fulfil
a set of timing requirements: bounded response times to external events as col-
lision or remote obstacle detection, maintain an adequate control sample period
suitable for the robot velocity, guarantee the recency of environment information
obtained from sensors, implement communication time-outs for fault detection,

etc. Mobile robots can be classified as complex hard real-time systems.

The difficulty in analysing and building up real-time systems is well-known.
Moreover, in many real-time systems both software and hardware reliability
are critical aspects owing to the possible catastrophic effects that a failure can
produce. The use of formal methods in the whole development cycle can fulfil
the mentioned reliability requirement, since these kinds of methods can allow
the verification of functional and temporal requirements. Moreover, the use of
an automatic tool in the coding phase of the life cycle will prevent us from
making coding mistakes, it will simplify the development of the system and,
therefore, reduce its cost significantly.

Not many papers in robotics have dealt with the problem of using a formal
methodology to develop complex control systems considering real-time aspects.
In (Hu, Brady, Du and Probert 1995) a distributed real-time architecture for
controlling a mobile robot is presented. In it, attention is focused on maximising
the amount of parallel information flow from sensing to action. However, they
do not use a formalism to model, implement and validate the control system
developed. In (Caloini, Magnani and Pezze 1998) Petri nets augmented with
Building Blocks, called Control Nets, are used in the design phase of robotic
control systems. The aim, is to propose the Control Nets and an associate
methodology to asses the design phase of the system life cycle. Aspects, related
to the implementation phase, as real time analysis and planification or code
generation are not treated in this work. Petri nets are also used in (Oliveira,
Pascoal, Silva and Silvestre 1998) as a formal language to describe the control

structure of the mission control software of a autonomous underwater vehicle.

From this description an automated code generation is performed. However, any
real time aspect are considered in this work. In (Coste-Maniére and Turro 1997)
a programming language for robotic systems is presented; it is based on the
use of proper formal methods for the development. The approach allows both,
logical and temporal analysis of the specification. The system also allows logical
and dynamic validation by means of simulations, and generates an executable
program. It is connected to an environment for programming robotic systems
described in more detail in (Simon, Espiau, Kapellos and Pissard-Gibollet 1997)
which allows the users to develop, validate and encode robotic applications. In
this system, the robot control software is seen as a hybrid system, composed of
the continuous-time part and the discrete event controller.

In this paper we also consider a robotic system as a hybrid system and,
differently from other referenced papers, we propose the use of an existent for-
malism, Petri Nets, for the whole cycle of life of a robotic control system, from
specification to automatic code generation. Using such a formalism we can take
advantage of all the theory and tools developed around it, making the whole
development easier.

It is features like the possibility of modelling concurrency, resource sharing,
synchronisations, etc. that have made Petri Nets so widely used for modelling
and analysing discrete event systems. Petri Nets have a strong mathematical
foundation which allows the validation and verification of a wide set of correct-
ness and liveness properties. In this paper we assume that the reader knows

the basic concepts of Petri Nets (see Murata’s work (Murata 1989) for a sur-

vey). However, classical Petri Nets are not suitable either for the modelling or
the analysis of real-time systems, owing to the impossibility of including time
features and constraints in the model. To avoid these problems many authors
have proposed extensions which add time characteristics to the basic Petri Nets.
There are two main ways to incorporate time to Petri Nets: associating a de-
lay (from the enabling instant) with the instantaneous firing of a transition or
associating a duration with the firing. The first of the extensions, Timed Petri
Nets (Ramachandani 1974), considers a deterministic and fixed duration asso-
ciated with each transition in the net. From the modelling point of view, it can
be seen as the duration of some activity. This kind of net does not consider
the fact that the duration of some tasks in real-time systems is not fixed, and
that, depending on the system or environment state, it takes different values.
One way of modelling this feature is to associate a duration (or delay) which
obeys some probabilistic distribution. This leads to the Stochastic Petri Nets
and Generalized Stochastic Petri Nets. These nets have been commonly used
for performance evaluation, analysis of parameters such as throughput, service
time, number of tasks in the system, etc. All of them are mean values of the
parameters.

Nevertheless, an stochastic treatment for a real-time system is highly inadvis-
able since it is impossible to guarantee absolute time properties. To avoid these
problems Time Petri Nets (Merlin and Faber 1976) (Berthomieu and Diaz 1991)
were proposed. In Time Petri Nets, an interval specifying an upper and a lower

bound for the firing delay is associated with each transition. In this case, the

enabling of a transition can model the start of an activity, and the firing, the
end of the activity. This approach is more general than Timed Petri Nets, since
these can be modelled using a Time Petri Net, but the opposite is not true.
The bounds associated with a transition can be used to verify time properties
and constraints. Time Petri Nets were initially defined by Merlin and Faber
(Merlin and Faber 1976) and other authors have proposed different ways to in-
tegrate temporal intervals in Petri Nets: Place/Transition Nets with Timed Arcs
(Hanisch 1993); High-Level Timed Petri Nets (Felder, Ghezzi and Pezze 1993);
Interval Timed Coloured Petri Nets (Aalst 1993). The latter considers tokens of
different colours (representing different kinds of resources, tasks, ...) and with
an associated timestamp (time when the token was generated) which is consid-
ered while studying the enabling of the transitions. Considering only temporal
aspects, we have chosen Time Petri Nets (hereafter TPN) because their expres-
sive power is equal to or greater than the rest of the extensions of Petri Nets
and because, from our point of view, they are more intuitive and suitable for
the specification of the systems which are the object of our study.

TPNs are useful in order to develop reliable real-time software because they
enable modelling timeouts, periodical activities, synchronizations and concur-
rency. We propose the use of the TPN formalism throughout the whole life
cycle. It will allow the detection of bad properties and malfunctions in the
early stages of the cycle. The use of the TPN formalism also allows us not to
restrict the structure of systems in order to analyze their temporal constraints.

In this sense, the design flexibility is increased with respect to the use of classi-

cal analytic techniques such as Rate or Deadline Monotonic Analysis. In these
approaches, for example, in order to allow the analysis, the communications
between the periodical tasks must take place through an intermediate server
with no guarded entry. The use of TPNs for the analysis of real-time systems
eliminates this kind of restrictions.

In this paper we apply these ideas to develop a robot control system; this
robot is composed of a mobile platform and several sensors that get informa-
tion from the environment. More precisely, a 3D laser rangefinder is used in
the experiment to illustrate the proposed techniques. In that system several
processes run in concurrently. We propose the use of TPNs in the whole life
cycle of the system. Petri Nets based techniques has been used very often in
specification, analysis and design (see for example the previously cited papers
(Caloini et al. 1998) or (Oliveira et al. 1998) in the robotics field). However,
the present paper is mainly devoted to the implementation stages, including the
real-time analysis, planification and code generation.

In relation to robotic aspects, we use a potential field technique (Khatib
1986), applied to a non holonomous robot so that the trajectories and motions
generated by the controller are compatible with the kinematic and dynamical
constraints of the robot. The robot trajectories are smooth when the nominal
trajectory is corrected to avoid an obstacle whose location is not known a pri-
ori. For this, a motion generator based on a dynamic model of the robot and
techniques to treat the information obtained from the sensors to avoid obstacles

in real-time have been developed (Montano and Asensio 1997).

This paper is structured as follows. Section 2 presents the Time Petri Net
formalism and how it can be used to model software real-time systems. The
mobile robot application developed in this paper is stated in section 3. Next, in
section 4, the robotic system is modelled by a Time Petri Net. Based on this
model, a qualitative and timing analysis is performed to guarantee the accom-
plishment of real-time constraints in execution. Section 5 shows techniques for
automatic code generation from Time Petri Net formal models and their appli-
cation to the implementation of the robotic system. In section 6 the operation
of the developed system and the validity of results of theoretical analysis are
examined by means of a real experiment. Finally, the conclusions are presented

in section 7.

2 The Time Petri Net formalism

A Time Petri Net (Berthomieu and Diaz 1991) is a tuple (P, T, B, F, M,, SIM),
where P is a finite nonempty set of places p;; T is a finite nonempty set of
transitions ¢;; B is the backward incidence function B : T' x P — IN; F is the
forward incidence function F' : PCT — IN; M, is the Initial Marking function
M, : P x N, (P,T, B, F,M,) defines a Petri Net, the underlying Petri Net;
and SIM is the mapping called static interval SIM : T — Q" x (Q" U o0),
where Q" is the set of positive rational numbers. So, we can see TPNs as Petri
Nets with labels: two time values (a;,3;) associated to transitions. The first

time value represents the static Earliest Firing Time (static EFT), the minimum

time starting from ¢ (time at which transition ¢; is enabled) that a transition
has to wait until it can be fired, and the second is the static Latest Firing Time
(static LFT), the maximum time that a transition can be enabled without firing.
Assuming that transition #; was enabled at time ¢, and is being continuously
enabled, these two time values allow the calculation of a firing interval for each
transition ¢; in the Net. The firing of ¢; must occur in the interval (¢4 a;,t+5;).
Once the transition is to be fired, the firing is instantaneous. Unfortunately,
there are still few results applicable to TPNs. Most of the existing approaches
of analysis of TPNs use enumerative methods which involve the computation of
the reachability graph (see (Berthomieu and Diaz 1991) and (Popova 1991)). A
problem of these approaches is the state explosion problem: the state space of
a TPN can be quite large, even for relatively small models. In order to make
reachability analysis practical, some techniques, such as reduction rules (Sloan
and Buy 1996) have been developed. However, a large amount of effort must
still be made in this field.

TPNs have a time interpretation that associates a delay with transitions.
The opposite interpretation that associates a duration (non instantaneous, three
phase firing as Timed Petri Nets (Ramachandani 1974)) instead a delay can be
simulated by the TPN model. In addition, the duration interpretation does
not allow to model activities that can be interrupted (e.g., due to a time-out
expiring), because this contradict the model semantics.

We use (Garcia and Villarroel 1996) TPNs to model systems consisting of

a set of concurrent activities with temporal constraints, i.e. real-time systems.

We can model periodic or aperiodic processes which communicate with each
other. For example, in figure 1 we can see a TPN model of a periodic process
that executes a piece of code and communicates with another process. This
communication has an associated time-out. Three elements in figure 1 have
been highlighted (a piece of Ada code with the same behaviour of the TPN

model is provided for a better understanding of the model):

e Box B shows an action, i.e. code, to be executed by the process. The exe-
cution starts when the input place becomes marked. The execution must
finish at a time between (60, 75), i.e. the computation time of the code is
between (60, 75) time units. When the execution ends, the transition is

fired.

e Box A models the periodic activation of the process. Every 100 time units

the transition fires and promotes the execution of the process.

e Box C shows a time-out in a communication with another process. Let
us suppose that the place on top of box C is marked at time ¢. If the
transition labelled with entry_A does not fire (starts the communication)
before ¢t + 10 (expiration time of the time-out), then transition (10, 10) will

fire, aborting the start of the communication.

Transitions in Merlin’s model are all of the same type. They all have the
same functionality. But in a real-time system there are different situations that
are suitable for being modelled as a transition. In order to highlight the different

roles that a transition can play and with the aim of implementing the model, in

10

r (100, 100)
(o) o7

loop
CODE; -- Box B
select
Process_B.entry_A; -— Box C
or
delay 10.0;
end select;
delay until Next; -- Box A
Next := Next + 100.0;
end loop;

Figure 1: Example of TPN model

our models we distinguish three kinds of transitions:

1. CODE-Transitions (CODE-T). One of these transitions, together with its
input place, represents the code associated to one activity. This activity
starts its execution when the transition gets enabled. These transitions
are tagged with two time values («, 3), in the TPN fashion. In the model,

the meaning of these time values is associated with the computation time

11

of the activity. At best, the code computation will have finished at time
«, and at worst, the computation will last 3. Thus, the computation takes
a time between (a,3). The termination is represented by the transition

firing. We draw a CODE-T as a thick segment.

2. TIME-Transitions (TIME-T) are transitions with an associated time event,
e.g. a time-out or the next periodical activation of a process. These tran-
sitions also have time information associated, described with an interval
(o,), where a represents the event time. The firing of this kind of tran-
sition represents the occurrence of the event, which causes control actions
to take place on the system. If a time-out related to an action occurs,
the action must be aborted and the resources used by it released. If a
periodic activation event occurs, the related periodic process must start

its execution again. We draw a TIME-T as an empty thick segment.

3. SYCO-Transitions (SYCO-T) are transitions with no temporal meaning.
They are used to perform synchronizations (SY) and control (CO) tasks.
The firing of a transition of this kind leads to plain state changes or syn-

chronizations among activities. We draw a SYCO-T as a thin segment.

3 Problem statement

In this paper we will show how a design based on TPNs can make it easy to
analyze and to implement a control system for a mobile robot in which several

processes related to the motion control and the sensorial systems may be in

12

concurrency. To focus on this problem, we consider a mobile robot with a
rotating rangefinder laser sensor with two degrees of freedom to be used in
navigation tasks with obstacle avoidance. The laser information allows us to
modify the nominal trajectory while the robot moves near an obstacle. Several

processes are involved:

e the robot control process, which controls the robot motion and is periodic.

e the laser process, which provides proximity information used by the robot

control process to avoid the obstacles. This process is also periodic.

e the supervisory process, which supervises the whole robotic tasks to detect
if a goal or subgoal in the trajectory is reached, updates the current goal

point and manage the system alarms. This process is not periodic.

Considering the laser process, the locations of sensed points are corrected
taking into account the motion of the robot while the rotating sensor gathers
the points. In this way, all the points of a sensor lap are referred to the same
time, the time corresponding to the last point sensed in the lap. As the sensor
makes a complete 3D scan of the scene in ten laps, the system must integrate
the points of the ten last laps in each control sample period in order to have
a complete updated information about the obstacles. This integration task is
performed by the control process using the most recently updated sensed points.

The real-time constraints of the system are the following. The control loop
has a sample period which will be established at the analysis phase. However,

owing to the time constraints of the robot’s internal control system, this sample

13

period must be greater than 0.18 seconds. The communications between the
robot and the controller have defined time-outs: 0.1 sec. in position reading and
0.1 sec. in setpoint sending. At this point of the application development, only
alarms related to the communication time-outs have been taken into account.
The firing of a communication time-out must stop the system within 0.1 sec.
The 3D laser sends a new scan every 100 ms. The controller must be capable of
accepting and processing the sensor data at this rate. The communication with
the laser has a 0.2 s time-out.

In the following subsections we describe briefly the robotic aspects of the
problem: the technique used to control the motion and to avoid obstacles, and

the correction and integration techniques for the sensed points.

3.1 Motion Generation

The technique proposed to navigate in a partially known environment is based
on artificial potential field techniques (Khatib 1986). The robot moves in a field
of forces: it is subjected to an attractive force from the goal, and to repulsive
forces from the walls and obstacles found during the motion.

To implement the method, we have developed a virtual controller in which
linear and angular velocities are the setpoints in each sampling period. This
allows the method to be independent from a particular robot, being needed only
to develop a robot velocity controller for each particular robot (Crowley 1995).

All the forces acting on the robot are considered to be applied on one point

located in the middle of the robot front. The controller computes the resultant

14

ODOMETRY
(.Y)

god MOTION . o)
™| GENERATOR ROBOT

{@,0)}
LASER

Figure 2: Control scheme for navigation.

force F applied on that point from the attractive and repulsive forces. The
latter are calculated using the information provided by the laser sensor about
the obstacles which appear in the robot environment. We model the system
as a real mobile robot and thus, the robot motion is computed from a robot
dynamic model.

Considering the constraints due to the contact wheels-floor and applying the
theorems of the dynamics, we reach a differential state equation for the system,
whose parameters are a function of the geometric and dynamic parameters of
the robot model. From the dynamic equations we obtain a discrete time model
used as a motion generator for the robot. For more details see (Montano and
Asensio 1997).

In figure 2 we represent the general control scheme. The motion generator
computes each period the velocity commands (linear and angular) taking into
account the information provided by odometry and the laser sensor. The laser
information is processed to compute the points belonging to the environment
and to the obstacles and thus, modifying the motion computed in the previous

period.

15

3.2 Real-time obstacle avoidance

From the model explained above, we only need to compute one force applied on
the frontal point of the robot to calculate uy = (Fsinf, Fcosf)T, being F the
force module and 0 the force angle with respect to a reference system associated
to the robot. If there are no obstacles, a pure attractive force will act from the
goal point. If there are obstacles or walls, the force will be computed as the
resultant from the attractive force and the repulsive forces which act from the
obstacles and walls around the robot.

The laser sensor can provide many points from the detected obstacles. To
avoid a long time repulsive force computation we choose only a few significant
points. The robot environment is sectored in angles (see Figure 3), and for
each sector the nearest sensed point is selected. The selected point is used to
represent the whole sector. So, the repulsive force for the sector is computed as

the repulsive force for the unique selected point.

3.3 Real-time implementation

Laser information is updated every 100 ms. with the arrival of the data be-
longing to a lap. In order to compute the repulsive resultant force, the system
integrates the last 10 scans (corresponding to a complete sweep) taking into

account the robot movements, using the following method:

e In each lap, the points belonging to the sectors are selected as explained
in section 3.2. The location of each of these points is corrected taking

into account the robot velocity during the sample time in which they were

16

Figure 3: Sectors chosen for the experiments. The laser cannot scan in the shadow

zone at the rear of the robot.

gathered, and considering that the reference time is the time corresponding

to the last point in the lap.

e In each robot control period T, the location of the selected points of these
last 10 laps is transformed into the current robot location, taking into
account the robot linear and angular velocities for each sensor lap. These

velocities depend on the sample period in which the scan was made.

17

4 Modelling and analysis of the robot naviga-

tion task

This paper focuses on the use of Time Petri Nets in the development of real
time systems. However, the proposed techniques are independent of the design
methodology. There is considerable work in the literature dealing with the in-
tegration of Petri Net formalisms and modelling methodologies, see for example
(Giovanni 1990) and (Muro, Banares and Villarroel 1998) for the use of Petri
Nets in object oriented methodologies. Thus, we will build the TPN model of
the system directly, to highlight the net model characteristics without assuming

any modelling methodologies.

4.1 Modelling the system

In section 3 it has been established that robot control systems have three main
processes: the robot control process, the laser process and the supervisory
process. The first step in the modelling will be to build a subnet for each

process and then, the intercommunication mechanisms will be established.

1. Control process. The period T' of the robot control process is not fixed,
it must be as small as possible and will be established in the real-time

analysis phase. Each period, the following control loop must be executed:

(a) Read Location. The control process communicates with the robot
to obtain the current location. All communications with the robot

involve a protocol on a RS-232 serial line.

18

(b) Scans Integration. The control process integrates the points of the
last ten laps in each control sample period to have complete updated

information about the obstacles (see section 3.3).

(c) Compute Setpoint. Based on the current location, the points detected
by the laser and the current goal, the action to be sent to the robot

is computed by a potential field technique (see section 3.2).

(d) Send Setpoint. The control process communicates with the robot to
send the new velocity setpoint (the action, from the control point of

view).

To integrate the points detected by the laser, the corrected scans must be
accessed. This information is also accessed by the laser process in order
to update it. Thus, the mutual exclusion in accessing the scans must be
guaranteed. The current goal is shared by the robot control process and
the supervisory process. When the current location is obtained from the
robot, a protected global variable, shared by all processes, is updated.
That is, following Read Location the activity Store State is executed. A
possible blocking of the control process caused by loss of communication
with the robot can be avoided assigning time-outs (0.1 s, see section 3) to

Read Location and Send Setpoint activities.

. Supervisory process. The supervisory process is not activated by a timed
periodic event; it must be executed each time that a new location comes

from the robot. The activities of the supervisory process are:

19

(a) Store Goal. Updates the goal to be used by the controller.

(b) Trace Location. Stores the current state of the robot in the file sys-
tem. In order to do this, the shared variable State must be accessed.
Thus, the Supervisor Read State activity is executed before creating

a local copy of the current state.

(c) Goal Test. Tests if a goal or subgoal in the trajectory is reached by
the robot. If a subgoal is reached, a new subgoal must be established

in the system. If the final goal is reached the robot must be stopped.

(d) Alarm. Executes a code of alarm treatment if an alarm event comes
from the control or laser processes. It is not considered a possible

error recovery from an alarm and the system is stopped.

3. Laser process. Finally, the laser process is not activated by a periodic
event either. However, it is executed when a scan comes from the laser
and the scans have a periodic timing pattern. Thus, the laser process

behaves as a periodic process. Its activities are:

(a) Read Scan. Reads a scan from the laser. This communication activity

is protected from blocking by a time-out (0.1 s, see section 3).

(b) Correct Scan. Computes the time correction of the points of a scan.

This activity accesses robot state and scans shared variables.

Figure 4 shows the Time Petri Net that specifies the full real-time robot
control system (time information has been removed for clarity), in which the

three processes are highlighted. The next step in the modelling is to establish the

20

communication and synchronizations between processes. The following aspects

must be considered to establish communication between the processes:

The shared variables must be protected from concurrent access. A mono-
marked place which prevents the concurrency in accessing primitives,

State, Scans and Goal, is assigned to each variable.

The arrival of a new robot location to the control system must be signalled
to the supervisory processes. This is carried out by means of a binary

semaphore, the place CC4, from the control to the supervisory process.

Each time that a time-out is completed, an alarm signal must be sent to

the supervisory process. This is carried out by semaphores CC3 and LC2.

When an alarm signal is processed by the supervisor, all system processes
must be stopped. In this way, a signal is sent to any active process and
then, the supervisor ends. This signalling is implemented by places CC1 to
stop the periodical activation of control, CC2 to stop the control process

and LC1 to stop the laser process.

When the supervisor detects that the robot has reached the final goal of
the trajectory, it sends stop signals to the rest of the processes of the
system. This signals are implemented by places CC1 to stop the periodical
activation of control and LC1 to stop the laser process as in the previous
point. However the stopping of the control process is carried out by place
CC5 because a final movement must be accomplished to reach the goal

effectively before of robot stops.

21

CONTROL PROCESS

SUPERVISORY PROCESS
LASER PROCESS

Control
Start Period

Supervisor
Goa AC

A,,.

| Supervisor L aser Alarm,
State AC cumrol

Iarm

(Trace
Locatio

A

Figure 4: Time Petri Net which models the mobile robot application. Time Petri
Nets which model: the supervisor process, the robot control process, the laser process

and synchronizations between processes.

To complete the model, it is necessary to include the best and worst case
computation times for code transitions. These computation times have been
measured directly by executing the associated pieces of code on the target plat-
form (a SPARC CPU-5V running SOLARIS in Real-Time Mode). The TPN

model (figure 4) can be used directly to code generation. However, to carry

22

out the time analysis of the execution in a monoprocessor architecture, some
changes must be made.

Obviously, the modelling stage must be assisted by the appropriated CASE
tools and methodologies, for example based on building blocks as in (Caloini
et al. 1998) or based on a hierarchical object oriented approach as in (Giovanni
1990). The present paper is mainly devoted to the implementation stages, in-
cluding the real-time analysis, planification and code generation. In this sense,
the TPN result of the modelling phase that can be of a large size and in some

cases unintelligible, will be the input of automatic or semiautomatic techniques.

4.2 Planification and real time analysis

The final aim is to generate Ada95 concurrent code for a monoprocessor ar-
chitecture. The real time execution of an Ada code is controlled by priorities
(static or dynamic). In this sense, the main objective of the planification and
real-time analysis phase is to determine a priority assignment (or a strategy for
dynamic priority assignments) that guarantees the accomplishment of the real
time constraints of the system.

Most research work on scheduling and Petri Nets has been focused, mainly,
on the static planification of Timed Petri Net models, see for example (Carlier
and Chretienne 1988) or (Bruno, Castella, Macario and Pescarmona 1992). It
is not an objective of this paper to present a planification technique based on
priority assignments. It is still under study. However, we have used a heuristic

method based on the Rate Monotonic Scheduling (RMS). From the problem

23

stated in section 3 there are two periodic processes (the robot control and the
laser process) and a sporadic process (the supervisor). The period of the robot
control process is a design variable, but greater than the laser period because
of the computation time of the code that must be executed. From the RMS
point of view, the transitions involved in the laser process will have a priority
greater than the transitions of the robot control process. In order to minimize
the response time of supervision decisions, the supervisor process will have the
maximum system priority. The next step of the planification phase is to analyze
the behaviour of the Time Petri Net model with the assigned priorities executed
in a monoprocessor architecture to verify the real time restrictions.

The analysis methods for Petri Nets extended with time are based mainly on
enumerative techniques related to reachability analysis methods for usual Petri
Nets. For example, in (Carlier and Chretienne 1988) the Earliest State Graph
is presented in order to analyze Timed Petri Net schedules. The building of the
state Graph of a Time Petri Net is more complicated because the firing intervals
increase the number of states (infinite with dense time). This problem can be
solved by means of time discretization as in (Popova 1991) or by means of state
class definition as in (Berthomieu and Diaz 1991).

In our robotic application there are two kinds of activities:

1. Activities with fixed computation time, which can be modelled by a code
transition which has the same EFT and LFT, [¢,¢t]. In this sense, the
algorithms involved in our robotic application has been forced to have a

fixed computation time.

24

2. Activities which involve external communication. If there are no problems
in the communication, it takes a fixed time, otherwise the communication
is blocked. These activities are modelled by a transition with an infinite

LFT: [t,00)

This characteristic allows us to avoid the difficulty of analyzing a Petri Net
model with firing intervals. The model can be split into several models with
fixed firing delays, a main model which does not consider bad communications
and a model for each possible communication time out (see, figure 5). Thus, an
automatic state graph builder for models with fixed firing delays has been devel-
oped for the analysis of the application. This analysis consists in the separate
analysis of each model generated by splitting the original model with intervals. If
a property or requisite is accomplished in all analysis models, it is accomplished
in the original one also. The graph builder, which works on textual specification
of the TPNs, considers static priority assignments to transitions, the preemptive
behaviour of the Ada95 kernel and also the monoprocessor architecture.

[[t,)

2N

Figure 5: An activity with fixed computation time but which can be blocked and is

protected by a time-out can be split in two test cases with a fixed firing delay

To build the state graph of the system, the firing rules of TPNs have been

25

updated with the behavioural rules of a preemptive kernel with static priorities.
The fundamental rule is that the code ready for execution with greater priority
gains the processor. From the TPN point of view, this means that only the code
represented by the enabled transition with higher priority is running. It can be
represented by a clock associated to each CODE-T. This clock advance only if
the underlying code is running in the processor. When a transition with greater
priority becomes enabled, a preemtion is performed, the clock of the running
transition is stopped and the clock of the new transition is started. When a
transition regains the processor its clock continues at the same instant of the
stop. TIME-T and SYCO-T can be viewed as kernel control actions, thus their
execution is immediate at the highest priority.

Each time a transition is fired or a preemtion is performed, the system enters
in a new state and thus a new node is generated in the state graph. The main
information attached to each node are the marking and the clocks associated
with enabled transitions.

To carry out the real-time analysis of the system, some modifications have

been made in the model. Mainly:

e A periodical activator has been added to the laser process. It models the

periodical arrival of a laser scan and makes the model autonomous.

e An implicit place has been added to both periodical processes. This place
is marked when the periodical activity starts and demarked when the

activity ends.

26

One objective of the analysis process is to find the lower bound of the robot
control period. To achieve this objective, the state graph builder has been
programmed to detect states with no binary places and with specified pairs of
places simultaneously marked. The existence of a non binary place means that
there exists in the system an event which cannot be processed at the required
rate, thus the representative tokens are accumulated in a place. On the other
hand, the simultaneous marking of an activity place and the corresponding
activation place means that the periodical activity has not finished before the
next activation starts, that is, the deadline is not met.

The system has been analyzed iterating over the control period with a step
of 10 ms. Following this methodology, it has been established that, for the
imposed priority assignment, 0.2 seconds is the minimum period that makes
that the deadlines are met. Based on this result, the control period will be 0.25

seconds.

5 Implementation of the application

Once a model of the system has been obtained, a model which meets all the
functional and temporal requirements, and even considers the constraints of
the actual implementation platform, is necessary to generate the implemen-
tation. If a software implementation of a system is a program that satisfies
every functional requirement of the system, with reference to Petri Nets, an

implementation is a program which simulates the firing of the net transitions,

27

observing the marking evolution rules. We have performed an automatic code
generation using adaptations of classical Petri Net implementation techniques,
which consider the addition of time information to the net transitions. As for
classical implementation techniques (Colom, Silva and Villarroel 1986), we can
distinguish between centralized and decentralized techniques. The former use a
single coordinator process responsible for the control and evolution of the net.
The latter split the control between several sequential processes, each one im-
plementing a subnet extracted from the original net. Ada 95 is used as target

language for the implementation.

5.1 Centralized implementation

The special features of centralized implementations make them especially suit-
able for the system prototyping. One process encapsulates the whole state of
the system and performs all control actions making the system debugging eas-
ier. In this sense, we will describe the centralized implementation technique for
the prototyping stage of the development of the mobile robot application. This
technique was the object of study in (Garcia and Villarroel 1996). As in any
centralized implementation, the operational and control parts of the system are
separated. This is a direct consequence of the architecture of the centralized
implementations which considers two types of processes (hereinafter we will talk

about Ada-tasks when we refer to a process):

e Each unit {place + CODE-Transition}, which represents each code exe-

cution of the net, will be implemented as an Ada-task, called CODE task.

28

In this way, we maintain the concurrency of the model in the implementa-
tion. Each CODE task will execute the code associated to the unit. These

codes must be developed separately, and later linked together.

e Control and timing supervision will be performed by another task called
coordinator. TIME-Ts and SYCO-Ts are considered by the coordinator
to perform the control of the net implementation. Every CODE task com-
municates with the coordinator, which is responsible for taking decisions

as to when a transition must fire.

We can see the coordinator as the kernel of an operating system, and the
CODE tasks as the processes managed and executed in it. Therefore, the opera-
tional part of the system is performed by the CODE tasks and the control part,
by the coordinator (see the schema in figure 6). Details of this implementation

technique can be found in (Garcia and Villarroel 1996).

i

(Control Part) i

CODE Tasks
(Operational Part)
TN

Figure 6: Schema of centralized implementation

COORDINATOR

The priority assignment performed in section 4.2 will be taken into account
during a centralized implementation in two different ways. The first is to assign

static priorities to the CODE tasks. These priorities are used by the Ada-Kernel

29

to schedule the different tasks. The second is used by the net coordinator to
solve the conflicts among transitions. The highest priority transition will always
be chosen to fire. Apart from these priorities computed in the real time analysis
phase and associated to transitions, the coordinator must be considered as the
highest priority task in the final implementation since it is responsible for the
activation of the rest of the system and of the timing and control actions that
must be performed immediately. The preemptive mechanism provided by the
Ada Kernel is used for the implementation.

The coordinator is built as an interpreter which interprets a data structure
representing the net structure. Therefore, this technique is especially suitable
for the prototyping and the simulation of systems (just the way it was used
during the mobile robot application development), since changes in the system
involve only changing the data structure interpreted by the coordinator. The
technique is easily automatizable, preventing us from making coding mistakes,
simplifying the coding stage, and so, reducing the cost of the system. Nev-
ertheless, despite the simplicity in the implementation, the technique presents
several problems. As shown in (Garcia and Villarroel 1996) the presence of
the coordinator, which acts in every transition firing updating the marking and
reevaluating the enabling conditions of the transitions of the net, introduces an
overload which reduces the maximum schedulable utilization. In addition, the
coordinator alone is responsible for the control of the implementation. So, it
sequencializes the control of the implemented system, which is in fact concur-

rent. Moreover, the whole evolution of the system depends on the coordinator.

30

That is, the implementation is sensitive to faults, since if the coordinator fails,
the whole system fails too. And, finally, the number of concurrent tasks in the
implementation may be greater than the actual concurrency of the modelled
system. See for example figure 7, a process which communicates with another
one is represented. However, the implementation generates four processes: three

CODE tasks and the coordinator).

5.2 Decentralized Implementation

In this section, we describe the definitive implementation of the mobile robot
application. The idea of decentralized implementations is quite simple. In order
to avoid the problems of centralized implementations the control of the net is
split into several sequential subnets, each of which is implemented in a separate
process, concurrent with the others. This way, the actual concurrency of the
system is respected and the presence of the coordinator is not needed, avoiding
the overload and making the system more fault tolerant (a part of the system
can fail without implying the total unavailability of the implementation). Each
process integrates both control and operational parts of the subnet, just the
opposite to the centralized technique. This technique was the object of study
in (Garcia and Villarroel 1998) and in (Garcia and Villarroel 1999).

Clearly, the first step in any decentralized implementation is the recognition
of the sequential processes (or state machines) embedded in the net and inter-
connected through a communication mechanism like buffers or rendezvous. The

basis is to merge a set of transitions which are in mutual exclusion into a single

31

process (t;, t; € T are in mutual exclusion, ¢; M Et;, if there does not exist any
reachable marking for which both transitions are fireable). A set of transitions
which are in M FE relationship are not concurrent, so they can be in the same
process () without reducing the actual concurrency. A place p, with respect to
a process, can be either private (every input and output arc of p are connected to
transitions belonging to the process, *pUp® € 7), external (p is only connected
to transitions not belonging to), or shared (p is connected both to transitions
belonging to 7 and transitions not belonging to 7). In fact, a shared place

models an asynchronous communication (buffer). See figure 7 for an example.

loop
P5.Mark;
CODE1;
CODE2;
accept t;

end loop;

Figure 7: A Petri Net decomposed into two sequential processes. Place P5 models
an asynchronous communication between the processes, whereas, transition t models

a synchronous communication. The Ada code implementing ; is included

For the computation of transition sets in mutual exclusion, the underlying

32

Petri Net (the net without time information) is used. The reason is that two or
more transitions which are in M F in the underlying Petri Net, remain in M F in
the TPN, but the opposite it is not true. Several techniques are known in clas-
sical Petri Net theory in order to determine the mutual exclusion of transitions.
It can be achieved with the reachability graph or using structural techniques
like the computation of monomarked p-invariants in the net (Colom et al. 1986)
(Garcia and Villarroel 1998). A p-invariant establishes a weighed ratio among
the markings of a set of places which is maintained for any reachable marking.
e.g., in figure 7, m(pl) + m(p2) + m(p3) + m(p4) = 1 is one of the p-invariants
of the net. Monomarked p-invariants are especially interesting because they
describe a set of places in ME. In the example in figure 7, either pl, p2, p3,
or p4 is marked, but never two or more of them are marked at the same time.
Obviously, a set of places in ME implies a set of transitions in ME, the input
and output transitions of the places. Unfortunately, it is not always possible to
cover a Petri Net with a set of monomarked p-invariants. To solve this problem
(Villarroel 1990) proposes a decomposition technique based on the concept of
pipeline. The objective is to build, if necessary, monomarked p-invariants by
means of the addition of implicit places.

However this is achieved, a partition of the underlying Petri Net, which
covers every transition of the net, can be found. This partition is made up of
a set of state machines, implementable as sequential processes. Places included
in a p-invariant can be used to describe the control flow of the process to which

they belong. In this way, those transitions whose input place belonging to the

33

p-invariant is marked, are able to fire. The remaining places which are private
with respect to a process and not belonging to the p-invariant or pipeline act
as local variables for correctness checking or taking decisions. Each process can
be implemented in an Ada task, using a case structure. Each place of the p-
invariant or pipeline describes a state which will be implemented at each branch
of the case. The code associated with each branch depends on the structure
associated with the place (consider the fragments of nets in figure 8), e.g., the
kind of output transition. It is possible to improve the implementation using the
single token of the p-invariant or pipeline as if it were the program counter of
the process. The flow of the token through the p-invariant defines the execution
order of the transitions, avoiding the use of the case structure (e.g. see the code
shown for process 7; in the net in figure 7). Implementing each process in an
Ada task, both the control and the operational parts of the set of transitions
are integrated in the same process avoiding the use of a coordinator.

There are three kinds of transitions in our modelling approach and, from the
software implementation point of view, they will be implemented in different

ways:

1. SYCO-Ts (used for representing control and synchronization actions) will
be taken into account to make decisions inside a process or, when it is
shared between two or more process, to perform synchronous communica-

tion between processes (see figure 8.a for an example).

2. CODE-Ts involve the execution of their associated code.

34

P1 P2

Figure 8: Common structures in TPNs: a) Synchronous communication, transition t;
b) asynchronous communication, place ps; c) simple conflict; d) Periodical activator;

e) Inner conflict inside a process; f) Code execution with a time-out.

3. TIME-Ts represent some time activity such us a delay, time-out, period-
ical activation, ... As a first approximation, this kind of transitions can
be implemented with an Ada delay which starts when the input place of
the transition gets marked. But this situation can provoke accumulative
drift in the processes. In order to avoid the drift, a time variable (from
Ada.Real Time) is associated with each process with TIME-Ts. This vari-
able, called Last_update, records the time at which the last marking up-
date occurred. This time is used in the computation of the expiration

time of the delays. For example, consider these implementations for the

35

TIME-T in figure 8.d. which represents a periodical activation. The im-
plementation on the left presents accumulative drift, solved on the right

by using the Last_update variable.

loop Last_update := CLOCK;
delay D; loop
P.Mark; next := Last_update + D;
end loop; delay until next;
Last_update := next;
P.Mark
end loop;

Sometimes a transition can be shared between two processes. This situation
represents a synchronous communication between both processes, and will be
implemented with an Ada rendezvous (see figure 8.a for an example).

So far we have not referred to the places shared between processes. As
mentioned above, a shared place represents an asynchronous communication
between the processes. One of these processes can mark it and the others use
this token later. Two kinds of shared places must be distinguished: those whose
destination is a single process (private destination), and those whose destination
can be several processes (non private destination). The latter sets up a conflict,
which is modelling a resource (see figure 8.c) that must be implemented as a
shared variable inside an Ada protected object which guarantees the access to
the resource in mutual exclusion. The former (see figure 8.b) will be imple-

mented with a buffer or a relay process.

task body RELAY_PLACE is
Last_update: TIME;
begin
loop
accept Mark ;
Process.Demark ;
end loop;
end RELAY_PLACE;

36

protected body BUFFER_PLACE is
procedure Mark is
begin
M:=M + 1;
end;
entry Demark when M>0 is
begin
M:=M - 1;
end;
end;

Transition I1 12 13 14 15 16 I7
Store_Goal
Supervisor_Read_
State
Trace_Location
Goal_Test
Alarm
Supervisor_Goal _AC
Supervisor_State_AC
No_Goal
Intermediate_Goal
Final_Goal
Control_Alarm
Laser_Alarm
Move_To
Robot_Stop
Read_Location
Store_State
Read_Scans
Scans_Integration
Read_Goal
Compute_Setpoint
Send_Setpoint
Control_Scans_AC
Control_Goal _AC
Control_State_AC
Control_Start_Period
Stop_Control
Control_End_Period
End_Trajectory_
Control
Read_Location_TO
Send_Setpoint_TO X
Stop_Act_Control x
Control_Periodic_
Activation x
Scan_Read
Laser_Read_State
Correct_Scan
Store_Scan
Stop_Scan
Laser_State_AC
Laser_Scans_AC
Stop_Laser
Scan_Read_TO

»
]

IR R I R A A R R
ol

IR R R R R L R A R R

]

]

R R A R R R

Figure 9: Covering table of transitions

For the sequential process recognition in the mobile robot application, a

37

p-invariant computation has been done. There are seven p-invariants: (Iy)
Supervisor {S51..59}, (I2) Control {C1..C15}, (I3) Activation {CT1,CT3},
(I4) Laser {L1..L8}, (I5) Protected Goal {Goal, S2,C9}, (Is) Protected State
{State, L3,C4, 54}, (I7) Protected Scans {Scans, L6,C6}. With this p-invariants
the transition coverability problem can be solved. In Figure 9 the covering table
is shown, a transition is covered by an invariant if the transition is descending
from a place of the invariant. It can be seen that there are four essential p-
invariants (I1, I, I3, I4), which cover all the net transitions. The first set of
transitions in EM (covered by I) corresponds to the Supervisor process. The
second (covered by I2) corresponds to the Control process. The third (I3), is
the periodical activator of the Control process, the Control_Activation process.
And the fourth (I4), is the process which deals with the laser, the Laser process.
These processes will be implemented in Ada95 tasks, which contain the previ-
ously mentioned structures. There are several places left which do not belong
to any processes. These places model asynchronous communications between
the processes. The places are CCy, CC3, LCy, CCy, CTs, LC, CCs, CCsj, all
of them of private destination, and Goal, State, Scans, of non-private destina-
tion. The former will be implemented as relays and the latter implemented as
protected objects. Several pieces of code corresponding to this implementation

are shown in Appendix A.

38

6 Experimental results

We have tested the real-time robot control system and the navigation tech-
niques above explained making the robot navigate in an unstructured indoor
environment in which the robot moves avoiding obstacles following a nominal
trajectory. The environment is composed of two corridors in which there are
two doors that the robot must cross and several obstacles that the robot must
avoid.

We have studied the behaviour of the real-time control system, which works
correctly, synchronizing the parallel processes involved in the system. The the-
oretical minimum sample period obtained from the analysis has been tested in
the real implementation.

In order to verify the accomplishment of the real time restrictions in the
execution of the control system, supervisor elements that allow the detection
and treatment of deadline violations have been included in the TPN model.
Figure 10 shows how to detect when a periodic process does not meet its deadline
(supposing the deadline equals the period). Based on this supervision structure,
the minimum robot control period has been experimentally established. As in
the theoretical analysis, the method has been iterating over the control period
until no deadline violations have been detected. Two different results have
been obtained: 0.25 seconds for centralized implementation and 0.20 seconds
for decentralized implementation. In Figure 11, two traces of execution using
the decentralized implementation are shown. In the first one, all the processes

accomplish the execution deadlines. In the second one, a deadline violation is

39

ACT!

EX

Periodical Activity

DD

Treatment|

Figure 10: Supervision structure to detect deadline violations in periodic processes
when the deadline is equal to the period. The simultaneous presence of a token in
places ACT and EX means that a new activation has arrived before the computation of
the previous one finishes. With this marking, transition DD is fired and the treatment

of deadline violation started.

detected, due to the sample period is smaller than the theoretical one. The
result obtained for decentralized implementations demonstrate the validity of
theoretical analysis. However, in the case of centralized implementation, the
coordinator overload has not been taken into account in the analysis phase.
This overload which reduces the maximum schedulable utilization justifies the

difference of 50 milliseconds with respect of theoretical result.

40

3.0 40 55

Laser

Control Activation

Control

OVERRUN!

Supervisor

@) (b)

Figure 11: Trace of the execution of processes generated in the decentralized imple-
mentation in two differents cases: (a) with a period of 0.25 s for the control process
greater than the theoretical one; and (b) with a period of 0.19 s smaller than the

theoretical one.

7 Conclusions

This paper has focused on using Time Petri Net formalisms for specification,
validation and code generation in robot control applications. To illustrate this
approach we have accomplished the development of the control system of a mo-
bile robot with a rotating rangefinder laser sensor with two degrees of freedom to
be used in navigation tasks with obstacle avoidance based on artificial potential
field techniques.

The use of formal methods in the development cycle can fulfil the essential
reliability requirement of real time systems allowing the verification of func-
tional and temporal requirements and the error detection in early stages of the

development cycle. Moreover, the use of a unique formalism in the whole devel-

41

opment cycle simplifies it. In this paper, Time Petri Nets have been proposed
as the formalism for the development of real time systems and robotic systems
in particular. Petri Nets have been widely used for modelling and analyzing
discrete event systems because of features like the possibility of modelling con-
currency, resource sharing, synchronizations, ... Moreover Petri Nets have a
strong mathematical foundation which allows the validation and verification of
a wide set of correctness and liveness properties. The Petri Nets extended with
time, like Time Petri Nets, allow modelling and analyzing real-time systems.

The advantages stated in this paper can be summarized as follows:

e This paper has been mainly focused on the implementation stages, how-
ever Time Petri Nets are suitable in all phases of the life cycle. The use of
TPNs does not suppose the assumption of any methodologies and there
is considerable work in the literature dealing with the integration of Petri
Net formalisms and modelling methodologies. They have been used suc-
cessfully in specification, analysis, design and code generation. Moreover,
since they are an executable formalism they can drive system prototyping

and test phase.

e It allows the verification of functional and temporal requirements. More-
over, the use of the TPN formalism allows us also not to restrict the struc-
ture of systems in order to analyze their temporal constraints. The design
flexibility is increased with respect to the use of classical and most ex-
tended analytic techniques such as Rate or Deadline Monotonic Analysis.

In these approaches, in order to allow the analysis, the communications be-

42

tween the periodical tasks must take place through an intermediate server
with no guarded entry. The use of TPNs for the analysis of real-time
systems eliminates this kind of restriction. It has been shown how formal
model analysis can assess the design process. As an example, the mini-
mum sample period the system needs to ensure the completion of all the
tasks or processes involved in the control has been computed. Using such
a formalism we can take advantage of all the theory and tools developed

around it, making the whole development easier.

The automatic code generation from formal model avoid coding mistakes.
The special features of centralized implementations make it especially suit-
able for the system prototyping and testing phase. One process encapsu-
lates the whole state of the system and performs all the control actions,
making the system debugging easier. Moreover, the coordinator is built as
an interpreter of a data structure representing the net structure. There-
fore, this technique is especially suitable for the prototyping and the simu-
lation of systems (just the way it was used during the mobile robot applica-
tion development), since changes in the system involves only changing the
data structure interpreted by the coordinator. Nevertheless, despite the
simplicity in the implementation, the technique presents several problems
that have been stated in the literature. The presence of the coordinator
introduces an overload into the implemented systems which reduces the
maximum schedulable utilization. Moreover, the whole evolution of the

system depends on the coordinator and thus, the implementation is sen-

43

sitive to faults since if the coordinator fails, the whole system fails too.
And, finally, the number of concurrent tasks in the implementation may
be greater than the actual concurrency of the modelled system. To avoid
all these problems, the final implementation of the system is carried out by
decentralized techniques where the control of the net is split into several
sequential subnets, each of which is implemented in a separate process,

concurrent with the others.

All these characteristics tend to simplify the system development and, there-
fore, reduce its cost and the time needed significantly. We can estimate we have
spent three months-man from system specification to former code generation
and implementation, including partial tests of the system. Only one week-man
was needed to test the whole system and to make the final system implementa-
tion and tuning. We would like to highlight that it was thanks to the formalism
we have used that we have been able to save time in the final tuning phase. By
using it, many of the errors in the system design and implementation can be
avoided in the early stages, and those detected during the tuning stage can be
easily localized and corrected.

However, the techniques based on Time Petri Nets still need a considerable
research effort, mainly as regards real time planification. There is not much
work on planification and Time Petri Nets, and the little there is, has focused on
static planification of models with fixed duration semantics. In this sense, new

planification techniques must be developed to assign priorities to transitions.

44

Acknowledgements

This work has been supported in part by project TAP97-0992-C02-01 from the

Comisién Interministerial de Ciencia y Tecnologia of Spain.

References

Aalst, W. v. d. 1993, Interval timed coloured petri nets and their analysis, in
M. A. Marsan, ed., ‘Application and Theory of Petri Nets 1993’, num-
ber 691 in ‘Lecture Notes in Computer Science’, Springer Verlag, Berlin,

pp. 453-472.

Berthomieu, B. and Diaz, M. 1991, ‘Modeling and verification of time dependent
systems using time petri nets’, IEEFE transactions on Software Engineering

17(3), 259-273.

Bruno, G., Castella, A., Macario, G. and Pescarmona, M. 1992, Scheduling hard
real time systems using high-level petri nets, in K. Jensen, ed., ‘Application

and Theory of Petri Nets 1992’, Springer Verlag, Berlin, pp. 93-112.

Caloini, A., Magnani, G. and Pezze, M. 1998, ‘A technique for designing robotic
control systems based on petri nets’, IEEFE transactions on Control Systems

Technology 6(1), 72-87.

Carlier, J. and Chretienne, P. 1988, Timed petri net schedules, in G. Rozen-
berg, ed., ‘Advances in Petri Nets 1988’, number 340 in ‘Lecture Notes in

Computer Science’, Springer Verlag, Berlin, pp. 62-84.

45

Colom, J., Silva, M. and Villarroel, J. 1986, On software implementation of
petri nets and colored petri nets using high-level concurrent languages, in
‘Proc of 7th European Workshop on Application and Theory of Petri Nets’,

Oxford, pp. 207-241.

Coste-Maniere, E. and Turro, N. 1997, The maestro language and its environ-
ment: Specification, validation and control of robotic missions, in ‘Proc.
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS)’, Greno-

ble, France, pp. 836-841.

Crowley, J. 1995, Mathematical foundations of navigation and perception for
an autonomous mobile robot, in ‘Tutorial at Int.Workshop on Reasoning

with Uncertainty in Robotics’, Amsterdam, The Netherlands.

Felder, M., Ghezzi, C. and Pezze, M. 1993, ‘High-level timed petri nets as a

kernel for executable specifications’, Real- Time Systems 5(2), 235-248.

Garcia, F. and Villarroel, J. 1996, Modelling and ada implementation of real-
time systems using time petri nets, in ‘Proc. of the 21st IFAC/IFIP Work-

shop on Real-Time Programming’, Gramado - RS, Brazil.

Garcia, F. and Villarroel, J. 1998, Decentralized implementation of real-time
systems using time petri nets. application to mobile robot control., in ‘Proc.
of the 5th IFAC Workshop on Algorithms and Architectures for Real-Time

Control, AART(C’98’, Cancun, Mexico.

Garcia, F. and Villarroel, J. 1999, Translating time petri net structures into

ada 95 statements, in ‘Reliable Software Technologies - Ada-Europe’99’,

46

number 1622 in ‘Lecture Notes in Computer Science’, Springer Verlag,

Berlin, pp. 158-169.

Giovanni, R. D. 1990, Petri nets and software engineering: Hood nets, in ‘Proc.
of 11th International Conference on Application and Theory of Petri Nets’,

Paris, France, pp. 123-138.

Hanisch, H. 1993, Analysis of place/transition nets with timed arcs and its
application to batch process control, in M. A. Marsan, ed., ‘Application
and Theory of Petri Nets 1993’, number 691 in ‘Lecture Notes in Computer

Science’, Springer Verlag, Berlin, pp. 282-299.

Hu, H., Brady, J., Du, F. and Probert, P. 1995, ‘Distributed real-time control

of a mobile robot’, Intelligent Automation and Soft Computing 1, 63—-68.

Khatib, O. 1986, ‘Real-time obstacle avoidance for manipulators and mobile

robots’, International Journal of Robotics Research 5, 90-98.

Merlin, P. and Faber, D. 1976, ‘Recoverability of communication protocols’,

IEEE transactions on Communication 24(9).

Montano, L. and Asensio, J. 1997, Real-time robot navigation in unstructured
environments using a 3d laser rangefinder, in ‘IEEE-RSJ International
Conference on Intelligent Robots and Systems’, Vol. 3, Grenoble, France,

pp. 526-532.

Murata, T. 1989, ‘Petri nets: Properties, analysis and applications’, Proc. of

the IEEE T7(4), 541-580.

47

Muro, P., Banares, J. and Villarroel, J. 1998, ‘Kron: Knowlege representation
oriented nets for discrete event systems applications’, IEEE transactions

on Systems Man and Cibernetics 28(2).

Oliveira, P., Pascoal, A., Silva, V. and Silvestre, C. 1998, ‘Mission control of
the marius autonomous underwater vehicle: system design, implementation

and sea trials’, International Journal of Systems Science 29(4), 1065-1080.

Popova, L. 1991, ‘On time petri nets’, J. Inform. Process. Cybern. EIK

27(4), 227-244.

Ramachandani, C. 1974, Analysis of Asynchronous Concurrent Systems by

Timed Petri Nets, PhD dissertation, Massachussets Inst. of Technology.

Simon, D., Espiau, B., Kapellos, K. and Pissard-Gibollet, R. 1997, ‘Orccad:
software engineering for real-time robotics. a technical insight’, Robotica

15, 111-115.

Sloan, R. and Buy, U. 1996, ‘Reduction rules for time petri net’, Acta Informat-

ica 33(7), 687-706.

Villarroel, J. 1990, Integracién Informdtica del Control de Sistemas Flexibles
de Fabricacién, PhD thesis, Dpto. de Ingenieria Eléctrica e Informaitica,

University of Zaragoza.

48

A Code generated for the mobile robot applica-
tion

In this appendix several pieces of code corresponding to the decentralized im-
plementation presented in section 5.2 are shown. The result of net partition

is:

e Four processes: Supervisor, Control, Laser and the periodical activator of

the Control process, the Control_Activation process.
e Eight buffers of private destination implemented as relays.

e Three places of no private destination implemented as protected objects:

Goal, State and Scans.

To illustrate the generated code, this section includes the code of the four

processes, an example of relay place and another example of protected object.

task body Control_Activation is
last_update : time;
period: time_span:= to_time_span (0.25);
begin
accept start;
last_update := clock;
CT1:
loop
select
CC1.Demark ;
exit CT1;
then abort

49

delay until last_update + period;
last_update := last_update + period;
CT2.Mark ;
end select;
end loop CT1;
end;

task body Control is
Read_Location_TO: constant duration:=0.1;
Send_Set_Point_TO0:constant duration:=0.1
begin
ClL :
loop
select
accept Control_Star_Period;
select
delay Read_Location_TO;
CC3.Mark;
exit Ci;
then abort
Read_Location;
end select;
State.Demark; Store_State;

State.Mark; CC4.Mark;
Scans.Demark; Read_Scans;
Scans.Mark; Scans_Integration;
Goal.Demark; Read_Goal;
Goal.Mark; Compute_Setpoint;
select

delay Send_Setpoint_TO;

CC3.Mark;

exit C1;
then abort

Send_Setpoint;
end select;

or
accept Stop_Control;
exit C1;
or
accept End_0f_Trajectory;
Move_To;
exit C1;

50

end select;
end loop C1;
Robot_Stop;
end;

task body Laser is
Scan_Read_T0: constant duration := 0.1;
begin
L1i:
loop
select
LC1.Demark;
exit L1;
then abort
select
delay Scan_Read_TO;
exit L1;
then abort
Scan_Read;
end select;
end select;
State.Demark; Laser_Read_State;
State.Mark; Correct_Scan;
Scans.Demark; Store_Scan;
Scans.Mark;

end loop L1;
Stop_Scan;
end;

protected body State is
procedure Mark is
begin
M:=M + 1;
end;
entry Demark when M > 0 is
begin
M:=M - 1;
end;

51

task body CC2 is
begin
loop
select
accept Mark;
or
terminate;
end select;
Control.Stop_Control;
end loop;
end;

52

List of Figures

Example of TPNmodel
Control scheme for navigation.
Sectors chosen for the experiments. The laser cannot scan in the
shadow zone at the rear of the robot.
Time Petri Net which models the mobile robot application. Time Petri
Nets which model: the supervisor process, the robot control process,
the laser process and synchronizations between processes.
An activity with fixed computation time but which can be blocked and
is protected by a time-out can be split in two test cases with a fixed
firing delay
Schema of centralized implementation
A Petri Net decomposed into two sequential processes. Place P5 mod-
els an asynchronous communication between the processes, whereas,
transition t models a synchronous communication. The Ada code im-
plementing 7y isincludedo oL
Common structures in TPNs: a) Synchronous communication, transi-
tion ¢; b) asynchronous communication, place py; c) simple conflict; d)
Periodical activator; e) Inner conflict inside a process; f) Code execu-
tion with a time-out. Lo oo

Covering table of transitions

53

10

11

Supervision structure to detect deadline violations in periodic processes
when the deadline is equal to the period. The simultaneous presence
of a token in places ACT and EX means that a new activation has
arrived before the computation of the previous one finishes. With this
marking, transition DD is fired and the treatment of deadline violation
started. L L e e e e e e e e
Trace of the execution of processes generated in the decentralized im-
plementation in two differents cases: (a) with a period of 0.25 s for the
control process greater than the theoretical one; and (b) with a period

of 0.19 s smaller than the theoreticalone.

54

