WEIGHTED TRANSPLANTATION
FOR FOURIER-BESSEL SERIES

By

OSCAR CIAURRI* AND KRZYSZTOF STEMPAK

Abstract. We prove weighted transplantation inequalities for Fourier—Bessel
series with weights more general than previously considered power weights. These
inequalities follow by using a local version of the Calderdn—Zygmund operator the-
ory. The approach also allows us to obtain weighted weak type (1, 1) inequalities.
As a typical application of transplantation inequalities, a multiplier result for the
expansions considered is proved within a weighted setting with general weights.

1 Introduction

Givenv > 4 ,let A\, ,, n = 1,2,..., denote the sequence of positive zeros of
the Bessel function J, (z). Then the functions

Ur(@) = dn Qo) 2Ty )y iy = VAN Q)7
n=1,2, ..., form a complete orthonormal system in L?((0, 1),d z). In particular,
G (@) = V2 costr(n - 1/2)),  $}/(a) = VEsin frna),

forn =1,2,... . Given a function f on (0, 1), we associate to it its Fourier—Bessel
series

F@) ~ 3 (), cz<f>=/0 F@0 () do,

provided that the coefficients exist. A comprehensive study of Fourier—Bessel
expansions is contained in Chapter XVII of Watson’s monograph [11].
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134 0. CIAURRI AND K. STEMPAK

The main goal of this paper is to prove a weighted transplantation theorem
for Fourier—Bessel expansions. Thus, given p > —1,v > —1, we define the
transplantation operator 7, on L?((0, 1), dz) by the series

T f@) =Y chi(Hn(x), feL((0,1),da),

convergent in L2((0,1), dz).

In [3], we proved a transplantation result for Fourier—Bessel series by following
Muckenhoupt’s approach from [8]. This approach allowed us to consider power
weights. In the present paper, we use the theory of Calder 5n—Zygmund operators
to include general weights. To be precise, the transplantation operator 7', is a
Calderon—Zygmund operator only for u,v > 1/2; see Remark 4.3. The notion of
a local Calderéon—Zygmund operator, introduced in [10] by Nowak and Stempak
(and implicitly included in [8]), is applicable also in our case, allowing us to treat
the whole range of parameters u,v > —1. Even in the case u,v > 1/2, treating
Tyv as a local Calderon—Zygmund operator brings an additional advantage: more
weights are admitted when comparing with results that could be obtained by using
the (global) CZ theory. The reason for this is that for v, u > 1/2, the condition
(2.8) is stronger than any of the conditions (2.1) and (2.2), or (2.11) and (2.13)
(also (2.3) is weaker than (2.8)); see Proposition 2.4.

In addition, our new approach also gives weighted weak type (1, 1) inequalities
(these were not discussed in [3]). Since Fourier—Bessel expansions should be
treated as discrete analogues of Hankel transforms, it is worth noting that the
approach we use here is a natural counterpart to the approach developed in [10]
for the Hankel transform. Let us also mention that in [3], we considered a slightly
more general setting by allowing a shift in the order parameter, i.e., by writing

nim» M an integer, in the definition of T, f. Here, for the sake of simplicity,
we omit this generalization (but our main results remain valid in this more general
setting as well).

Denoting by L(z,y) the kernel associated with the operator T,,,, we consider
the decomposition

T =Ty, + T3, + T,

where T}, and T, are integral operators related to the kernels

L(Z,Y)X{(z.y):0<y<e/2y  aNAd  L(Z,Y)X{(z,y)min{1,32/2} <y<1}s
respectively, and T}, = T,, — T, — T2,. The operators T)j, and T, will be

analyzed by means of weighted Hardy inequalities. To handle Tg,,,

we apply the
aforementioned local Calderén—Zygmund theory.



WEIGHTED TRANSPLANTATION ESTIMATES 135

Throughout the paper, we use fairly standard notation. Thus, for a weight w
on (0, 1) (a nonnegative measurable function such that w(z) < oo, a.e.), LP(w) and
L'*°(w) denote the weighted L? and the weighted weak L' spaces (with respect to
Lebesgue measure) consisting of all functions f on (0, 1) for which

1 1
HfHLP(w) = (/0 \f(x)w(w)\” d:E) Y < 00
or

I f I pree (w) = Sup(t/ w(x) dz) < oc,
t>0 {0<a<1:|f(z)|>t}

respectively. If w = 1, we simply write L? or L. For 1 < p < oo, p’ denotes its
conjugate, 1/p+1/p' = 1. By (f, g) we mean fol f(z)g(z) dz whenever the integral
makes sense. We frequently write CZ to abbreviate the term “Calder 6n-Zygmund”.

The structure of the paper is as follows. In Section 2, we state the main results
of the paper; they are contained in Theorems 2.1, 2.2 and 2.3. Section 3 is focused
in the development of the theory of local CZ operators in our setting. In Section 4,
we define and analyze the kernel of the transplantation operator T',,,. To prove the
main results of this section, Proposition 4.1 and Proposition 4.2, we heavily exploit
arguments from our previous paper [3]. Finally, in Section 5, we provide proofs of
the main results.

The authors are highly indebted to the referee for comments that improved the
presentation.

2 Statement of results

Given a weight function w on (0, 1), consider the following set of conditions:

! . 1/ " - . 1/p’
2.1 sup (/ w(z)Px~PHF3/2) dw) p(/ w(z)P g WH1/2) dm) ! < o0,
r 0

o<r<1

r B 1/ 1 ’ ’ 1/ !
2.2) sup (/ w(z)PzPV /2 da:) p(/ w(z) Pz P /2 da:) ! < oo,
0 T

0<r<1

1 v p, (7 ) 1/p’
2.3 sup /wmpda: /ww‘pdw < oc.
( ) O<u<v<min{1,2u} ¥V = U( u ( ) ) ( u ( ) )

For a weight w satisfying (2.3), we write w” € A, 1,.(0, 1) and say that w? is a local
A, weight. The left side of (2.3) is then called the A, o, norm of w?. We admit
1 < p < o0 when considering conditions (2.1), (2.2), and (2.3). Here and later on,
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for p’ = oc integrals of the form appearing in (2.1)—(2.3) have the usual interpreta-
tion. For example, the second factor in (2.1)is taken as ess sup,,.¢ (g [w(z) ~'2#+1/2].
It is easily seen that for a power weight function w(z) = 2%, a € R, (2.1) is satisfied
ifandonlyifa < —1/p+(u+3/2),(2.2)is satisfied ifand only ifa > —(v+1/2)-1/p,
and (2.3) is satisfied for each a € R. The condition (2.1) is necessary and sufficient
for the weighted Hardy inequality

2.4)

(f

to hold, while the condition (2.2) is necessary and sufficient for its dual version

(2.5) (/01 "H/?/ f(t)dt dm /‘w g2 f( )‘ )1/p

to be satisfied; this follows from [7, Theorems 1 and 2]. For 1 < p < oo, the local
A, condition (2.3) for w? is sufficient for the estimate

w(z)x~ (1+3/2) / f@)dt d;g /‘w —(u+1/2) f(w)pdm)l/p

2.6) / T f(2)w(@)Pde < C / | @)w(@)Pdz

to hold, where T represents a local Calder on—Zygmund operator (see Definition 3.2
below). When p = 1, (2.3) is sufficient for the weighted weak type (1,1) inequality

@2.7) o) dr < %/01 f(@)w(@)dz, A> 0,

/{0<x<1:|Tf(x)>>\}
to hold. These estimates for local Calderon—Zygmund operators are contained in
Theorem 3.2 (see also [10, Section 4]).

Recall that the (global) A, condition for w?, 1 < p < oo, is

(2.8) sup

1 v 1/p v ) 1/
P -p
0<u<v<1 U — U (/u w(z) dw) (/u w(z) dw) < 00.

Here, as in (2.3), the second integral is understood as ess sup ,, ,) w™t. If a weight
w satisfies (2.8), we write w? € A,(0, 1) and denote the left side of (2.8) by [|w?|| 4,
Finally, note that if a weight w on (0, 1) satisfies any of the conditions (2.1)~2.3)
or (2.8), then either w = 0 or w(z) > 0 z-a.e. (here the convention 0 - co = 0 is

used); and the same remark applies to the conditions (2.11)—(2.13).

The main results of the paper are contained in the following theorems.
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Theorem 2.1. Let p,v > —1, u Z v, and 1 < p < oc. Let the weight w satisfy
conditions (2.1), (2.2) and (2.3). Then

1/p

(2.9 (/OlTu,,f(gU) |Pd;g v <C / |f(x |Pda:)

Jor all f € L* N LP(w). Consequently, T,, extends uniquely to a bounded linear
operator on LP(w), and denoting this extension again by T,,,,, we have for

f € LP(w),

(e}
(2.10) Ty flz) ~ Y ch
n=1
In order to treat weighted weak type (1,1) inequalities for the transplantation
operator for a given weight function w on (0,1), consider the following set of
conditions:

Lrrys w(x) pht1/2
2.11 — ,
@11 Oililzl(/r (l‘) zht3/2 dw) <ises(§%) w(z) ) <00
(2.12) sup rvt1/? (/Tw(a:) da:) (ess sup;> < oo,
0<r<1 0 ae(r1) V32w (z)
(2.13) sup (/T (z)éw”H/Qw(m) d:n) ess sup _ < o0
’ o<r<iNJg \T z€(r,1) xv+3/2(x) -

In (2.11) and (2.13), we assume that there exists 4 > 0 such that the corresponding
quantities are finite. Moreover, (2.12) is considered for v € (—1,—1/2], while
(2.13) is taken into account for v € (—1/2,00). It is easily seen that for a power
weight function w(z) = 2%, a € R, (2.11) is satisfied if and only ifa < 4+ 1/2 and
(2.12) and (2.13) are satisfied if and only if a > —(v + 3/2) (> if v = —1/2). Let
P,, @, n real, denote the Hardy operators acting on functions defined on (0, 1):

x):x_”/mf(t)dt, Qnf( —a:_”/f )dt, 0<z<l.
0

The condition (2.11) is necessary and sufficient for the inequality
C 1
(2.14) w(z)dx < —/ |f (@) |~ Dw(z)de, X >0,
{0<2<1:| Py ys o f ()| >N} A Jo

to hold; this follows from [2, Theorem 2] with p = ¢ = 1, n = u+ 3/2 > 0,
U(z) = w(z) and V(z) = =t/ yw(z) for z € (0,1) and U(z) = V(z) = 0 for
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x > 1. The condition (2.12) in the case v € (—1,—1/2] and the condition (2.13) in
the case v € (—1/2, 00) are necessary and sufficient for the inequality

(2.15) w(z)dx < g /1 |f($)|$"+3/2w($)d$, A>0,
{0<2<1:|Q_(vg1/2) f(z)|>A} A Jo

to hold; this follows from [2, Theorem 4] and [2, Theorem 5] with p = ¢ = 1,

n = —(v+1/2), Uix) = w(z) and V(z) = 2*+3/2w(z) for = € (0,1) and

U(z) =V(z) =0forz > 1.

Theorem 2.2. Let p,v > —1, u # v, and let w be a weight on (0,1) that
satisfies (2.11), (2.3) with p = 1, and either (2.12) or (2.13), depending on whether
ve(-1,-1/2lorv e (-1/2,00). Then

1
/ w(z) dz < 9/ F(2)w(z)dz, A>0,
{0<2<1:| Ty f(2)|>A} A Jo

Jor all f € L*> N L' (w). Consequently, Ty, extends uniquely to a bounded linear
operator from L' (w) to L* (w).

As usual, transplantation theorems are used in proving multiplier theorems. A
bounded sequence {m, }52, is called an L”(w) multiplier for the {¢} }-expansions

if
H;mndnwz o S DH; s

with D > 0 independent of any sequence d = {d,}52; such that d,, = 0 for all

LP(w)’

but finitely many indices. We say that a bounded sequence {m,}52, satisfies
Marcinkiewicz’s condition provided

2% —1
B(m,1,1) = sup Z |y, — Mpp1] < 00.
kzanQk—l

The class of all sequences satisfying the above condition is denoted by M (1,1).

Theorem 2.3. Let v > —1/2, 1 < p < oo, and let w be a weight on
(0,1) satisfying (2.1) with u replaced by v and (2.2). In addition, assume that
wP € Ap(0,1) and m = {mp}5>, € M(1,1). Then

)

Lr(w)

(e} (e}
2.16 | dni? < CB(m,1,1)||> davs
(2.16) zzjm w1y S CBOMT, >; nth
with C > 0 not depending on m and d = {d,}52,, where d,, = 0 for all but finitely
many indices. Consequently, the linear operator ¥ — dyh, initially defined
on the subspace spanned by {¢% : n = 1,2,...}, extends uniquely to a bounded
operator on L?(w).
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More subtle versions of the above theorem could be stated and proved; however,
this would require a more complicated set of assumptions.

Finally, we state two result which clarify relations between different conditions
we imposed on w.

Proposition 2.4. Letpu,v > —1/2,1 < p < oo, and let w be a weight satisfying
(2.8). Then for 1 < p < oo, w verifies (2.1) and (2.2), while in the case p = 1, w
satisfies (2.11) together with (2.13) whenv > —1/2 or (2.12) when v = —1/2.

Proposition 2.5. Let 1 < p < oo be given. The class of weights w that satisfy
Q.D)withp = —-1/2, 22)withv = —1/2 and (2.3) (so that w? is a local A, weight)
coincides with the class of weights w that satisfy (2.8) (so that w? is an A, weight).

3 Local CZ kernels

It is clear that the CZ theory (specified to R) works, with appropriate adjust-
ments, when the underlying space is (0, 1) equipped with the Lebesgue measure
dz. Thus we use properly adjusted facts from the classic CZ theory (presented,
for instance, in [4]) to the aforementioned setting without further comments. In
addition, we follow rather closely [10, Section 4], where the notion of local CZ
operator on (0,0c) x (0,0c) was introduced. In particular, we prove Proposition
3.1 by adapting arguments used in the proof of [10, Proposition 4.1].

Let A = {(z,z) : x € (0,1)} be the diagonal of (0,1) x (0,1). We say
(cf. [4, p. 99]) that K': (0,1) x (0,1) \ A — —C is a standard kernel on (0,1) x (0, 1)
if, for z,y, 2z € (0,1),

(3.1 K (z,y)] < Clz —y|™",

32)  |K(z,y) - K(z,2)| <Cly—zlle —y|™* if|z—y| > 2y - 2|,

(33)  |K(z,y) ~K(zy)| < Clz —zlle —y| 7> if |z —y| > 2z —z].

Note that by (3.2) and (3.3), standard kernels are continuous. Clearly, they also

satisfy the Hormander conditions

/ |K(z,y) — K(z,2)|dz < C,
{ze(0,1):|z—y|>2|y—=[}

/ K (a,) = Kw,y)ldy < .
{y€(0,1):[z—y|>2|z—w]|}

for all z,y,w,z € (0,1). It is also clear that the gradient condition
(3.4) VE (z,y)| < Clz —y|~>,
implies (3.2) and (3.3).
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Definition 3.1. A local standard kernel on (0,1) x (0,1) is a kernel
K:(0,1) x (0,1)\A — C supported in the region

D={(z,y) € (0,1) x (0,1): 0 < z/2 <y < 3x/2}
and satisfying (3.1)—(3.3) on D.

Definition 3.2. An operator T is a local Calderon—Zygmund operator if
1) T is bounded on L?;

2) there exists a local standard kernel K associated with 7" such that

1 pmin{1,3z/2} _
(Tf.g) = / / . K () (4)9(@) dy dx

forall f,g € C2°(0,1) with disjoint supports.

Proposition 3.1. Let K (z,y) be alocal standard kernel on (0,1) x (0,1). Then
K satisfies the Hormander type conditions

(3.5) / K(z,y) - K(2.2)| |f ()| de < OMf(y), y.z€T,
(0,1)\21

(3.6) / K(z,y) — K(w,y)||f@)|dy < CMf(z), awel,
(0,1)\21

for all intervals I C (0,1). Here M denotes the (non-centered) Hardy-Littlewood

maximal function on (0,1)

Mf(@)= sup —

0<u<z<v<1 U — U

[ sl

and 21 is the interval with the same center as I and such that |2I| = 2|I|.

Proof. We focus on proving (3.5), since the proof of (3.6) is entirely analo-
gous. Let I = (u,v) C (0,1). We assume that u < y < z < v; the analysis of the
case z < y is similar.

Since 21 = ((3u —v)/2, (3v — u)/2), by the assumption on the support of K, the
region of integration in (3.5), is the set

(y/2,min{32/2, 11\ ((Bu - v)/2, (3v — u)/2).

Note, that the supports of K (-,y) and K (-, z) overlap only on (z/2, min{3y/2,1}).
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Thus, proving (3.5) reduces to showing that each of the three integrals
I =/ |K(x,y)| | f(x)ldz, By = (y/2,min{z/2, (3u —v)/2}),
By

b= [ 1K) - K21 do.
By = (z/2,(3u—v)/2) U ((3v — u)/2, min{3y/2,1}),
I = /B K (2,2)||f(2)| dz,  Bs = (max{3y/2, (3v — u)/2}, min{32/2, 1}),

is bounded by the right side of (3.5). Here we use the convention that (a,b) = () if
a>b.

Consider I first. If v/u < 3/2, then By = (y/2,2/2); and for z € (y/2,2/2), we
havey —x > y—2/2 > y/4 (the last inequality follows since z < v < 3u/2 < 3y/2).
Thus

z/2 z/2 min{3y/2,1}
n< c/ @l g, < 9/ (@) de < 9/ F(@)| de < CM f(y).
y/2 |y —£E| Y Jy/2 Y Jy/2

Ifv/u > 3/2, then 3/4 > (3 — v/u)/2. Hence, for z € (y/2, min{z/2, (3u — v)/2}),
y — x > y/4. This is because 3y/4 > 3u/4 > (3u — v)/2; therefore,

y—z>y— Bu—v)/2>y/4
Consequently,
(Bu—v)/2 min{3y/2,1}
nec SR e < © ()] dz < CM f(y).
y/2 ly — | Y Jys2
Considering I, we write £ = v — u and use conditions (3.1), (3.2) to get

@l

Bs |z — y|? .

L<C |y_z|2 |f(z)| dz < CF
B |£E—y|

The last integral multiplied by £ is less than (in fact, the series below terminates)

- x
. / |f( )| X(z/2,min{3y/2’1}) (m) dx

2
S we) 2k <)z —y <2e 10y [T — Y]

> 1

< -

<t G
k=-1
<11

< -

< k:E—l oF k7 |f(z)| dx

{z€(0,1):|z—y|<2k+1{}N(2z/2,min{3y/2,1})

F@IX(: 2mingay 2 (@) da
/{z€(071):z—y<2k+1l} (/2 Bu/21)

o0

< 4( > 2’°)Mf(y)-

k=—-1
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Finally, consider I5. If v/u < 4/3, then Bs = (3y/2,min{3z/2,1}); and for
x € (3y/2,min{32/2,1}), we have x — z > 3y/2 — z > y/6 (the last inequality
follows from the fact that z < v < 4u/3 < 4y/3). Thus

min{3z/2,1} ‘f(il?)‘ g min{2y,1}

I;<C

< |f(z)| dz < CM f(y).
3y/2 |z — 2| Y Jy/2
If v/u > 4/3, then (3 — u/v)/2 > 9/8. Hence, for x € (max{3y/2, (3v — u)/2},
min{3z/2,1}), z — z > z/8. This is because 9z/8 < 9v/8 < (3v — u)/2; therefore,
x—2z>(3v—u)/2 - z> z/8. Accordingly,

min{3z/2,1} min{3z/2,1}
L<C @ 4 < 9/
z Jo

3y/2 |z — 2|

@) de < OMF(y).

Consequences of the estimates from Proposition 3.1 are exactly like those
formulated in [10, Proposition 4.2] and [10, Theorem 4.3] for local CZ operators
in L2(0,0c). Here we state a counterpart of [10, Theorem 4.3] for the sake of
completeness; we do not provide the proof, since it is a straightforward modification
of the corresponding proof from [10]. The result of Theorem 3.2 is essential in the
proofs of our main results.

Theorem 3.2. Assume that T is a local Calderon—Zygmund operator and let
w be a weight on (0, 1) such that w? € Ap10c(0,1).
(@) If'1 < p < oo, then T extends to a bounded linear operator on L?(w);
(b) if p =1, then T extends to a bounded linear operator from L' (w) to L*:*°(w).

Moreover, the corresponding LP and weak type constants depend on w only through
the Ap 1o norm of wP.

4 The kernel of 7,

We start with obtaining estimates of the transplantation kernel
oC
(4.1) L(r,z,y) = Y r"h (@) vk (y),
n=1
which is the integral kernel of the operator

Ty f(z) =Y ek (f)is(@),

n=1

ie.,

Ty f(2) = /0 Lr,2.9)(y) dy.
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Proposition 4.1. Let y,v > —1. Then
gTHTI Y20 <y < af2,
(4.2) |L(r,z,y)| < C ¢ |z —y[7F, /2 <y < min{1,3z/2},
VT2 v=3/2 0 min{1,32/2} <y < 1,
and
4.3) \VL(r,z,y)| < Clz —y| %, /2 <y < min{l,3z/2}.
In both cases, C is independent of 0 < r <1,0<x < land0 <y < 1.

Proof. The first and third estimate in (4.2) is included in [3, Proposition 4.3];
the middle estimate in (4.2) follows from (5.1) in [3, Proposition 5.1] (and the
estimates contained in [3, Lemma 3.1] for n = 0). Therefore, we concentrate on
proving (4.3).

To show (4.3), it is enough to verify that

|55

since the result for ~ follows in a similar fashion. By using the identity

T (2) = (1) 2) Tu(2) = Tug1 (2),

we have W) 2 .
n +
= Ty VA — Xy i Oy,
In this way,
oL 20+ 1 n
(44 5oy = “y (r,2,y) Zr Y8 (@) dn w N 292 s (A ).

For the first summand on the right of (4.4), is clear from (4.2) that

C C
yle —yl = (z—y)?

2+ 1
‘ s L(r,z,y)| <

To treat the second summand, we write
7" z,y) Zrn¢ )dn A\, u( nuy) 1/2 Ju+1(>\n uy)

and modify the argument from the proof of [3, Proposition 5.1], case s = 0, proving
that

4.5) E(r.a,y)| < Clo -y, /2 <y < min{1,30/2}.
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We use (see [5, p. 122])

M
B,
(4.6) Z( smz—}—z—cosz) + Hy(z), 2z — oo,

Jj=0

with M = 2, where |Hy(2)] < Cz~ M+ to expand (A, 7)/%J,(\,,z) as well
as (An,u9)'/?Jy41(An,py). Then, taking N = [1] ~ [i], we write

L(r,z,y) = Zfﬂ Ty~ Oja(e,y) + Ti(@,y) + Ja(,y) + G(z,y).
7,0=0

Here

Z Tn'QZJ dn ,u)\n u( nuy) 1/2 Ju+1(>\n uy)

for the remainder sum that starts fromn = N, the O ; terms capture the part coming
from the main parts of the expansions and are the sums of four terms of the form

Dj Z rnd”ﬂ’dn:u)‘n,];/)‘n,ljl{Sm}O‘n,Vm){Sm}O‘n,uy):
n=N

COS COSs

(Dj, is a product of A, ; or B, ; and A, 1, or B, depending on the choice of
the sine or cosine); J; gathers the part that comes from the main parts of the second
expansion and the remainder of the first one, hence its absolute value is bounded

by

2 00 .
sin
\Ji(z,y)| <C Z Z r"dpydn,yAn, uHQ(/\n,Vx){COS}(/\n,uy)‘
1

n=N

> sin
+Cy > r"dn,ydeQ(Am,,x){COS}(Awy)

2

>
1 n=N
2 00

53 st N Haln) |
1 —

n=N

sin
+Cy~ 2
cos

}O‘n,uy)‘

(the sign Z? indicates that we add two series, one for the choice of the sine, the
other for the cosine); J» acts as .J; but with the position of the both expansions
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switched, and its absolute value is controlled by

i

|J2wy\<C’

= sin
Sor dnydnuxw{ }(An,yx)HQ(Awy)

=N COSs

-1

Z " dn,vdn,uAn,u Ay u{sm}(Amuw)H?(}\n,uy)‘
cos

n=N

oo S-
5~ et i 0 O )

COS

-2

o
o

n=N

finally, G captures the part that comes from the remainders,

G(l‘, y) = Z Tndn,t/dn,uAn,uH2(An,ux)H2(/\n,uy)-
n=N
We now analyze separately each of the thirteen summands in the above decom-
position of L and bound them by C|z — y| 2. In what follows, we frequently use
the fact that d,, , = O(1) and A,,, = O(n), and similarly for d,, , and A,, ,,.
For F(z,y), using [3, (2.1), (2.2), (2.5)], we have
N-1
|F(l‘}y)| < Cl,u+1/2yu+3/2 Z prhuts < Cxl/+u+2Nu+u+4 < 01'72,
n=1
which is dominated by C|z — y|~2 in the region considered.
For J;(z,y) (the same reasoning works for J(z,y)), using Ho(z) = O(z72),
z > 1, and again [3, (2.1), (2.2)], we show that

\Ji(z,y)| < Cx~ (Zn in%—}—y”in*‘l) < Cz 2.
n=N n=N

In a similar way, we show that

|G(z,y)| < C(zy)~ Z n? < Cx SNt <Oz
n=N
The remainder part of the proof is concerned with a more delicate analysis of
the 277y ~'0;,(z,y) terms. We start with the 2y 20, »(z,y) term. It is clear that
(e}
2%y ?0s2(z,y)| < Cz™* Z n3 < Cx *N7?< Oz
n=N
Similarly, the same bound is obtained for |z 2y 1041 (z,y)| and |z~ 1y 201 2(z,y)|.
Using [3, Lemma 4.1] (it is immediate to check that cos (A,,,,y) may be replaced
by sin(A, ,y) in this lemma; we use this extended form of [3, Lemma 4.1] here
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and later on) and [3, Lemma 4.2] with j = 2, v = 1 and ¢ = 0, the estimate
127204,0(z,y)| < Clz — y|=2 follows once we show that

= sin sin 1 2z
> —Esi0(n,z,y) (mna) (mny)| < C— log :
= n cos cos x |z — y|

where Es ;1 (n,z,y) is as in [3, (4.3)]. The form of E5 ;¢ reduces this task to

1
z2

showing the estimates

5 (i < s (2257

n=N

4.7)

and

i %qn(:ﬂ,y){zi}(mm){sm}(mw‘ <G,

n=N

where |g,(z,y)| < Cn~!. This last series is absolutely convergent, and the bound
follows. The estimate (4.7) is the same as [3, (5.3)] and was proved there. The
estimate for y=20p »(z, y) follows in a similar fashion (Ep _1 ¢ is involved).

Estimating =y =10y ;1 (z,y), we use [3, Lemma 4.1] and [3, Lemma 4.2] with
j=1,7=0and ¢ = 0, and end up with the situation of the two previous estimates.

Estimating =101 o(z,y), we use [3, Lemma 4.1] and [3, Lemma 4.2] with
j=1,v=1and ¢ = 1to show that z7'0; o(z,y) is the sum of four terms of the
form

o0 . .
_ n sin sin
s upt) 3 1 B ) { o) {72 o),
= cos cos
where u and v are bounded functions on (0, 1), or, after applying trigonometric
identities and expanding E 1 1(n, z,y), the sum of four terms of the form

@9 i) Y (do+ 20D 0 ) T e k),
n=N

here 4 and ¥ are bounded functions on (0,1), Ao is a constant, A;(z,y) is a
polynomial in z and y of degree 1 and |q%1)(x,y)\ < COn~2for0 < z,y < 1. The
expression in (4.8) equals = ~! times the expresion in (5.4) of [3] corresponding to
the case s = 0. We proved in [3] (cf. the proof of [3, Proposition 5.1]) that this
expression equals

u(@,y) Pr(m(z = y)) + v(z,y)Qr((z - y)),

where u and v are bounded functions on (0,1) x (0, 1), plus some terms whose
absolute values are bounded by either C'log ((2z)/|z — y|) or C(2 — z — y)~".
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Each of the aforementioned bounds is controlled by C|x — y| ~!; in addition, also
P.(m(x —y)) as well as |Q, (7 (z — y))| are bounded by C|z — y|~! for 0 < z,y < 1.
Taking into account the factor z ~! the estimate [z~ 01 o(z,y)| < C|z—y|~> follows.
The bound of y ~*Og 1 (z,y) is treated in a similar fashion (Eq o1 is involved).

It remains to consider Ogq(z,y). Using once more [3, Lemma 4.1] and
[3, Lemma 4.2] with j = 0, v = 1 and ¢ = 2 shows that Og(z,y) is the sum
of four terms of the form

u@h(y) 3 Bt ){ T ) { 2 o),

=N COS COS

where u and v are bounded functions on (0,1). After applying trigonometric
identities and expanding Eq 1 2(n, z,y), we treat Og o(x, y) as the sum of four terms

of the form
i) - r"n Al(x,y) AQ(J: y) (2) z sin an(z
49) (a7t 3 (o + L BT 4w { D a0,

where 4 and ¢ are bounded functions on (0,1), Ao is a constant, A;(z,y) are
polynomials in z and y of degree i and |q7(12)(x,y)\ < Cn3for0 < 2,y < 1. The
expressions resulting from each summand in the expansion of Eg ; 2(n,z,y) other
than the first one have already been discussed in the treatment of 01 o(z,y); they
are bounded by C|z — y| . Therefore, we are left with the series

i r”n{Sin}(wn(aj +y)).

=N COS

It is possible to extend the summation in the above series from n = 1 since

N-1 N-1

Z r”n{sm}(wn(a::ty))‘ < Z n<CN?<Cr 2
cos

n=1 n=1

The series with the plus sign and summation starting from n = 1 are easily treated.
Indeed, assuming 0 < z,y < 3/4, we apply [3, Lemma 3.3] to obtain

' {ili}ww +9)) < Cw+y) 2 < Ca?

Assuming 3/8 < z,y < 1, writez =1—wu,y =1—wv. Then0 < u+ v < 3/2; hence

i { }Wn(u+v))

n=1

Clu+v)™
(2—1‘— ) 2:

= sin
Zr”n{ }(71’71 z+y))
cos

n=1

| /\
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and the last expression is bounded by C|z—y| ~2 on the considered region. The series

with the minus sign and summation starting from n = 1 gives either < 5 (m(x —y))

or d(ﬁf (m(x —y)). Both terms are bounded by C|z — y|~2; cf. [3, Lemma 3.1] taken

with n = 1. The proof of (4.3) is finished O

Proposition 4.2. Let u,v > —1. Then for every z # y, 0 < z,y < 1, the limit
L(z,y) = lim L(r,z,y)
r—1-
exists and satisfies
xR 2yrtl2 0 <y < )2,
L(z,y)| < C< |z —y|™, x/2 < y < min{1,3z/2},
v t12y=v=3/2 0 min{1,3z2/2} <y < 1,
and
(4.10) |VL(z,y)| < Clz —y|™?, /2 <y < min{l,3z/2}.
In both cases, C' is independent of 0 < £ < 1and 0 < y < 1.
Proof. Once we prove the existence of the limit, the required estimates follow

directly from Proposition 4.1. To be precise, justifying (4.10) requires also the
identity

0 .. .0
4.11) a—y(rgql_ Lir,z,y)) = lim 5y 720)
and similarly for %. Assume for the moment that lim,_,; - L(r, z,y) exists; what is
still needed for proving (4.11) is the fact that for fixed z, 0 < = < 1, the convergence
on the right of (4.11) is locally uniform in y. Since

2 1 ~
= I'L_'_ L(r,x,y)—L(r,m,y)

0
ey
3y (r,z,y)

(cf. (4.4) and the notation that follows), it is sufficient to check that for given =z,
0 < z < 1, the convergence of L(r,z,y) and L(r,z,y) with r — 1~ is locally
uniform in y. For L(r,z,y) this can be explained along the lines of the proof
of the existence of lim,_,,- L(r,z,y); see the lines that follow. For z(r, x,y), the
argument is essentially the same; hence we do not provide the details (see the proof
of Proposition 4.1).

Using (4.6) with M = 1, we expand (A )2 J,(Anv2) and (A y) 2 Tyt (M)
to get

1
L(r,a:,y) = Z m_jy_loj7l(r7w7y) + Jl(r:m:y) + JQ(T,Q?,y) + G(r,a:,y).
J,1=0
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Here the O;,; terms capture the part that comes from the main parts of the afore-
mentioned expansions and are linear combinations of expressions of the form

Z T"dn,udn,u&ff;/\;,ﬁl { sin } Conn) { sin } o)
n=1

COS COS

J1 gathers the part that comes from the main parts of the second expansion and the
remainder of the first one and hence is a linear combination of terms of the form

o0 .
sin
53 e A O s, 501
n=1

Jo acts as J; but with the position of the both expansions switched and hence is a
linear combination of terms of the form

s = " _s [sin
x E r"dy ydn 1A, Anp®)Hi(Any), 0=0,1;
P wln,pAn, {COS}( »Z)Hi(An,puy)
finally, G captures the part that comes from the remainders,

o0
G(r,z,y) = Z "y, H1(An @) Hi (A0 y).

n=1
From the bound H,(z) = O(27?%), z > 1, it is evident that each of the series as in
G(r,z,y) or in the terms entering into either .J; or J, but with the factor 7" removed,
is absolutely convergent since, for sufficiently large n, either |H;(\, )| < Cn—?
or |Hi(A,,uy)] < Cn~2 (or both). Thus, the corresponding expressions converge
with » — 1. In addition, the convergence is locally uniform in y. It is therefore
sufficient to analyze the O; ; terms. Given 7,1 € {0,1}, we use [3, Lemma 4.2] with
the given j, v = —l and ¢ = 1. Then O} can be written as a linear combination of
terms of the form

) 7" (0 + 22D 400, )) {5 om0,

where u(z,y) is a bounded function, A, is a constant, 4;(z,y) is a polynomial
and |q£tl)(w, y)| < Cn=2. We split the last series onto the three expressions corre-
sponding to Ag, A;/n and qﬁll). The expression corresponding to q%l) converges
with » — 1~ since the series as in this expression with the factor r™ removed is
absolutely convergent; in addition, the convergence is locally uniform in y. The
first two expressions also converge with » — 17, locally uniformly in y. Indeed,
the expression that corresponds to Ao contains either P, (w(z £ y)) or Q,(n(z £ vy)),
so convergence is obvious; the second expression corresponding to A /n also has
a compact form (see [12, p. 2]), and the required convergence follows. The proof

of the proposition is completed. O
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Remark 4.3. In the case pu, v > 1/2, the kernel L(x,y) satisfies the standard
CZ estimates in the whole square (0,1) x (0,1). In addition, L(z, y) satisfies (3.1)
under the weaker assumptions u, v > —1/2.

Clearly, the outermost estimates of | L(z, y)| in Proposition 4.2 are stronger than
O(|z — y|=1) if we assume u, v > —1/2. On the other hand, it may be seen in the
proof of Proposition 4.1 for the kernel L(r, z, y) (the estimate for |L(r, z, y)| follows
from (4.2), and the corresponding estimate for |V L(r, z, y)| is deduced from (4.4)).
However, if either u < 1/2 or v < 1/2, the factor L(r,z,y)y ' appearing in (4.4)
cannot be controlled by (z — y) =2 in the region 0 < y < z/2.

Remark 4.4. Forpy=—-1/2andv =1/2,

. ™ sin(my)
Lz, y) = cos (2 ) cos (my) — cos(rz)’

Indeed, a direct calculation shows

L(r,z,y) = cos ( Z (sm (mn(z +y)) — sin (7n(z — y)))

(20 5ot ) ot )

:1

n=1

Passing to the limit with r — 1~ then gives

T 1 1
Hey) = cos (Ew) (tan (ﬂ'z;y)  tan (Wz;y) >7

and an application of trigonometric identities does the job. The fact that L(z,y)
is a C* function on (0,1) x (0,1)\ A and satisfies the estimates of Proposition 4.2

now follows by inspection.
Finally, we show that the kernel L(z,y) is associated with T}, in the sense of
CZ theory.

Proposition 4.5. Let f, g € C°(0,1) have disjoint supports. Then

(4.12) (Tuv f, 9) / / (z,y)f )dy dx

Proof. Letg=>Y"". c%(9)Y%. By Parseval’s identity,

nln

(4.13) (T f,9) Zc“



WEIGHTED TRANSPLANTATION ESTIMATES 151

We show that the right sides of (4.12) and (4.13) coincide. Denoting by F(z,y)
the function from Proposition 4.2 that majorizes |L(z, y)|, we see that

//|F:Uy Yg(x)| dy dz < .

Therefore, the dominated convergence theorem justifies the second identity in the
following chain of identities

r—1-

zlim// (r,z,y) f(y)g(x) dy de
r—1

= hm Nu,rf( ) ( )

(Tuv f, 9) :/ /0 lim L(r,z y)f(y)@dydm

r—1- 0
= lim " eh()en(s)

The third identity is explained in the proof of Theorem 1.1 in [3], and the fourth
one is a consequence of [3, (1.10)] and Parseval’s identity. Finally, since the series
S0 e (f)er (g) converges (see [3, Lemma 2.2]) the last limit equals the right side

n=1"n

of (4.13). O

5 Proofs of the main results

Recall that T};, and 77, denote the integral operators

z/2 ) 1
i@ = [ Lewfe) s, i = [ L)1) dy
0 min{1,3z/2}
By taking p = 2 and w(z) = 1 in (2.4) and (2.5) it follows that T}, and T}, are
bounded on L?; see the computations in the proof of Theorem 2.1 below. Thus

3 1 2
Tp,l/ - Tl“’ - Tp,l/ - Tp,l/

is also bounded on L>. Moreover, by Proposition 4.5, T3, is associated with the
kernel L(z,y)xp(z,y) which is, by Proposition 4.2, a local CZ kernel (the gradient
estimate (4.10) implies smoothness conditions (3.2) and (3.3)). Thus TS,, is a local
CZ operator.
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Proof of Theorem 2.1. Assume that w satisfies the assumptions of the
theorem. Using the weighted Hardy inequality (2.4), we obtain

[ e serde = [ o [ w0 o] a
<c / (wi@)ar=r2 / ” v f(y) dy) da

<C/ lw(zx) f(x)|P dz.

Similarly, using the weighted Hardy inequality (2.5), we get

/\w \pda:<0/ |w(z) f(z)|? dz.

Finally, the corresponding L? inequality for T3, is a consequence of Theorem 3.2.
Thus (2.9) follows.

To prove (2.10), we first note that the existence of c#(f), f € L?(w), follows
from the assumption made on w. Indeed, we use Holder’s inequality, the estimate
[3, (2.8)] and either the fact that the second term in (2.1) for r = 1/2 is finite to
check that fol/ ? |f(z)pk(x)| dx < oo or the fact that the second term in (2.2) (with
u replacing v) is finite to verify that f11/2 |f(z)pt(x)] dx < oo. Similarly, the fact
that w satisfies conditions (2.1) and (2.2) guarantees that ¢% € L?(w). Indeed, the
estimate [3, (2.8)] and either the fact that the first term in (2.1) for r = 1/2 is finite
or the fact that the second term in (2.2) is finite show that f01/2 |p? (z)w(z)| de < oo
and f11/2 |p? (z)w(z)| dz < oo correspondingly. In the same way, the fact that w
satisfies (2.1) and (2.2) ensures the existence of the coefficients ¢¥ (T}, f) for any
f € L?(w), since then also T}, f € L*(w).

To complete the proof of (2.10), we argue as in the proof of (1.5) in [3,
Theorem 1.2]. O

Proof of Theorem 2.2. Argue as in the proof of Theorem 2.1, but using
(2.14), (2.15) and (2.7) instead of (2.4), (2.5) and (2.6). O

Proof of Theorem 2.3. We use the following multiplier result for the
sine expansions, which is a special case of [9, Theorem (9.12)], a corresponding
multiplier result for Fourier series.

Proposition 5.1. Let1 < p < co, m € M(1,1) and w? € Ay(0,1). Then for
any sequence d = {d, },>1 with d, = 0 for all but a finitely many n,

< CB(m,1,1) Hi dp, sin(ﬁnw)‘

n=1

? (w) L (w)’

o0
H Z Mmpdy, sin(rnz) H
n=1 L

with C independent of m and d.
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This theorem is obtained from Theorem 9.12 of [9] by taking there s = A =1,
1=0,9(x) =1, V(z) = w(|z/n|)?, —7 < z < 7 (so that V € A,(—1,1)), extending
the sequence {m;}32, to the sequence {m;}5 _ by settingm* ; = m; forj < 0and
mg = 0 (so that m* € M*(1,1) in the notation of [9]), and restricting the class S_;
(which appearsin [9, Theorem (9.17)]) of all trigonometric polynomials to the class
of odd trigonometric polynomials, i.e., functions of the form f(z) = Z\J‘\SN djeli®,
d_j =d;, N > 0. Since the hypotheses imposed on w allow to transplant between
v > —1/2 and p = 1/2 back and forth (note that the assumption w? € A4,(0,1)
implies (2.1) and (2.2) specified to u = v = 1/2), the main statement of Theorem 2.3

now follows from the inequalities

n=1

<c, H M dr, WH
Low) = 12 nz::l L P

Lr(w)
> dnt,
n=1

where C, , denotes the constant appearing in (2.9). The statement of Theorem 2.3

< CCy1 pBOm,1,1)| i At}
n—=1

< CC,12B(m,1,1)Cy 5, Lo(w)

concerning the extension on L?(w) follows from the fact that the subspace spanned
by {¢ :n =1,2,...} is dense in LP(w).

Let us explain this last claim. Since by assumption w satisfies (2.2) and (2.1)
with u replaced by v, the coefficients ¢’ (f), f € LP(w), exist and % € LP(w),
n = 1,2,... (see the proof of Theorem 2.1). What is more important, an imme-
diate adaptation of the proof of [3, Lemma 2.1] shows that ¢/ (f) = O(n?) for
p = p(f,v,p,w) and ||} || Lr(w) = O(n") for T = 7(v, p, w) (again, the assumptions
imposed on w are essential). With these two asymptotics, it is easy to see that the
argument used in the proof of [3, Lemma 2.3] can be adapted to show the density
of the span of {¢)} : n =1,2,...} in LP(w). O

Proof of Proposition 2.4. If1 < p < oo, it is sufficient to check that w
verifies (2.1) and (2.2) fory = —1/2,v = —1/2, since the cases u > —1/2,v > —1/2
then follow. If w satisfies (2.8), then w? € A4,(0,1); hence
(5.1) lwM fl|r» < Cllwfllze-

Since the Hardy operator P; is dominated by M,

L[ swa] <2use. se 0,
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it follows that
wie) [*
(5.2) |22 [ 1w, < clue)ys@).

This is (2.4) for p = —1/2; hence w satisfies (2.1) with y = —1/2. On the other
hand, if w satisfies (2.8), then w " € A, (0,1); hence (5.1) is satisfied with w~?
and p' replacing w and p. Thus (5.2) holds with the analogous replacement. It is
easily seen that the dual inequality to (5.2) with the aforementioned replacement
is (2.5) with v = —1/2; hence w satisfies (2.2) with v = —1/2.

In the case p = 1, the argument is similar. If w satisfies (2.8) with p = 1, then
w € A1(0,1); hence

[Mgllpreew) < Cllgllpsw)-

Consequently, given p > —1/2, it follows that
|Purayaf (@)] < [PU(F O HFYD)(@)] < 2M (F(0)1~0F2)) (2);
therefore,
| Pssraf ey < CIE@E™ D L.

This is (2.14); hence w satisfies (2.11). On the other hand, if w satisfies (2.8) with
p =1, then

1 v
/wSC’essinfw(a:), 0<u<wv<l
v—u f, z€(u,v)

This is the A; condition, readily seen to be equivalent to Mw(z) < Cw(x) a.e.
(cf. [4, p. 134]), which is necessary and sufficient for

[Mgw™"|[p= < Cllgw™"||p=
to hold (cf. [6, Theorem 4]). Hence, given v > —1/2, we obtain
(5.3) 1Psapafw ™| o < O (@)™ P w(@) 7|

Since the dual to L (w) is L>(w~!) (with the pairing h fol hp, p € L®(w™ 1)),
it is easily seen that the dual inequality to (5.3) is

||Q7(l/+1/2)f||L1(w) < C||f(33)$v+3/2 ||L1(w)’

which implies (2.15); thus (2.13) when v > —1/2 or (2.12) when v = —1/2 follow.
(Note that for v = —1/2, (2.12) implies (2.13) with any 6 > 0; however, (2.13) was
claimed only for v > —1/2.) O
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Proof of Proposition 2.5. One of the two required inclusions is contained
in Proposition 2.4. Checking the other inclusion, we note that it can be easily read
off from the proof of Theorem 2.1. In fact, a slight generalization of it holds in
the case when w satisfies (2.1) with p = —1/2, (2.2) with v = —1/2, and (2.3).
Specifically, the theorem is valid for Tk replacing T),,, provided that K (z,y) is a
kernel on (0,1) x (0,1) \ A satisfying the growth condition (3.1) globally (i.e., for
all (z,y) € (0,1) x (0,1) \ A), the gradient condition (3.4) locally (i.e. in the region
{(z,y) € (0,1) x (0,1)\ A : z/2 < y < 3z/2}), and the associated operator Tk is
bounded on L2.

Thus, let ¢ = v = —1/2 and let w be a weight satisfying (2.1) with p = —1/2,
(2.2) with v = —1/2, and (2.3). The kernels

Kofo) =2t Kilo) = 2"
considered on (0,1) x (0,1) \ A are easily seen to satisfy the growth and gradient
conditions (3.1) and (3.4) (even globally!); hence the generalization mentioned
above applies to the associated operators. These operators are restrictions of the
Hilbert transform to odd and even functions considered only on the interval (—1,1)
(hence their boundedness on L? follows); see [1] for the Hilbert transform case, as
well as the case of the conjugate operator. It therefore follows from [1, Theorems 1
and 2] (or rather their straightforward generalizations) that W (z) = w(z)? satisfies
the inequalities in points (a) of these theorems (so called A) and A conditions), of
course restricted to (0,1). A remark made in the middle of [1, p. 101] then shows
that W (z) = w(z)? satisfies the A, condition on (0, 1), i.e., the condition (2.8). O
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