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In this paper the Lie algebras in which the lattice formed by the ideals is
complemented or complemented and distributive are classified. Moreover, it is
shown that the derived algebra (arbitrary characteristic) and the solvable radical
(characteristic zero) can be characterized in terms of the ideal lattice structure.
The relationship between Lie algebras having isomorphic lattices of ideals is also
studied. It turns out that, over algebraically closed fields of characteristic zero, the
Frattini ideal is preserved under ideal lattice isomorphisms and, as a consequence
of this fact, the nilpotent radical is preserved by this kind of isomorphism when the
codimension of the derived algebra is at least two. © 1995 Academic Press, Inc.

1. INTRODUCTION

Let L and M be finite dimensional Lie algebras over the field F. The
ideals of L may be taken as the elements of a lattice under the operations
of sum and intersection. We denote by J(L) the lattice of all ideals of L.
By a lattice isomorphism from J(L) onto JI(M) we mean a bijective map
a: J(L) — J(M) such that

a(INnJ)y=a(l)yNna(Jt) and a(l+J)=a(l) +a(J).

We are interested in the following problem: What is the relation
between the structure of a Lie algebra and that of its lattice of ideals? In
the present paper, we shall tackle this problem from two different points
of view. The first one is the characterization of a Lie algebra (or a class)
through its lattice of ideals and the second is the study of the relationship
between Lie algebras whose lattices of ideals are isomorphic. Analogous
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questions for the lattice of subalgebras have been considered by several
authors; a current summary can be found in [6].

In Section 2, we classify the Lie algebras in which the lattice formed by
the ideals is complemented or complemented and distributive or abelian;
the corresponding problem for the subalgebra lattice has been studied in
[8, 13]. As a corollary we show that in the case dim L /L? > 1, the derived
algebra (for arbitrary fields) and the solvable radical of L (for fields of
characteristic zero) can be characterized in terms of the ideal lattice
structure of L. These results will be used in Section 3, where we investi-
gate lattice isomorphisms. In this section, we consider the class of the Lic
algebras having the property $8: “The intersection of all maximal subalge-
bras is trivial” (i.e., the Frattini subalgebra is zero). When F has charac-
teristic zero, we show that if *® holds in L and M is such that J(L) and
(M) are isomorphic, either ¥ holds in M or F is not algebraically closed
and L and M both have a severely constrained structure. Since any Lie
algebra over a ficld of characteristic zero can be mapped onto a Lic
algebra in which 8 holds, the results in this section provide information
about the general problem of lattice isomorphisms. The final section gives
counter-examples in positive characteristic for some of the results ob-
tained in Section 3 for Lie algebras in characteristic zero.

Every Lie algebra considered in this paper will be finite dimensional
over a field F. Rad(L) (resp. Nil(L)) denotes the largest solvable (resp.
nilpotent) ideal of L. The Jacobson radical, J(L), is the intersection of all
maximal ideals of L. We denote the terms of the lower central series of L
by L =L"and L' =[L,L"'] for i > 1. The center of L is denoted by
Z(L). We shall say that L has nilpotency index n if L” = 0 but L" ' # (.
We denote by L™ = N7 _,L" J(L) denotes the lattice of all ideals of L.
For P, Q € J(L), we define the interval [P: Q] ={Re€ J(L): P <R <
Q). Clearly, [P : Q] is a sublattice of J(L). If € = (P}, _,_, is a subset of
J(L) such that P, < P, ., we shall say that € is an (#n + 1)-element chain
of length n (see [3, p. 2]). The length of the largest chain in J(L) will be
called the length of J(L). We define the socle of L, Soc(L), to be the sum
of all minimal ideals of L. We also define the abelian socle (or zerosocle)
of L, Asoc(L), to be the sum of all minimal abelian ideals. For every x in
L we denote by ad x the right multiplication, C,(x) = {b € L: [b, x] = 0}
and ad, B = {ad b restricted to A; b € B). Algebra direct sums are
denoted by @, whereas direct sums of vector space structures are denoted
by +.

2. COMPLEMENTED IDEAL LATTICES

We start with a list of definitions of terms in general Lattice Theory (see
[3]) and a preliminary lemma that was obtained by Ore in [9)].
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Let (¥, v, A ) be a lattice. We say that € has unit element if there
exists 1 € € such that @ = a A 1 for all a € 2. Dually, & is said to have a
zero element if there exists 0 € £ such that a = a Vv 0 for all @ € €. The
lattice ¥ is called bounded if it has 0 and 1. If  is of finite length, an
element a € { is called an atom if a is a minimal element in the set of
nonzero elements. Dually, an element b € & is called a co-atom if b is a
maximal element in the set of non-unit elements. We define the Jacobson
radical, J(Q), of & to be the intersection of all co-atoms of L. Note that if
L is a Lie algebra, J(L) is a bounded lattice in which the atoms are the
minimal nonzero ideals of L and the co-atoms the maximal ones. We also
observe that the Jacobson radical, J(I(L)), of JI(L) coincides with the
Jacobson radical, J(L), of L.

2.1. DeFmniTioN.  Let (£, v, A ) be a bounded lattice. By a comple-
ment of an element P € & is meant an element Q € & such that
PvQ@=1and PAQ =0.

2.2. Derintmion.  Let (2, v, A ) be a bounded lattice. Then:

(1) R is called complemented if all its elements have complements.

(2) L is called abelian if £ is complemented and given P, Q atoms of
¢ an atom C exists, different from P and Q,suchthat Pv Q=C Vv Q =
CvVv P

(3) Q is called distributive if the following identity holds in L:

(PVOYA(QVRYA(RVP)Y=(PAQ)V(QAR)V(RAP).
(2.2.3)

2.3. LemMma [9).  Let L be a Lie algebra over a field of any characteristic
and P, Q, R be ideals of L. The following two identities hold:

MP+OONQ+RNR+P)=PN(Q+R +0OnN(R+P)
+QONR+RNP.

QPN +WQ@NR+ROP)=(P+QOQNRINQP+RIN
(Q+(RNPHN(R + P).

2.4. THEOREM. Let L be a Lie algebra over a field F of any characteris-
tic. Then, we have the following

(i) (L) is a complemented lattice if and only if L = A & S, where A
is an abelian ideal and S is a direct sum of ideals of L which are simple Lie
algebras.

(ii) I(L) is an abelian lattice of length at least 2 if and only If L is
abelian of dimension at least 2. In that case, the dimension of L is equal to
the length of J(L).
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(ii) I(L) is a complemented distributive lattice if and only if L is of the
type described in (1) with A of dimension at most one.

Proof. (i) Suppose first that J(L) is complemented. Let Q be a
complement of Asoc(L). Then, L = Asoc(L) ® 0 and Rad(L) =
Asoc(L) & (Rad(L) N Q). We conclude that there are no minimal abelian
ideals contained in Rad(L) N @, thus Rad(L) = Asoc(L). Moreover, we
can decompose Q = §, ® -+ & S, , where each S, is a simple ideal which
proves the result. To prove the converse, consider the set of linear
transformations ad L = {ad a: a € L}. The invariant subspaces relative to
this set are the ideals of L. Since L =L, ® --- ® L,, where each L, is a
minimal ideal, we see that the set ad L is completely reducible on L and
therefore J(L) is complemented.

(i) Assume (L) is abelian and let N be a simple minimal ideal of
L. As J(L) is complemented of length at least 2, we can take K as a
minimal ideal of L different from N. The minimality of N implies
N N K = 0. Now, by the second condition of the abelian lattice definition,
there exists a minimal ideal C suchthat N® C =K & C = N & K. Then,
N, K, and C are isomorphic Lie algebras and therefore K and C are
simple ideals. On the other hand, we have [C, N] <« C " N = 0 and, in an
analogous way, [C, K] = 0. Thus [C,C] <[C,N & K] = 0, a contradic-
tion. We conclude that all the minimal ideals of L are abelian.

Next denote by S the sum of all minimal ideals of L. By the preceding
paragraph, S is abelian. From the fact that 3J(L) is complemented it
follows that § = L. 1t is clear that the dimension of L coincides with the
length of J(L). The converse is immediate.

(iii) Suppose first that JI(L) is complemented and distributive. It
follows that L = 4 @ § with 4 and S as in (i). Assume dim 4 > 1 and
take a, b € A such that {a, b} is a linearly independent set. Then, F(a + b)
is an ideal of L satisfying

Fla+b)yo® F(a) =F(a+b) ®F(b) =F(a) ® F(b).

Thus the distributive law (2.2.3) fails for the ideals F(a + b), F(a), F(b), a
contradiction. It follows that the dimension of A is at most one.

Now we shall prove the converse. For P,Q, R ideals of L, we
need prove that (2.2.3) holds, ie, (P+Q)N(Q +R)IN(R + P) =
(PN Q)+ (QNR)+ (RN P). Define

T(P)=(P+(QNR))N(Q+R),
T(Q)=(Q +(RNP)) N(R+P),
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and
T(R)=(R+(PO Q) N(P+ Q).
From Lemma 2.3 we have the identities
(P+O)N(Q+R)N(R+PY=T(P) +T(Q)
=T(Q)+T(R)y=T(R)+T(P)=U
T(P) NT(Q)
T(Q)NT(R)=T(RYNT(P)=V.

Note that (2.2.3) holds if and only if U < V. From the above identities,
we obtain (T(P)/V) & (T(Q)/V) =(T(Q)/V) & (T(R)/V) =
(T(RY/V) & (T(P)/V) = U/V and therefore T(P)/V and T(Q)/V are
contained in Z(U/V), which implies U? < V. The case U = 0 is immedi-
ate. If U is a semisimple ideal of L, it follows that U=§,® --- @ S,,
where each S, is a simple ideal, so U2 = U < V. Otherwise 0 + 4 = F(z)
and U = F(z) ® S, where S is a semisimple ideal of L. In that case,
U? = 8§ < V. Moreover, it is easy to check that F(z) < U implies:

(a) F(z)y sPorF(z) <Q,
(b) F(z) < QorF(z) <R,
(¢c) F(z) <Ror F(z) <P.

The inequalities (a), (b), and (¢) vield F(z) < V and so U < V. Hence
(2.2.3) holds. |}

The result established above reveals that every n-dimensional abelian
Lie algebra is determined by its lattice of ideals unless #» = 1. But the
ideal lattice structure does not always determine the structure of a Lie
algebra uniquely. Clearly, the one-dimensional Lie algebra and every
simple Lie algebra have the same lattice of ideals consisting merely of a
two-element chain. This example shows that there exist non-isomorphic
Lie algebras which have isomorphic lattices of ideals and, in addition, the
solvable radical and the derived algebra are not preserved in general by
ideal lattice isomorphisms. However, by imposing some restrictions which
are connected with the abelian lattices, it is possible to characterize the
derived algebra and the solvable radical by means of the ideal lattice
structure. Our following task will be to show this and to determine which
of the Lie algebras described in (i) and (iii) of Theorem 2.4 have isomor-
phic lattices.

Let L be a Lie algebra and consider the Jacobson radical, J(L),
of L and the Jacobson radical, J(J(L)), of JI(L). From the first para-
graph of this section we have J(L) = J(J(L)). Assume L is taken over a
field is of characteristic zero. It is known that J(L) = L° n Rad(L) =

(PNOY+(ONRY+(RNP)

it

It
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[Rad(L), L] < Nil(L) (see [4, p. 91; 7, Theorem 1]). Next, let S be a
semisimple Levi factor of I and let M be the Lie algebra L /J(L).
Clearly, Rad(M) = Rad(L)/J(L) = Rad(L)/[Rad(L), L] is abelian and
S, =8 +J(L)/J(L) is a semisimple Levi factor of M such that [S,, M] =
S,- Then §, is an ideal of M and, since the base ficld is of characteristic
zero, the direct sum of simple ideals. It follows that (i) of Theorem 2.4
holds in L /J(L) and therefore J(L /J(L)) is a complemented lattice.

2.5. CoroLLarY. Let L. be a Lie algebra over an arbitrary field F. We
have the following:

() If L has an ideal K such that the interval [K: L} is an abelian
lattice of length at least 2, then dim L /L> > 1. In this case, L* is equal to
the intersection of all K € J(L) for which the interval [K : L} is an abelian
lattice of length at least 2.

(i) If L has an ideal N such that the interval [0: N] is abelian of
length at least 2, then N is an abelian ideal and it is contained in Asoc(L).

(iii) If the characteristic of F is zero and L has an ideal K such that the
interval [JAI(L)): K] is an abelian lattice of length at least 2, then
dim Rad(L)/J(L) > 1. In this case, Rad(L) is equal to the sum of all
elements K € J(L) for which the interval [J(I(L)): K1 is an abelian lattice
of length at least 2.

Proof. (i) Consider L /K and apply (ii) in Theorem 2.4.

(ii) Let K be a minimal ideal contained in N. As [0: N] is comple-
mented of length at least 2, there exists a minimal ideal P different from
K contained in N. As in the proof of (ii) in Theorem 2.4, we conclude that
every minimal ideal of L contained in N is abelian. Now, from the
definition of a complemented lattice it follows that N is contained in
Asoc(L).

(iti) Denote L /J(L) by M and observe that J(M) is a complemented
and not a distributive lattice. Then, (i) and (iii) of Theorem 2.4 imply
Z(M) = Rad(M) and dim Z(M) > 2. As Rad(M) = Rad(L)/J(L), we
conclude dim Rad(L)/J(L) > 1 and the interval [J(JI(L)):Rad(L)] is
abelian of length at least 2. Now, let N be an ideal such that [J(J(L)): N]
is abelian of length at least 2. From (ii), we get N/J(L) is abelian. Since
J(L) is nilpotent, we obtain that N is a solvable ideal and therefore
N < Rad(L). 1

Moreover, we have the following characterization for solvable Lie alge-
bras of characteristic zero in terms of their ideal lattice:

2.6. CorOLLARY. Let L be a Lie algebra over a field of characteristic
zero such that JI(L) has at least two co-atoms. Then, the interval
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[JCI(LY: L] is abelian if and only if L is solvable. In this case, the
dimension of L /L* is equal to the length of the interval [J(I(L)): L].

Proof. The “only if” follows from (iii) of Corollary 2.5. Now, suppose
L is solvable. Then, L2 = J(L) = J(J(L)) and therefore the result follows.

The following example shows that (iii) of Corollary 2.5 and Corollary 2.6
fail if L is taken over a field of positive characteristic:

2.7. ExampPLE. Let F be a field of characteristic p > 0. Consider the
Lie algebra g/(}') of linear transformations on an n-dimensional vector
space V, where n is divisible by p and n > 2. The only proper ideals in
gl(V) are gl(V')? and FI, the set of multiples of the identity. Since g/(}/)?
is the set of linear transformations of trace zero and tr/ =n =0, FI <
gl(V)?. Hence gl(V')/FI has only one proper ideal, which is gl(V)?/FI
and this ideal is simple. Denote by M = g/(V')/FI and let F(a) be @
one-dimensional Lie algebra. Define L as the direct sum of the vector
spaces M and F(a) and the Lie bracket by declaring that [a, m] = 0 for
every m € M and M keeps its original Lie bracket. Then, L = M & F(a)
is a Lie algebra satisfying Rad(L) = F(a), J(J(L)) = L*=M?  and
[L?: L] is abelian of length 2.

2.8. CoroLLARrY. Let L and M be Lie algebras over a field F of any
characteristic such that L is of the type described in (1) of Theorem 2.4.
Then, I(L) and JI(M) are isomorphic if and only if M is as in (i) of
Theorem 2.4 and one of the following holds:

(i) dim Z(L) = dim Z(M) and the numbers of simple ideals of L and
M coincide.
(i) dim Z(L) = 1, Z(M) = 0, and M has one simple ideal more than
L.
(iii) Z(L) = 0, dim Z(M) = 1, and L has one simple ideal more than
M.

Proof. Suppose first that I(L) and JI(M) are isomorphic. From (i) of
Theorem 2.4, we can write L=Z(L)® L & --- &L, and M =
ZM)o M, ® --- ® M, where L; and M; are simple ideals. If J(L) is
distributive, it is easy to prove the result from (iii) of Theorem 2.4. Assume
then that J(L) is not distributive. In that case, dim Z(L) > 2 and, given «
an isomorphism from J(L) onto I(M), (ii) of Corollary 2.5 implies

a(Z(L)) < Asoc(M) = Z(M)  and
a '(Z(M)) < Asoc(L) = Z(L).
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Therefore, a(Z(L)) = Z(M), which proves the result because dim Z(L)
coincides with the length of the interval [0: Z(L)].

Now we shall prove the converse. We can decompose L and M as in the
first paragraph. Note that, if P (resp. N) is an ideal of L (resp. M),
P=(PNnZ(L) &K (resp. N=(N N Z(M)) & R), where K (resp. R) is
of the form L, & - -- @L,pwith P<ig< - <i,<s(resp. M, & -
oM, 1<i; < - <i,<r) IfdimZ(L) <1, the result is easily veri-
fied. Suppose then that dim Z(L) > 1. In that case, (i) holds in L and M
and therefore r =5 and Z(L), Z(M) arc F-isomorphic vector spaces.
Consequently, there exists a lattice isomorphism « from [0: Z(L)] onto
[0:Z(M)]. On the other hand, if we denote by L =L, & --- @ L, and
M = M, ® - &M, it is immediate that 8: [0: L] - [0: M] defined by

B(0)y=0 and B(L,® --®L,)=M 0 M
is a lattice isomorphism. Next let y: J(L) — J(M) be defined as follows:

Y(P)i=aPNZ(L) ® B(L, & -~ & L, ) for every P € J(L). It is eas-
ily checked that y is a lattice isomorphism. ||

2.9. CoroLLARY. Let L and M be Lie algebras over a field F and
a: J(L) - JI(M) be a lattice isomorphism. We have the following :
(1) If dim L/L* > 1, then:
(i) a(L?) = M? and dim L/L* = dim M/M*.
In addition, if the characteristic of F is zero we have the following:
(i) a(Rad(L)) = Rad(M).

(iii) The number of simple ideals of the semisimple Levi factors of L
and M coincides.

(iv) a(Asoc(L)) = Asoc(M) and the number of simple ideals of L
and M coincides.

(2) If dim Z(L) > 1, then a(Z(L)) < Asoc(M).

Proof. (1.1) Apply (i) of Corollary 2.5 and (ii) of Theorem 2.4.

(1.ii) Since J(L) = L* n Rad(L), we obtain L/L* = L>+
Rad(L)/L? = Rad(L)/J(L). Then the result follows from (iii) of Corol-
lary 2.5.

(1.iii) From (1.ii), the Lie algebras L /Rad(L) and M /Rad(M) have
isomorphic lattices of ideals. Thus the result follows from (i) of Theorem
2.4, Corollary 2.8, and the Malcev—Harish-Chandra Theorem.

(L.iv) It is clear that Asoc(L) = Rad(L) N Soc(L). Then from (1.ii):
a(Asoc( L)) = a(Rad(L}) N a(Soc(L))
= Rad(M) N Soc(M) = Asoc(M).
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On the other hand, the sum of all simple ideals of L is equal to Soc(L)*
and therefore, Soc(L) = Asoc(L) & Soc(L)?. For every simple ideal P of
L we have that P N Asoc(L) = 0. Then, a(P) N Asoc(M) = 0, which
implies a{P) < Soc{M)? and therefore a(Soc{L)?) = Soc{ M)2. Since the
number of simple ideals of L coincides with the length of [0 : Soc(L)?], the
last assertion is immediate.

(2) Apply (ii) of Corollary 2.5. |

The following example shows that (1.ii) and (1.iv) of Corollary 2.9 fail if
L is taken over a field of positive characteristic:

2.10. ExampPLE. Let F be a field of characteristic p > 0 and L =
M & F(a) be as in Example 2.7. Note that M = M? + F(x) and then we
can write L = M? + F(x,a). We have that F(a) and M? are the only
minimal ideals of L. If P is a proper ideal of L which is not minimal, we
get that P is maximal because the length of S(L)is 3, thus L2 < P. It
follows that the ideals of L are 0, L, F(a), L> = M?, L’ ® F(a), and
L? + F(x + Aa) with A € F.

Next consider the 3-dimensional Lie algebra K with basis {b, ¢, z} and
products [b, z] = [c, z] = 0, [b,c] = b. It is easy to check that the ideals
of K are 0, K, F(z), K? = F(b), F(b, z), and F(b,c + Az) with A € F.
Now, define a: J(L) — J(K) in the following way:

a(0) =0, a(l) =K, a(F(a)) = F(z), a( L?) = F(b),
and
a(L? + F(px + Aa)) = F(b,pc + Az) for (w,A) # (0,0).

From Table 1, it is easily checked that « is a lattice isomorphism such
that

a(Rad(L)) = F(z) # Rad(K) =K  and
a(Asoc(L)) = F(z) # Asoc(K) = F(b, z).

3. THE LaTtTicE OF IDEALS OF A ¢-FREE LIE ALGEBRA

Let L be a Lie algebra over an arbitrary field F. The intersection of all
maximal subalgebras of L, F(L), is called the Frattini subalgebra of L. If
L is a solvable Lie algebra Barnes and Gastineau-Hills [1, Lemma 3.4]
proved that F(L) is an ideal. This statement, which fails in the general
case, is true for any Lie algebra if the underlying field has characteristic
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TABLE I
+ 2 2 2 P
K L' oF@|L + Fx +
K >+ F(c + 82) 3 |?? 3 L 2® @ (x + pa) Q
b K L' ®Fa) |’ @ F@) L Fa)
) K 0 F(a) 0
K 'oF@) ; 5 5
K L°@F(a) |L."+ F(x +pa) L2
o K+ F(c +12) [K'®F@) L 1
K® K’ L R
3 3 7 L ®F@)
@) K K'®F@){ K'®F@) L
Z
0 F(z) 0 L 2
L + F(x + 8a)
Q) [+ Fle +po) [CoF)| K 5 b

zero (see [12, Corollary 3.3]). This permits us to define the Frattini ideal,
(L), of L as the largest ideal of L contained inside F(L). Following [12],
L is said to be @-free if (L) = 0. Note that for all Lie algebras L,
L/¢(L) is ¢-free. We shall denote by @ the class of ¢-free Lic algebras
over the field F.

The purpose of this section is to answer the following question: Is the
class @ closed under ideal lattice isomorphisms? In order to obtain the
answer, we shall investigate the structure of the Lic algebras over a field of
characteristic zero which are not in @ whose lattice of ideals is isomorphic
to that of some Lie algebra in @. As a corollary we shall show that the
answer to our question is negative unless F is an algebraically closed field
of characteristic zero. As every finite dimensional Lie algebra can be
mapped onto a ¢-free one, we shall show that the results of this section
provide information about the general problem of ideal lattice isomor-
phisms.

Before proving the main result in this section we shall need a series of
lemmas, the first of which was obtained in [2].

3.1. Lemma {21 Let L be a Lie algebra over an arbitrary field F such

that dim L* =1 and L* < Z(L). Then, there exists a basis {a,,...,a,,
frs-eosfur 215 --» 2,} for L such that [a,, f;] = z, and all other products are
zero.

Proof. Let V' be a complementary subspace of L?in L,ie, L =L+
V. Write L? = F(z) and define G: V XV — F by g(v,w) = A, where
A, is such that [c,w] = A z. As G is an alternate and not identically

zero scalar product, by [5, p. 161}, V has a basis
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{ay,....a, fis s fs 2ys- -5 2, ) satisfying G(a,, f;) = 1 and G(p,q) =
0 otherwise. This proves the result. [

3.2. LemMma. Let L be a Lie algebra over an arbitrary field such that
Rad(L)” is abelian. If N is a minimal abelian ideal of L, then either
N < Rad(L)* or N < Z(Rad(L)).

Proof. We start with the following observation: From [15, Theorem
4.4.1.1], Rad(L) has Cartan subalgebras and they are exactly those subal-
gebras complementary to Rad(L)”. Then, for every Cartan subalgebra H
of Rad(L) we have

Rad(L) = Rad(L)" + H. (3.2.1)

Note that the Fitting null and one component of Rad(L) relative to ad, H
are H and Rad(L)” respectively. Assume N is not contained in Rad(L)".
The minimality of N implies N N Rad(L)* = 0. Now consider N = N, +
N, the Fitting decomposition of N with respect to ad; H. It is immediate
that N, < H and N, < Rad(L)*. Since N N Rad(L)* =0, we obtain
N < H and therefore N N Z(H) # 0 because H is nilpotent. Take a
nonzero element x € N N Z(H). From (3.2.1), [x, Rad(L)] =
[x,Rad(LY] < NN Rad(LY =0. Thus N n Z(Rad(L)) = 0 and this
yields N < Z(Rad( L)) by the minimality of N. |

3.3. LemMA. Let L be a Lie algebra over a field of characteristic zero
and H be a Cartan subalgebra of Rad(L). For every h & H, denote by
R (h) the Fitting one component of Rad(L) with respect to ad h. Then, the
following hold:

(1) If Rad(L)* is abelian, Asoc(L) N H = Z(Rad(L)). Moreover, if
N is a minimal ideal of L, then the minimal polynomial of ad hly is
irreducible. In particular, either N < C,(h) or N N C,(h) = 0.
(2) If Rad(L)* < Asoc(L), then:
(i) Asoc(L) = Rad(L)* & Z(Rad(L)).
(ii) Rad(L)* N Z(Rad(L)) = H?.
(iii) If h & Nil(L), then R\(h)} is a nonzero ideal equal to the sum of
all minimal abelian ideals which are not contained in C,(h).

Proof. (1) We claim that Z(Rad(L)) is contained in Asoc(l). The
result is immediate if L solvable; assume then that it is not the case and
let § be a Levi factor of L. As Z(Rad(L)) is an abelian ideal, we can
decompose Z(Rad(L)) = Z, & --- & Z,, where each Z, is an irreducible
ad, S-module. It follows that each Z, is a minimal abelian ideal, which
proves our claim. Since Z(Rad(L)) < H for every Cartan subalgebra H of
Rad(L), from Lemma 3.2 and (3.2.1) we conclude that Asoc(L) N H =
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Z(Rad(L)). The second assertion is immediate for simple minimal ideals.
Then, we shall restrict our attention to the case of minimal abelian ideals.
Let L = Rad(L) + S be a Levi decomposition of L and take a € L. and
h € H. From (3.2.1), a = a, + a, + s, where a, € Rad(L)*, a, € H, and
s € §. Now, if x € Asoc(L) it is immediate that [x,a,] = [[x,hl,a,]=
[x,[Ah, a5 = [x,[h, s]] = 0 (see [4, p. 91; 11, Proposition 8]). Thus, by the
Jacobi identity we obtain

[[x,h),a] =[[x.h),a;] + [[x.h].s]
= [[x,a5], ] + [[x,s], 7] = [[x,a).A]. (3.3.1)

Next let p: L — gl(Asoc(L)) be defined by p(a) = ad al ) Note
that p(L) is a completely reducible Lie algebra of linear transformations
in Asoc(L). Moreover, (3.3.1) implies p(H) < Z(p(L)). Then, from
{4, p. 81], we conclude that the elements of p( H) are semisimple. Now, let
N be a minimal abelian ideal, # € H, and wu(X) be the minimum
polynomial of ad # in N. Then, w(X) = 7 (X)... 7 (X), where m(X)
are distinct irreducible polynomials for 1 <i < r. Consequently, we can
decompose N =N, + -+ +N_,where N, = {x;, € N:m(ad h)Xx,) = 0)
for 1 <i<r. Since p(H) <Z(p(L)) from [4, p. 40] each N, is a
p(L)-invariant subspace. By the minimality of N we conclude that r= 1,
which proves the second assertion in (1).

(2) Part (i) follows from Lemma 3.2, (3.2.1), and the first statement in
(1). Now, from (3.2.1), Rad(L)? = Rad(L)Y* + H?; thus (i) is a conse-
quence of (1). To prove (iii), first we observe that z € Nil(L) if and only if
R(z) = 0. Thus, R,(h) # 0 because 4 & Nil(L). Denote by S the sum of
all minimal abelian ideals not contained in C,(h). Given P a minimal
abelian ideal, from (1) we have [P, h] =P if P is contained in § and
[P, h] = 0 otherwise. Thus, § < R,(h) < Rad(L)*. As Rad(l)* is con-
tained in Asoc(L), we can take an ideal K such that Rad(L)* = § & K.
From the above, [K, 4] = 0. Since ad /4 acts non-singularly on R (h), we
conclude that R (k) = §, which proves (iii). |

3.4. THeorem. Let L and M be Lie algebras over a field F of character-
istic zero such that L is ¢-free and M is not. Let H and H be Cartan
subalgebras of Rad(M) and Rad(L), respectively. If there exists an isomor-
phism a from J(M) onto J(L), then:

(1) a satisfies the following conditions:
) a(M?) = L2
(ii) a(Rad(M)) = Rad(L).
(iii) a(Asoc(M)) = Asoc(L).
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(iv) ale(M)) < Rad(L)™
(2) M satisfies the following conditions:
(i) Rad(M) = Rad(M)* + H.
(i) J(M) = Asoc(M) = Rad(M)* & Z(Rad(M)).
(i) (M) = Z(M) = H™.
(v) (h, H] = H? for every h € H\ Z(Rad(M)). In particular,
Z(H) = Z(Rad(M)).
v) dim M/M? = 2n with n > 1.

(vi) Every solvable ideal which is not contained in Asoc(M) con-
tains Z(M).

(vii) If S and S are semisimple Levi factors of M and L., then S and §
have the same number of simple ideals.

(3) L satisfies the following conditions:
(*i) Rad(L) = Rad(L)* + H.
(*ii) J(L) = Asoc(L) = Nil(L) = Rad(L)* ® Z(Rad(L)).
(iii) Z(L) = 0.
(*iv) H is abelian.
(v) dim L /L? = dim M/M?.
i) R = N{R,(h): h € H\ Z(Rad(L))} is a nonzero ideal of L.
_ i) If N is a minimal ideal contained in R, the set Sy = {f €
ady H: fis split} is a subalgebra of ad . H with dimensionality at most one.
In particular, F is not algebraically closed.

(viii) If L is solvable, then dim H < dim N for every minimal ideal
N contained in R.

() Parts (31) and (3.iv) and Asoc(L) = Nil(L) = Rad(L)* &
Z(Rad(L)) hold for any ¢-free Lie algebra over a field of characteristic zero.

Proof.  First, we shall prove the final remark (*). If L, is a ¢-free Lie
algebra, by Theorem 7.4 in [12], Nil(L,) = Asoc(L,). Then, Rad(L,)* <
Asoc(L,) because Rad(L,)* is nilpotent, and therefore Rad(L,)* is
abelian. Thus (3.i) follows from {15, Theorem 4.4.1.1], and Lemma 3.3
implies Asoc(L,) = Rad(L,)* ® Z(Rad(L)). In addition, if T is a Cartan
subalgebra of Rad(L ), (2.ii) of Lemma 3.3 and [7, Sect. 4] yield T2 <
¢(Rad(L,)). Now, Corollary 4.2 in [12] implies T? < ¢(L,) = 0, proving
(3.iv). Hence, (*) holds.

Now we shall prove the rest of the statements. As L is ¢-free and J(L)
is nilpotent, from the first paragraph we conclude that J(L) < Soc(L).
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Then, o (J(L)) = J(M) < Soc(M) and the nilpotency of J(M) implics
J(M) < Asoc(M).

(1.1), (1.i1), (L.iii), (2.vii), (3.v) Since J(M) = M? N Rad(M), from (i)
of Theorem 2.4, J(M /J(M)) is complemented. We claim that the interval
[J(M): M] is not distributive. If it is not the case, applying (iii) of
Theorem 2.4, we obtain that either J(M) = Rad(M) or J(M) has codi-
mension one in Rad(M ). As J(M) < Asoc{ M), it follows that Asoc(M) =
Rad(M) or Rad(M) = Asoc{(M) + F(x). In the first case and in the
second one if M is solvable, we conclude that M splits over its zerosocle, a
contradiction (see Theorem 7.3 in [12]). Therefore M is not solvable and
dim Rad(M)/Asoc(M) = 1. Let S be a Levi factor of M. Then, there
exists a one-dimensional ad,, S-module B such that Rad(M) = Asoc(M)
+ B. As [B,S] =0, we get M splits over its zerosocle, a contradiction.
Hence the interval [J(M): M1 is not distributive and therefore (iii) of
Theorem 2.4 implies that the center of M/J(M) has dimensionality at
least two. Consequently, dim M/M? > 1 and now the results follow from
Corollary 2.9.

(2.1), (2.i0), (2.iii) As Rad(M)? < J(M) < Asoc(M), (2) of Lemma 3.3
implies Asoc(M) = Rad(M)* & Z(Rad(M)). Then, Rad(M)* is abelian
and therefore [15, Theorem 4.4.1.1] yields Rad(M) = Rad(M Y + H. To
prove (2.ii) and (2.iii), we shall consider two cases:

First Case. M is solvable. Then, J(M) = M?*=M*"+ H* and
Asoc{M) = M™ & Z(M). If H?> = 0, we can take a complementary subal-
gebra C to Z(M) in H which is a complementary subalgebra to Asoc(M )
in M. It follows that M splits over its zerosocle, a contradiction (see
Theorem 7.3 in [12]). Hence H” # 0 and Lemma 3.3 implies H?> < Z(M).
We claim that H? = Z(M). Suppose it is not the case and take nonzero
elements a € H? and b € Z(M)\ H?. Then, F(a), F(b), and F(a + b)
are minimal ideals of M satisfying

F(a) ® F(b) = F(a) ® F(a + b) = F(b) ® F(a + b).

From (1.1), a(F(a)) is contained in L? and a(F(b)) is not. If a(F(a + b))
is contained in L%, we get a(F(b)) < a(F(a)) ® a(Fla + b)) < L*, a
contradiction. Note that from (1.ii) and (1.iii), L is solvable and L? is
contained in Asoc(L), so that L* is abelian. Now, from Lemma 3.2 we
conclude that a(F(bH)) and a(F(a + b)) are central minimal ideals. Thus,
a(F(a)) < Z(L) N L? < (L) = 0 (see [7, Sect. 4]), which is a contradic-
tion. This proves our claim and therefore (2.ii) holds. On the other hand,
we observe that Asoc(M/Z(M)) has a complement in M/Z(M). Then,
Theorem 7.3 and Corollary 4.4 in {12] imply that ¢(M) < Z(M). Since
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Z(M) < M?, from [7, Sect. 4], Z(M) < ¢(M), which completes the proof
of (2.iii).

Second Case. M is not solvable. Let § be a Levi factor of M, i.e.,
M = Rad(M) + S. As Rad(M) is an ad,, S-completely reducible module,
there exists an ad,, S-module A4 such that Rad(M) = J(M) 4+ A. Note
that 4 # 0 because J(M) # Rad(M). Since [A4,S] <A NJ(M) = 0 (see
[7, Theorem 1]), we conclude that A is contained in C,,(S) and we can
write Rad(M) = Asoc(M) + C,(5). Now consider C = Asoc{M) N
Cy(S). As[C, M] = [C,Rad(M)] = [C, C,,($)] < C, we have that C is an
ideal of M contained in Asoc(M ). Then, we can decompose Rad(M) = K
+ C,,(S), where K is an ideal such that Asoc(M) =K & C. Denote
K + S by P and observe that P is an ideal of M ([P, Rad(M)] < K and
[P,S] < P) and (M) is not contained in P. Since o(M/P) =
(¢(M) + P)/P (see [14, Theorem 3)), it follows that C,,(S) is a solvable
and not ¢-free Lie algebra whose lattice of ideals is isomorphic to
I(L /a(P)) and by [14, Theorem 3], L /a(P) is ¢-free. Thus from the first
case, Asoc(Cy(S)) = Cp(8) @ Z(Cp (SN and 0 # E? = Z(C,,(S)), where
E is a Cartan subalgebra of C,,(S). Note that E? = Z(M) < Rad(M)? <
J(M). Moreover, we can decompose M as follows: M = K + C,,(85)* + E
+ 8. It is easily checked that Asoc(M/Z(M)) has a complement in
M/Z(M); therefore we conclude that ¢(M) < Z(M) (see Theorem 7.3
and Corollary 4.4 in [12]). Finally, if N is a minimal abelian ideal not
contained in J(M), [N M]<NOJM)=0 and then N < Z(M) <
J(M), a contradiction. As J(M) < Asoc(M), it follows that J(M) =
Asoc(M ), proving (2.ii).

Now we shall prove (2.iii). The above paragraph shows that (M) <
Z(M) < Rad(M)?. Then, [7, Sect. 4] implies Z(M) < ¢(Rad(M)) and,
from Corollary 4.2 in [12], we conclude that Z(M) = o(M). Moreover,
(2.ii) of Lemma 3.3 implies Z(M) < H?. Next, take s € S, h,, h, € H. By
the Jacobi identity we have

[[hl,hz],s] = [[hl’s]’hZ] + [h]’[h2’s]]'

From Theorem 1 in [7] and (2.i), we obtain [4,, s] € Rad(M)* &
Z(Rad(M)) and therefore [[A,,s]h,],[h,[h,,s]] € Rad(M)*. As H? <
Z(Rad(M)) (see Lemma 3.3), we get [[h,, h,], s] € Rad(M)* N
Z(Rad(M)) = 0. Hence H? < Z(M), which completes the proof of (2.iii).

(2.iv) Let h € H\ Z(Rad(M)) and set P = [h, H] = {[h, x]: x € H}.
As P is contained in H?, from (2.iii), P is a central ideal of M. Then, we
can take ideals N and Q@ of M such that Z(RadM) =Pae Ne& Q
and P® N = H? Now consider the Lie algebra M/K, where K =
Rad(M)* @ P & Q. Note that Rad(M/K) = Rad(M)/K is nilpotent and
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therefore ¢(M/K) = Rad(M/K)*> from Corollary 7.8 in [12]. Moreover,
JM/K) =J(M)/K because K <J(M). If N = 0, M/K is a not ¢-free
Lie algebra whose lattice of ideals is isomorphic to J(L /a(K)). Thus,
(2.ii) implies J(M)/K = Z(Rad(M/K)). As h + K € Z(Rad(M /K )), we
conclude that h € J(M) N H. Now from (1) of Lemma 3.3, we get
h € Z(Rad(M)), a contradiction. Hence N = 0 and therefore (2.iv) holds.
The last assertion is easily checked.

(2.v) Let x € H? and Q be a complement vector space of F(x) in
Z(Rad(M)). Consider the Lie algebra H/Q and note that (H/Q)* =
Z(Rad(M))/Q is a one-dimensional Lie algebra contained in Z(H/Q).
Now, let # + Q be a nonzero element in Z(H /Q). From (2.iv) it is easy to
deduce that 4 € Z(Rad(M)) and therefore Z(H/Q) = (H/Q)>. Now,
applying Lemma 3.1 we see that dim(H/Q)/(H/Q)> =
dim H/Z(Rad(M)) is even. On the other hand, we have M/M? =
Rad(M)/J(M) = (J(M) + H)/J(M). From (2.i1) of this theorem and (1)
of Lemma 3.3, J(M) N H = Z(Rad(M)). Thus M/M? = H/Z(Rad(M)),
which proves (2.v).

(2.vi) Let N be a solvable ideal which is not contained in Asoc(M ).
Consider N = N, + N, the Fitting decomposition of N with respect to
ad,, H. Note that N, < H and N, < Rad(M)” (see (3.2.1)). As N is not
contained in Asoc(L), there exists an element A € N, \ Z(Rad(M)). Then,
from (2.iv) and (2.iii), we get N > [h, H]l = H? = Z(M).

(3.1), (3.ii), (3.ii1), (3.iv) From the remark (*) and the statements (1.iii)
and (2.ii), it remains only to prove (3.iii). We observe that Z(L) < J(L) <
L. Then, [7, Sect. 4] implies Z(L) = (.

(1.iv), (3.vi) From Theorem 7.5 in [12], we have the following decom-
position: L = Asoc(L) +(E & S), where E is an abelian subalgebra and
S is a semisimple one. Then, H, = Z(Rad(L)) + E is a Cartan subalgebra
of Rad(L) (use (3.ii) and [15, Theorem 4.4.1.1]). Note that J(L) + Rad(L)
because J(M) # Rad(M) and therefore E is a nonzero subalgebra. Take
0 # z € E and observe that z & Nil(L). From (2.iii) of Lemma 3.3 it is
immediate that T = R,(z) +((2)) is a solvable ideal of L not contained in
Asoc(L). Thus (L.ii), (1.iii), (2.iii}, and (2.vi) imply 0 # ale(M)) < TN
Asoc(L) = R(z) < Rad(L)*, proving (l.iv). Now take h € H \ -
Z(Rad(L)). Then, h = b + z, where b € Z(Rad(L)) and z is a nonzero
element of E. Clearly, R(h) = R(z) and therefore N{R(h):h € H,\
Z(Rad(L))) = N{R(z):z € E\{0}} # 0. On the other hand, from [15,
Theorem 4.4.1.1], H = (1 + ad x)}(H,) for some x € Rad(L)". Let h €
H\ Z(Rad(L)) and z € H, \ Z(Rad(L)) be such that & =z + [z, x]. As
[z, x],al = 0 for every a € Rad(L)", we conclude that C,(h) N Asoc(L)
= C,(z) N Asoc(L) and therefore R(h) = R,(z) by (2.iii) of Lemma 3.3.
This implies the statement (3.vi).
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(3.vii) Let N be a minimal ideal contained in R. Since H is abelian,
ad, H is a set of commuting linear transformations on N. From Lemma
3.3, for each h € H\ Z(Rad(L)), ad 4 acts nonsingularly on N with
irreducible minimal polynomial, so that ad H is an abelian Lie algebra of
linear transformations isomorphic to H/Z(Rad(L)). We remark that
L/L* = H/Z(Rad(L)). If g € &, it is clear that gly = al for some
a € F\ {0} and therefore &, is a subalgebra of adNﬁ. Next, assume
dim €, > 2 and take f, g € &, linearly independent transformations.
Then, f = ad h,|x and g = ad h,ly, where h;, € I—?\Z(Rad(L)) and f =
al, g = BI for some a,B € F\{0). As Bf — ag acts trivially on N, it
follows that N is not contained in R(Bh, — ah,) and therefore Bh, —
ah, € Z(Rad(L)). We conclude that Bf = ag, a contradiction.
Hence dim €, < 1. If F is algebraically closed, €, = ad, H. Since
dim(ad, H) = dim L /L? > 1, the last assertion is clear.

(3.viii) If L is solvable, Z(Rad(L)) = Z(L) = 0 by (3.iii). Then, for
each N minimal ideal contained in R we have H = adyH < End .(N).
On the other hand, by the minimality of N, proper adNH-invariant
subspaces do not exist. As adNﬁ is a subspace of commuting linear
trans{ormations on N, from Proposition 2 in {10], we have that
adyH is contained in a maximal subfield of End.(N) and this implies
dim(ad,, H) = dim H < dim N. |

We observe that if L and M are Lie algebras as in Theorem 3.4, L has
at least one minimal abelian ideal contained in Rad(L)”. Moreover, it is
easy to verify that L. and M can be mapped onto Lie algebras L, and M,,
respectively, with isomorphic lattice of ideals such that L, is ¢-free,
having a unique minimal abelian ideal, and M is not ¢-free. The following
corollary describes the complete structure of the family of couples (L, M,).

3.5. CororLary. Let L and M be Lie algebras over a field F of
characteristic zero. Suppose L is ¢-free and has a unique minimal abelian
ideal and M is not ¢-free. Then, the lattices I(L) and I(M) are isomorphic
if and only if one of the following holds:

(1) () M is the Lie algebra with basis {a,,...,a,,f...., f,, 2} and
products [a,, f;1 = 6,;z,[a,, z] = [f,, 2] = 0.

(ii) L = V + T, where V is a nonzero abelian ideal, T is a 2n-dimen-
sional abelian subalgebra, ad x|, is non-singular for every x € T\ {0}, and
Vis an ad, T-irreducible module.

(2) () M =A @& S, where A is an algebra of the type described in (1.1)
and S is a semisimple ideal.

(ii) L = B @ K, where B is an algebra of the type described in (1.i1)
and K is a semisimple ideal with the same number of simple ideals as §S.
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If F is algebraically closed, there are no Lie algebras of the type described
in (1.i).

Proof. From Theorem 3.4 and Lemma 3.1, we sec that Rad(M) has a
basis as in (1.0). Suppose first that M is solvable. Then, Theorem 3.4
implies L is solvable, dim L /L? = 2n, and Asoc(L) = L?. Moreover L’ =
L* and therefore L = L?> + H, where H is a Cartan subalgebra of L.
Now, by Lemma 3.3 we find that every nonzero element of H acts
non-singularly on L?. Finally, the minimality of L? yields L? is an
ad, H-irreducible module. Hence M and L are as in (1).

Next, assume M is not solvable and let § be a Levi factor of M. From
Theorem 3.4, J(M) = Z(M) and then, it is easily checked that § is a
semisimple ideal of M. By using (1.ii) of Theorem 3.4, it is clear that
L = Rad(L) @ K, where K is a semisimple ideal. Thus, from the above
paragraph and (2.vii) of Theorem 3.4, M and L are as in (2).

To prove the converse, assume first that M and L are as in (1). Since M
is nilpotent and M? = Z(M) = F(z), every nonzero ideal of M contains
M?. On the other hand, we observe that 1/ = L? and it is the only minimal
ideal of L. Thus every nonzero ideal of L contains L. Moreover, the
intervals [L?: L] of J(L) and [M?: M] of JI(M) are isomorphic. Hence
we conclude that JI(L) = J(M). Finally, suppose L and M are as in (2)
and observe that from the above there exists a lattice isomorphism « from
J(Rad(L)) onto J(Rad(M)). As K and § are semisimple with the same
number of simple ideals, by Corollary 2.8 there exists a lattice isomor-
phism B from J(K) onto J(S). Note that every ideal P of L (resp. Q of
M) has a unique Levi decomposition P =P N Rad(L) @ P N K (resp.
Q=0nNRadM)& Q nS). Therefore, a & B: I(L) - I(M) defined
by a ® B(P) = (P N Rad(L)) ® B(P N K) is a lattice isomorphism. ||

In the case F = R, the above result becomes:

3.6. CoroLLARY. Let L and M be real Lie algebras. Suppose L is ¢-free
and has a unique minimal abelian ideal and M is not -free. Then, the
lattices I(L) and I(M) are isomorphic if and only if one of the following
holds:

(1) (D) M is the Lie algebra with basis {a, b, z} and products [a, b} = z.

(ii) L is the Lie algebra with basis {a, b, x, y} and products [a, x} = a,
[b7 x] = bv [a’ ,V] = b» [bv y] = —da.
RO M=A®S, where A is an algebra as in (1i) and S is a
semisimple ideal.

(ii) L =B ® K, where B is an algebra as in (1.ii) and K is a
semisimple ideal with the same number of simple ideals as S.



LATTICES OF IDEALS 365

In particular, given L and M real Lie algebras having isomorphic lattices
of ideals such that L is ¢-free and M is not, if H is a Cartan subalgebra of
Rad(M), H has a basis{a, b, z,, ..., z,} such that [a, b] = z, and all other
products are zero. Moreover, if M is solvable r = 1.

Proof. We have that L and M are as in (1) or (2) of Corollary 3.5. We
can restrict our attention to the case L and M as in (1). In that case, T is
a Cartan subalgebra of L and V is the only one minimal ideal. As every
nonzero element of ad, T acts non-singularly on V, from (2uwiii) of
Theorem 3.4, dimV = dim T > 2, and by [10, Proposition 2], ad, T is
contained in a field extension of the real numbers inside End (V). Thus
T = R(x, z) and ad x acts as the identity on V. Since V' is a minimal ideal
of dimensionality at least 2, from Lemma 3.3 we conclude that the minimal
polynomial of ad z{,, denoted by (X)), is an irreducible quadratic. Then,
dimV = 2m. If m > 1, it is easily checked that IV has a proper subspace
invariant under ad, T, a contradiction. Hence, dim V' = 2. Now, write
m(X)=X?- BX — a, where a, 8 € R, and let {4,, a,} be a basis for V
such that [a}, z] = a, and [a,, z] = aa, + Ba,. Next, consider y = t,x +
t,z, where t, = ‘/— 4/(B* + 4a) and t, = —pr, /2. The minimal poly-
nomial of ad vl is X? + 1. Thus picking a basis {a, b} for V correspond-
ing to the canonical matrix of ad y|,- we get that {a, b, x, y} is a basis of L
with products as in (1.ii). As dim T = 2, from Corollary 3.5 we conclude
that M is as in (1.i). The final assertion is straightforward. |

3.7. CoroLLARY. Let L. and M be Lie algebras over a field F of
characteristic zero. Suppose either F is algebraically closed or dim L /L? is
odd. Let a be a lattice isomorphism from J(L) onto JI(M). Then:

() ale(L)) = ¢(M).
(iiy L € @ ifand only if M € .
Gii) #f dim L/12 > 1, a(Nil(L)) = Nil(M).

(iv) If the dimensionality of L and M is at least 2, then L is nilpotent if
and only if M is.

Proof. (i), (ii) The second statement is an immediate consequence of
the first one and therefore we need only prove (i). As (L) < L? and
L /¢(L)is ¢-free, from Theorem 3.4 we see that M/a(¢(L)) is ¢-free and
therefore a(@(L)) < ¢(M). A similar argument with the roles of L and M
reversed and using a ' shows that a(@(L)) = ¢(M).

(iii) Note that Nil(L)/¢(L) = Asoc(L /(L)) = Nil(L /(L)) (see
Proposition 4 in [11] and Theorem 7.4 in [12]) and the same is true
changing L by M. Thus from (i), we can assume without loss of generality
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that o(L) = (M) = 0. As dim L/L? > 1, from Corollary 2.9 it follows
that a(Asoc(L)) = Asoc{ M), which proves (iii).

(iv) Note that if N is a nilpotent Lie algebra of dimensionality at
least two, dim N/N?2 > 1. Thus the result follows from (iii). ||

Remark. The statement (iv) in Corollary 3.7 was previously obtained in
(2], where a more detailed study of the lattices of ideals of nilpotent Lie
algebras was carried out.

4. Is THE Crass @ CLOSED UNDER LATTICE ISOMORPHISMS?

It is clear from Section 3 that the class @ is closed under ideal lattice
isomorphisms if the base field is algebraically closed of characteristic zero.
In this section we shall give examples showing that this is not true either
for non-algebraically closed fields of any characteristic or for algebraically
closed fields of positive characteristic. Some of these examples show that
most of the statements established in Theorem 3.4 do not hold for positive
characteristic, where the behaviour of ¢-free Lie algebras is in general
quite different from that in the case of characteristic zero.

4.1. ExampLE. Let F be a field of arbitrary characteristic, V¥ be an
n-dimensional vector space, and f(X) = X" —qa, X" '~ - —a, X —
a, be an irreducible polynomial over F with a, # 0. Given basis
{a;,....,a,} for V, we define the linear transformation p: VV — I/ by
pla)=a;,  forO0<i<n—1and pla,)=aya, + - +a,_a, Let T
be the linear span of p,p?,...,p" with m < n. We consider T as an
m-dimensional abelian subalgebra of g/(})’) and form the Lie algebra
L =V + T by defining the Lie bracket in L in the following way:
[x,¥y]1=0 for x,y €V, {x,p'] =p"(x), and T keeps its original Lie
bracket. It is immediate that I/ has no proper ad, 7T-invariant subspaces
and every nonzero element in T acts non-singularly on V. Then, it is easily
checked that every nonzero ideal of L contains V' and the interval [V L]
is abelian of length m. In addition, L is ¢-free because V' = Asoc(L).
Next consider the nilpotent Lie algebra M with basis
{a;,....a., f1,-. -, fi, 2} having as its only nonzero products [a,, f;] = 2z =
—1{f., a,]. Then, ¢(M) = F(z) and therefore M is not ¢-free. If m = 2k,
it is clear that JI(L) and (M) are isomorphic. This example shows that
the answer to the question formulated in this section is negative for Lie
algebras over a non-algebraically closed field of arbitrary characteristic.

4.2. ExampLE. Let F be a field of characteristic p > 3 and M be the
(p + 2)-dimensional Lie algebra over F with basis {a,...,a, ;, x,y, 2}
and products {x,y] =1z, [x,z]=2x+a,, [y,z]= -2y, {a,, z] = 2iq,
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for1<i<p-11a,x]l=da,,  forl <i<p-21a, ,x]I=[a,y]l=
0,{a,yl=ia, , for2<i<p—1,and [a; a;] = 0. It is easily checked
that Rad(M) = F(a|,...,a,_,) = ¢(M) and this is the only minimal ideal
of M. Then, the latticc of ideals of M 1is the three-element chain
0 <F(ay,...,a, ) <M. Now consider the Lie algebra L with basis
{x, ¥} and product [ x, y] = x. Clearly, L is ¢-free and the lattice of ideals
of L is the three-element chain 0 < F(x) < L. Hence S{(L) and J(M)
arc isomorphic. This example shows that the class @ is not closed under
ideal lattice isomorphisms if the base field is algebraically closed of
positive characteristic. In addition, the statements (1.1), (1.11), (2.ii1), (2.v) in
Theorem 3.4 fail in positive characteristic. Morcover, the Lie algebra
gl(V)/FI in Example 2.7 is ¢-free and its lattice of ideals is isomorphic to
JI(M); thus (1.ii1) in Theorem 3.4 does not hold.

4.3. ExampLE. Let F be a field of characteristic p > ( and L be the
(p + 2)-dimensional Lie algebra over F with basis {al,...,ap, x,y} and
products [a;,a,] = 0.[a, x] =a;, , for 1 <i<p —1,[a, x]=ala,y]
= — Da; forl <i <p,[x,y] =x. Note that L is a solvable Lie algebra
and L* = ((a,,...,a,, x) = L* is the only maximal ideal of L. If we
denote ((a,,...,a,,)) by ¥V, then Nil(L)= V. As ad y|,, has minimal
polynomial X(X — 1)...(X — (p — 1)), F(a,) for 1 <i < p are the only
(ad y)-irreducible subspaces of V. From that it is easy to check that V is
the only minimal ideal of L and therefore V = Asoc(L). Hence L is
¢-free and the lattice of ideals of L is the four-element chain 0 < V' < L?
< L.

Next consider the Lie algebra gl(}') as in Example 2.7 and let N be a
maximal subalgebra of g/(V'). If FI is not contained in N, gi(V') = N + FI
and therefore gi(V')?> < N, a contradiction. It follows that FI < o(gl(}V)),
and as the Frattini ideal is nilpotent (see [12, Theorem 6.5]), we conclude
that FI = ¢(gl(V')). Hence gI(V') is neither ¢-free nor solvable and the
lattice of ideals of gi(}') is the four-element chain 0 < FI < gl(V')? <
gl(1). Thus J(L) and JI(gl(V)) are isomorphic and we observe that (2.ii)
and (3.i1) in Theorem 3.4 fail in positive characteristic.

4.4. ExampLE. Let F be a field of characteristic p > 0 and L be the
(p + 3)-dimensional Lie algebra over F with basis {a,,...,a,, x,y, 2}
and products [x,a,}] =0, [x,a,] =a,_  for 2<i<p,[y,a,]1=0,1y,a,]
=ig; ., forl <i<p-1Ix,yl=z[z,a]=a,for 1l <i<p,[xz]=
[v,z]1=1la;,a,] = 0. We have that L?’= F(a,...,a, z) and V =
F(a,,...,a,) = L are the only maximal and minimal ideals of L, respec-
tively, and the interval [L?: L] is abelian of length two. We observe that L
is ¢-free, and H = F(x, y, z) is a Cartan subalgebra of L which is not
abelian (from (3.iv) of Theorem 3.4 this is not possible in characteristic
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zero). In addition, L/V is a nilpotent and non-abelian Lie algebra, and
thus L /V is not ¢-free. This fact cannot occur in characteristic zero (see
[14, Theorem 3]).

Next consider M the 2(n + 1)-dimensional Lie algebra with basis
{a,,...,a,,, x, ¥} and products [a,,a)-] =[x,y]1=0,[a,x] =a, for 1 <
i <2n, la,yl=a,,, for i&{n,2n}, [a,, y]=aya, + - +a,_,a,+
a,,, and [a,,, vyl =aya,,, + - +a,_,a,,, where X" —a, X" ! -

- —a, X — a4 is an irreducible polynomial over F, a; # 0, and # > 1.
We have that M? = F(a,,...,a,,) and V = F(a,,...,a,,) = ¢(M) are
the only maximal and minimal ideals of M, respectively, and the interval
[M?: M]is abelian of length 2. In Fig. 4.4.1 we show the lattices of ideals
of L and M, which are clearly isomorphic. Hence, (3.vi), (3.vii), (3.viii) in
Theorem 3.4 do not hold in positive characteristic.
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