Translating Time Petri Net Structures
into Ada 95 Statements *

F.J. Garcia! and J.L. Villarroel?

1 Universidad de La Rioja, Dpto. Mateméticas y Computacién,
C/ Luis de Ulloa s.n., 26004 Logromo, Spain
fgarcia@dmc.unirioja.es
2 CPS, Universidad de Zaragoza, Dpto. de Informatica e Ing. de Sistemas,
C/ Maria de Luna 3, 50015 Zaragoza, Spain
JLVillarroel@mcps.unizar.es

Abstract. The intention of this paper is to show how real-time systems
modeled with time Petri nets can be implemented in Ada 95. To achieve
this objective, we use models of the Ada 95 tasking statements. Using
reduction rules the model of the statement is reduced in order to make
it recognizable in the net which models the system. Thus, we can build a
catalogue of the reduced models of the Ada 95 tasking statements so that
they can be used in the translation of net structures into Ada programs.

1 Introduction

This work is a part of a wider study whose main aim is the use of a formal method
for the whole life cycle of a real-time system (RTS) development. The complexity
of the design, analysis and implementation of real-time systems is well known;
a complexity that is further amplified if reliability aspects are considered. In
these systems, reliability is essential due to the possible catastrophic effects that
a failure could produce. Therefore, any attempt to apply a formal method to
the life cycle of an RTS must be welcome so that the reliability requirement can
be met. If, in addition, the use of a automated tool to generate the code for
the system is considered, this is a double advantage, because in addition to the
obvious reduction in the coding mistakes, we add a reduction in the cost of the
development. Bearing this idea in mind, our proposal is to use the Time Petri
Net (TPN) formalism to model, analyze and generate the code for an RTS. In
this paper we are concerned with the latter part of this development, that is,
the automatizable code generation for an RTS. Ada 95 was chosen as the target
language because of its tasking and real-time features.

Petri nets are suitable for the modeling of real-time systems because the
net can naturally model concurrency, resource sharing with mutual exclusion,
synchronizations, etc. In order to model an RTS with a Petri net, some kind
of extension to classical Petri nets involving time must be used. There seems
to be some consensus in using the Time Petri Net formalism [1][2] among the

* This work has been partially supported by the CICYT (project TAP97-0992-C02-01)

authors who have dealt with this subject in the recent past. See for example
[3][4][5], or [6][7] where only classical nets are used. Nevertheless, other related
formalisms, such as the interval timed coloured Petri nets [8] or the time en-
vironment /relationship nets (TER nets) [9] must not be dismissed, above all
the latter in the modeling of absolute delay statements. We have chosen time
Petri nets due to their high expressive power (with the only limitation being the
modeling of absolute delay) and, from our point of view, it is more intuitive and
suitable for the specification of the systems which are the object of our study.

The idea of bringing together the worlds of Ada and the Petri nets is not new.
Several authors have already used Petri nets for the modeling of Ada and Ada 95
tasking statements, mainly with two objectives: to define precise behaviour for
tasking semantics and to support the automated analysis of concurrent software,
above all in deadlock detection. For the first objective, see for example [3][4]
where formal models for the main tasking statements are shown. The second
line of interest is the subject matter in [5][6][7].

The intention of this paper is to show how a model of an RTS in terms of
time Petri nets can be implemented in Ada 95 and demonstrate that the code
generated for this implementation is correct, in the sense that it has the same
semantics as the model that is being implemented. To achieve this objective, we
use models of the Ada 95 tasking statements, models similar to those in [3][4].
Using reduction rules for classical or time Petri nets ([6][10][11]) we reduce the
model to the minimum net structure that can be directly recognized in a time
Petri net. Once we have a catalogue of the reduced models of the Ada 95 tasking
statements, implementing the software skeleton of an RTS modeled with a time
Petri net requires only that we isolate and recognize the reduced models in the
net, and put the corresponding Ada statements together in the program that
will implement the system. This last part can be automated. In addition to this
main objective, this work can be seen as a contribution in two additional ways: it
complements the definition of the models of the Ada 95 statements, as in [3][4],
and it helps with the proposal described in [6] since it provides reduced models
of the tasking structures that can reduce the size of the model of the system to
be analyzed.

The organization of this paper is as follows. Section 2 summarizes basic
concepts about time Petri nets and their relation with real-time systems. In
section 3, we describe how a time Petri net can be decomposed into a set of
concurrent processes, each of which will be implemented in a different Ada task.
Section 4 shows an example of implementation of a real-time system modeled
with a TPN and the next section explains how the code of the example was
built.

2 Basic Concepts about Time Petri Nets

A Time Petri Net ([2]) is a tuple (P, T; F, B, M,, SIM), where (P,T; F,B, M,)
defines a marked classical Petri net, the underlying Petri net'; and SIM is the

1 We assume a basic knowledge about classical Petri nets (see [10] for a survey)

mapping called the static interval SIM : T — Q" x (Q* U o), where Q™ is the
set of positive rational numbers. Thus, TPNs can be seen as Petri nets with
labels: two time values (¢, 8;) which are associated with transitions. Assuming
that transition #; is enabled at time 6y, and is continuously enabled, the first
time value represents the minimum time, starting from g, that #; has to wait
until it can be fired, and the second is the maximum time that ¢; can remain
enabled without firing. These two time values therefore allow the calculation of
the firing interval for each transition #; in the net: (8¢ + «;, 6o + 3;). Once the
transition is to be fired, the firing is instantaneous. This work assumes that a
transition with no associated time interval has an implicit time interval of (0, 0),
that is, the transition is immediately fired as soon as it becomes enabled. The
need to implement the net inspired this decision, against the approach taken
in [2], where a time interval of (0, co) was considered for these transitions. In
addition, we use predicates associated with transitions and inhibitor arcs which
connect places and transitions in our models of Ada statements (see [10]).

All transitions in TPNs have the same functionality, but the different situa-
tions that appear in an RTS must be focused on in our models. Therefore, and
with the aim of implementing the model, we distinguish three kinds of transi-
tions:

— CODE transitions (filled in segments) together with their input places, rep-
resent the code associated with an activity, which starts its execution when
the transition is enabled, i.e. the input places are marked. The two time
values («,) represent the execution time of the activity. At best, the code
execution will finish at time «, and at worst the execution will take until 5.
The firing represents the end of the code.

— TIME transitions, (unfilled segments) are those with an associated time
event, e.g. a time-out. They also have associated time information, described
with an interval («, «), where « represents the event time. The firing of this
kind of transition represents the occurrence of the event.

— SYCO transitions (thin segments) are those with no temporal meaning used
to perform synchronization (SY) and control (CO) tasks. The firing of a
SYCO transition leads to simple state changes.

As an example, Fig.1 shows a TPN modeling a periodic process that executes
a piece of code and communicates with another process. This communication has
an associated time-out. Three elements have been highlighted (a piece of Ada
code with the same behaviour is provided for a better understanding of the
model). Box A models the periodic activation of the process. Every 10 time
units, the transition fires and causes the execution of the process. Box B shows
an action, i.e. code, to be executed by the process. The execution starts when
the input place is marked. The computation time of this activity is between 4
and 5 time units. Box C shows a communication with another process which has
an associated time-out. Let us suppose that the place is marked at time 7. If the
transition labeled with entry_A does not fire (start the communication) before
7 + 1 (expiration time of the time-out), then transition (1, 1) will fire, aborting
the starting of the communication.

loop

CODE ; -- B
select
Proc_B.entry A;
or -- c
delay 1.0;
end select;
delay until Next; -- A
ProcessB Next := Next + 10.0;
end loop;

Fig. 1. Example of TPN model

3 Decomposing Petri Nets into Processes

A time Petri net can describe the behaviour of an RTS. Several concurrent ac-
tivities or processes can usually be recognized in this behaviour. Thus, the first
step in the implementation of an RTS modeled with a time Petri net is to isolate
these processes and their inter-connections. A brief description about how this
decomposition can be achieved is given here (see the details in [12][13][14][15]).
The basis is to merge a set of transitions in mutual exclusion (ME) into a single
process (two transitions are in mutual exclusion if they cannot be fired simul-
taneously). A set of transitions which are in ME are not concurrent, so guaran-
teeing that a process is made up only of sequential activities. The existence of
ME between transitions can be determined by a computation of monomarked p-
invariants® because they describe a set of places in ME which obviously implies
a set of transitions in ME (the input and output transitions of the places). In
addition, the p-invariant can be used to describe the control flow of the process.
In this way, the only transitions which are able to fire are those whose input
place belonging to the p-invariant is marked (see for example Fig. 1, where a
token passes through places ps, p4, p5, ps and p7, determining the flow of the
process).

Eventually some places will remain which do not belong to any process. These
places model asynchronous communications between the processes which they
link. The other way of communication is a shared transition which represents
a synchronous communication (rendezvous). Moreover, it is possible to share

2 A monomarked p-invariant is a set of places interconnected with transitions through
which a single token flows (monomarked) and that holds that in every reachable
state the token is always in one of these places, i.e., the sum of the tokens in the
places is always one (invariant)

sets of transitions and places grouped in a subnet; this subnet represents the
execution of a piece of code in an extended rendezvous.

4 An example

Let us consider the example of Fig. 2 in which we show the model of an RTS
made up of a periodical activity (Activity 1) of period Period_Activation that
executes a code (code 1) which has an associated time-out (time-out 1). After
this execution, a rendezvous with another activity takes place. This rendezvous
has another associated time-out (time-out 2). Activity 2 executes a code (code
3) that can be aborted if the time-out of code 1 is fired. Otherwise, Activity 2
makes a rendezvous with Activity 1 and later executes a new piece of code (code
4). The whole system stops if time-out 1 is fired.

PERIOD. ACTIVITY 1 ACTIVITY 2
ACTIVATION

Fig. 2. A real-time system modeled with a TPN. The processes are highlighted

A computation of monomarked p-invariants reveals the existence of three
of them which cover all the transitions of the net. They are: Iy = {p1,p2};
Iy = {p3, P4, p5,P6:P7, Ps}; I3 = {P7, P9, P10, P11, P12}. With these p-invariants,
three processes can be built (they are highlighted in Fig. 2). One of them (Proc_1)
represents the periodical activator of Activity 1, another (Proc_2) is the body of
Activity 1 and the last (Proc_8) corresponds to Activity 2. Fig. 2 also shows the
way in which the processes communicate with each other. Three shared places
(S1, PA and S3) act as a medium for asynchronous communication and one
shared subnet ({rendezvous, p7, code 2}) acts as a synchronous communication
medium in which code 2 is executed.

Due to the fact that in the decomposition technique the temporal information
is not taken into account, the periodical activity is split into two processes.

We are currently studying how to include temporal mutual exclusion in the
recognition of processes. Observe that if time were considered the transitions of
Proc_1 would all be in mutual exclusion with the ones in Proc_2, and the two
processes could therefore be brought together.

The implementation will be made up of three Ada tasks and the implemen-
tation of the shared places. Here is the Ada 95 code that we propose for the
processes and the shared places:

task body S1 is task body Proc_2 is
begin L_E: Time; —-- Last_Event
accept Mark; begin
Proc_1.Demark_S1; L_E := CLOCK;
end S1; loop
-- The same structure for accept Demark_PA;
-- the place PA L_E := CLOCK;
select
task body Proc_1 is delay until L_E + Time_out_1;
L_E: Time; —— Last_Event L_E :=L_E + Time_out_1;
begin S1.Mark; S3.Mark; exit;
L_E := CLOCK; then abort
loop CODE_1;
select L_E := CLOCK;
accept Demark_S1; end select;
L_E := CLOCK; select
exit; accept Rendezvous do
or CODE_2;
delay until L_E + PERIOD_ACT; end Rendezvous;
L_E := L_E + PERIOD_ACT; L_E := CLOCK;
PA .Mark; or
end select; delay until L_E + Time_out_2;
end loop; L_E := L_E + Time_out_2;
end Proc_1; end select;
end loop;
task body Proc_3 is end Proc_2;
begin
loop protected body S3 is
select entry Demark when Marks > 1 is
S3.Demark; begin
exit; Marks := Marks - 1;
then abort end Demark;
CODE_3; procedure Mark is
end select; begin
Proc_2.Rendezvous; Marks := Marks + 1;
CODE_4; end Mark;
end loop; end S3;

end Proc_3;

5 Software implementation

This section describes how the code of the previous example was built. Each
process can be implemented in an Ada task that has a loop structure. The
flow of the token through the p-invariant that generates the process reveals the
execution order of the transitions. Basically the implementation of the transitions
are as follows:

— The existence of a SYCO transition means that decisions are taken inside
a process or that synchronous communication between processes occurs, as
will be shown below.

— The existence of a CODE transition involves the execution of its associated
code.

— The existence of a TIME transition represents a delay in the execution of
the process. The model of a relative delay statement corresponds to a TIME
transition.® Therefore, as a first approximation, a TIME transition is im-
plemented with a delay statement. However, the implementation of a TIME
transition with a simple delay can provoke cumulative drift in the imple-
mented process. This can be avoided if a time variable is associated with each
process containing TIME transitions. This variable (Last_Event) records the
time at which the last marking update occurred in the process. Each time
a transition is fired, the time at which this firing occurs is recorded in the
variable. This time is used in the computation of the expiration time of the
delays. Thus, the implementation of a TIME transition with an associated
time interval (D, D) corresponds to these two instructions:

delay until Last_Event + D;
Last_Event := Last_Event + D;

The use of this variable can be seen in the code of the example in processes
Proc_1 and Proc_2.

The implementation becomes more complex when conflicts appear, i.e. there
are several transitions at the output of a place. More complex Ada statements
must be used. At this point we begin the proof that the proposed code for the
example net is correct, i.e. that it has the same semantics as the model itself. The
procedure followed for the proof consist of modeling the semantics of each Ada
statement used in the implementation code. By means of a reduction process, we
reduce the model of the statement to the structure of the net that was translated
into that Ada statement. During the reduction, we must preserve all the CODE
and TIME transitions and merge a sequence of SYCO transitions firings to a
single transition with the same behaviour, in such a way that the original model
and the reduced one are equivalent. Several rules that obey these restrictions

3 The modeling of a delay until statement is not possible using TPN, because all the
time values involved are relative to the instant of the enabling of the transition. To
model an absolute delay statement, it would be necessary to consider the use of TER
nets [9]

have been taken from [6][10][11] for use in the reduction process. Lack of space
prevented us from presenting all the models for every Ada structure. We show
some of the more representative models, without considering the occurrence of
exceptions, aborts or requeue statements.

5.1 Modeling the select statement with a delay branch

The net in Fig. 3.(1) is proposed to model the behaviour of a select statement
that has several accepts and a delay branch. The model corresponds to the
situation in which only one client calls the server. The model is not valid if
different clients can call all the entries.

SERVER WAITS

select ENTRY CALL
accept entry 1 do CLIENT CALLS
CODE1; entry 1
end; delay entry 1
Code_Branch_1; CODE RENDEZ 1IN
or %eumijCH PROGRESS
accept entry i do
or
delay D; O CLIENT
Code_Branch delay; AFTER entry
end select; end select
SERVER WAITS ()
ENTRY CALL CLIENT CALLS
entry 1
CLIENT CALLS
delay entryi SERVER WAITS
- entry i ENTRY CALL
RENDEZ | IN CLIENT CALLS
CODE RENDEZ 1IN o entry 1
BRANCH ‘ ‘ PROGRESS ‘ PROGRESS delay
delay
RENDEZ. 1IN
PROGRESS
CLIENT CLIENT
AFTER entry AFTER entry

end select
1) 3)

Fig. 3. Model and reduction of the select statement with a delay branch

The server that executes the select statement must wait in the server waits
entry call place until one of its output SYCO transitions becomes enabled due to
a client issuing a call to one of its entries by marking a Client calls entry i place.
The SYCO transition is then fired, representing the start of the rendezvous in
which code i is executed. Once the code finishes, the client can continue and the
server can execute an optional code (code branch i) before finishing the select.
If the marking of some client calls entry i place does not take place in a time
D, the TIME transition corresponding to the delay fires, removing the token
from the server waits entry call place and aborting the possibility of making any
rendezvous.

The model can be simplified if we consider only one client and one entry (Fig.
3.(2)), as in the case of our example. If, in addition, the select does not have
the optional code after either the accept or the delay branches, then the code
branch delay and code branch 1 transitions can be removed (Fig. 3.(3)). This
structure can be seen in the example net involving the rendezvous, time-out 2
and code 2 transitions. This corresponds to the select of Proc_2 and the entry
call of Proc_3. Moreover, if no code is executed in the accept, the same structure
can be recognized in the stop 1 and period. activation transitions corresponding
to Proc_1.

With the aim of avoiding cumulative drift, for example in Proc_1, we sub-
stitute the delay statement which corresponds to the TIME transition with the
delay until statement which includes the previously mentioned time variable
Last_Event. It is immediately obvious that this new implementation has the
same behaviour as the one derived from the model.

5.2 Modeling the ATC with a delay triggering alternative

The net in Fig. 4.(1) models the behaviour of an ATC statement with a delay
statement as triggering alternative (the model is similar to the one in [4]).

ATC ATC

select
delay D;
alt CODE;
- ! delay IN CODE
then abort PROGRESS EXCUTES
CODE 1; [D, D] CODE 1
end select; 0.0 CODE1
end ATC
ATC
delay
EVALUATION
alt
CODE
D>0
end ATC S1 S3 exit
2)
P (2 4
EXCUTES T ATC ATC
CODE 1
[D. D] CODE1 D, D] CODE1

end ATC

alt
CODE
end ATC end ATC S1 S3 exit

(@] 3) (5)

Fig. 4. Model and reduction of the ATC statement with a delay as triggering alternative

Once the ATC begins, the delay expression must be evaluated. If the ex-
pression is positive, the delay in progress and code executes places are marked,

involving the enabling of the TIME and CODE transitions. These two transitions
compete to remove the tokens from both places. If the CODE transition code 1
fires before time D expires, the tokens will be removed and the TIME transi-
tion will be disabled (this means aborting the delay statement). The code of the
delay alternative is then executed. On the other hand, if time D expires before
the CODE transition fires, the tokens are removed and the CODE transition
disabled (this means that the code execution is aborted). If the expression in the
delay is negative or zero, the code of the delay alternative is directly executed.
This case has not been considered in the reduction process because, within the
scope of this study, the delay expression is always positive (Fig. 4.(2)).

Applying reduction rule 6 of [11] (parallel redundant places) the delay in
progress and code executes places can be reduced to one (Fig. 4.(3)). In the case
of our example, the code that must be performed if the delay alternative is
triggered is the marking of two places (S7 and S3) and the execution of an exit
statement that breaks the normal flow of the process, avoiding the place end
ATC being marked. This is shown in Fig. 4.(4). In Fig. 4.(5) the final structure
is obtained by applying rule 3 of [11] (post-fusion). The resultant model can be
recognized in the net of the example involving place p, and transitions code 1 and
time-out 1 that are implemented in Proc_2. Once again, the delay is substituted
with the corresponding delay until using the Last_Fvent variable.

5.3 Modeling the ATC with an entry call triggering alternative

The net in Fig. 5.(1) models the general behaviour of an ATC statement with an
entry call as triggering alternative. This model corresponds to the general real
situation, where both the triggering alternative and the abortable part can evolve
in parallel. However, we consider only monoprocessor implementation platforms,
and static priorities. With these restrictions, the model can be simplified because
it is impossible for both parts to be executed at the same time. In this case, the
server that accepts the entry call must have a higher priority than the client,
since this is the only way in which the server can have a chance of interrupting
the abortable part. Once the entry is accepted, the abortable part is preempted
and the ATC finishes before it can execute again. This simplification leads us to
the model in Fig. 5.(2).

When the ATC begins, abortable part and wait for accept places are marked.
This involves code 1 starting its execution while the marking of the server accept
place is being waited for. If this is already available, the transition rendezvous
fires, removing the token from the abortable part place and aborting the starting
of the code. Otherwise, the code execution will be aborted in the same way at the
moment in which the server accept place is marked. If this place is not marked,
the code can finish removing the token from the wait for accept place and then
abort the entry call.

For the reduction rule 2 of [6] is used (pre-fusion of transitions). This leads
us to the net in Fig. 5.(3). Rule 6 of [11] (parallel redundant places) can then
be used to eliminate the wait for accept place (which is the same as abortable
part). The code that is executed after the entry call consists of an exit statement

select WAIT FOR

entry call (executes CODE 2); abortable accept
CODE_alt; part
then abort RENDEZVOUS
CODE1
CODE_1; ABORT

end select;

ATC

l CALLING SERVER
entry call accept

accept NOT r r—.
INMEDIATE d accept
WAIT FOR . INVEDIATE

accept

abortable
part
NOT STARTS

CODE alt
end ATC

]

WAIT FOR

SERVER
accept

RENDEZVOUS

SERVER
accept
CONTINUES

end ATC @3)

RENDEZVOUS

exit

4
(6}

Fig. 5. Model and reduction of the ATC statement with an entry call as triggering
alternative

that breaks the normal flow of the process and avoids the end ATC place being
marked. The product of these last steps is shown in Fig. 5.(4). This structure
can be directly seen in the net of the example involving pg, S3 and pig places,
and abort 3 and code 3 transitions.

6 Conclusions and Future Work

The Petri net formalism is directly executable. This paper demostrates how the
code which implements the net can be obtained. Moreover it has been shown
that the translation into Ada 95 code is correct, i.e. it has the same behaviour
as the net. This allows us to enrich the Petri nets formalism, which has been
traditionally used for the specification and analysis of behavioural and timing
properties in real-time systems. We have now shown how to implement this, and
so making time Petri nets an alternative method for the whole life cycle of a
real-time system.

Future work will be devoted to the study of several optimizations for the
generated code. Firstly a study must be carried out on how to include temporal
restrictions in the recognition of the processes embedded in the time Petri net.
This will avoid situations such as the one in the example of section 4, where
a periodic activity had to be split into two processes. In the second place, the
use of the time variable Last_Fvent in order to avoid cumulative drift must be

optimized. In the current implementations it is used in every process with TIME
transitions but should anly be necessary in process where there is at least one
sequence of execution only with TIME transitions and no external interaction.

References

1]
[2]

3]
[4]

[5]
[6]

[7]

[9]

[10]
[11]

[12]

[13]

[14]

[15]

P. Merlin and D.J. Farber. Recoverability of communication protocols. [FEFE
transactions on Communication, 24(9), September 1976.

B. Berthomieu and M. Diaz. Modeling and verification of time dependent systems
using time Petri nets. IEEFE transactions on Software Engineering, 17(3):259-273,
March 1991.

D. Mandrioli, R. Zicari, C. Ghezzi, and F. Tisato. Modeling the Ada task system
by Petri nets. Computer Languages, 10(1):43-61, 1985,

R.K. Gedela and S.M. Shatz. Modelling of advanced tasking in Ada-95: A Petri
net perspective. In Proc. 2nd Int. Workshop on Software Engineering for Parallel
and Distributed Systems, PSDE’97, Boston, USA, 1997.

U. Buy and R.H. Sloan. Analysis of real-time programs with simple time Petri
nets. In Proc. Int. Symp. on Software Testing and Analysis, pages 228-239, 1994.
S.M. Shatz, S. Tu, T. Murata, and S. Duri. An application of Petri net reduction
for Ada tasking deadlock analysis. IEEE Transactions on Parallel and Distributed
Systems, 7(12):1307-1322, December 1996.

S. Duri, U. Buy, R. Devarapalli, and S.M. Shatz. Application and experimen-
tal evaluation of state space reduction methods for deadlock analysis in Ada.
ACM Transaction on Software Engeeniering Methodology, 3(4):340-380, Decem-
ber 1994.

W.M.P. van der Aalst and M.A. Odijk. Analysis of railway stations by means of
interval timed coloured Petri nets. Real-Time Systems, 9(3):241-263, November
1995.

C. Ghezzi, D. Mandrioli, S. Morasca, and M. Pezze. A unified high-level Petri net
formalism for time-critical systems. IEFEFE transactions on Software Engineering,
17(2):160-171, February 1991.

T. Murata. Petri nets: properties, analysis, and applications. Proceedings of the
IEEE, 77(4), April 1989.

R.H. Sloan and U. Buy. Reduction rules for time Petri nets. Acta Informatica,
43:687-706, 1996.

J.M. Colom, M. Silva, and J..L. Villarroel. On software implementation of Petri
Nets and Colored Petri Nets using high level concurrent languages. In Proc. of
7th European Workshop on Application and Theory of Petri nets, pages 207-241,
Oxford, England, January 1986.

F. Kordon. Proposal for a Generic Prototyping Approach. In IEEE Sympo-
sium on Emerging Technologies and Factory Automation, Tokyo, Japan, number
94'TH8000, pages 396—-403. IEEE Comp Soc Press, 1994.

F. Bréant and J.F. Peyre. An improved massively parallel implementation of col-
ored Petri nets specifications. In IFIP-WG 10.8 working conference on program-
ming environments for massively parallel distributed systems, Ascona, Switzer-
land, 1994.

F.J. Garcia and J.L. Villarroel. Decentralized implementation of real-time systems
using time Petri nets. application to mobile robot control. In D.F. Garcia Nocetti,
editor, Proc. of the 5th IFAC/IFIP Workshop, Algorithms and Architectures for
Real Time Control 1998, pages 11-16. Pergamon, 1998.

