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ABSTRACT 

We determine the Lie algebras such that their number of ideals is at most five. A 
complete classification is given of the solvable Lie algebras in this class over alge- 
braically closed fields of characteristic zero and the real field. 

1. INTRODUCTION 

Let L be a Lie algebra. The ideals of L may be taken as the elements of 
a lattice is(L) under the operations of sum and intersection. Although L 
determines 3(L) uniquely, in general Z3:( L) does not determine L uniquely. 
Moreover, there exist lattices ..Y that are not the 3:(L) for any Lie algebra L. 
For example, the S-element lattice 3, represented by the diagram in Figure 
1 cannot occur as the lattice of ideals of any Lie algebra, because _Y1 is 
nonmodular (see [2, p. 201). 

In the present paper we are interested in answering the following 
questions: (1) Which n-element lattices 3 with 1 < n < 5 can occur as the 
lattice of ideals of some Lie algebra? (2) If _Y is such a lattice, how many Lie 
algebras L exist such that 3 is their lattice of ideals? In Section 2, we shall 
obtain the answer to the first question, which helps us to determine the 
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FIG. 1. 

structure of the Lie algebras that have at most five ideals. These results are 
then used in Section 3, where, as an illustration, the solvable Lie algebras 
with no more than five ideals are classified completely when the base field is 
either an algebraically closed field or the real one. The methods of proof are 
entirely elementary and are applications of linear algebra. 

Every Lie algebra considered in this paper will be finite-dimensional over 
a field F of characteristic zero. Rad(L) [Nil(L)] denotes the largest solvable 
[nilpotent] ideal of L. Th e J acobson radical, J(L), is the intersection of all 
maximal ideals of L. We denote the terms of the lower central series (1.c.s.) 
of L by L = L’ and L” = [L, L”- ‘1 f or i > 1. The center of L is denoted by 
Z(L). We define the upper central series (u.c.s.) of L by letting Z,(L) = 0 
and Zi(L) be the ideal of L such that Z(L/Z,_ i(L)) = Z,( L)/Z,_ I[ L) for 
i > 1. We shall say that L has nilpotency index n if L” = 0 but L”- ’ # 0. 
Notiee that R is the nilpotency index of L if and only if Z,_ i(L) = L. The 
symbol 3(L) d enotes the lattice of all ideals of L. Algebra direct sums are 
denoted by @, whereas direct sums of vector-space structures are denoted 
by +. 

2. BASIC STRUCTURE 

LEMMA 2.1. Let L be a Lie algebra such that 3(L) is an n-element 
lattice with 1 < n < 5. Then, S(L) is one of the lattices shown in Figure 2. 

Proof. Notice that 3(L) is as in I if and only if L = 0. Assume then 
L # 0. It is clear that 0 (L) is an ideal of L with the following property: If P 
is an ideal of L, then 0 < P (P < L). Thus, 3(L) has at least two elements. 
If n = 2 or 3, it is immediate that 3(L) is as in II or III. Suppose now 
n = 4, and let P be a minimal ideal of L. If P is the unique minimal ideal, it 
follows that 3(L) is as in IV(a). Otherwise, there exists a minimal ideal Q 
different from P. Then, 0, P, Q, L are the elements of S(L). Moreover, 
P f~ Q = 0 and P + Q = L. Therefore, D:(L) is as in IV(b). Finally consider 
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n = 5. In that case, L has at most three minimal ideals. Assume there are 
three. Write them as P, Q, R. We have that P n Q = P n R = R f~ Q = 0 

and P + Q = P + R = R + Q = L. Then, as [P, Q] = [P, R] = [Q, R] = 0, 

we deduce that L is abelian of dimensionality 2, which is a contradiction. 
Therefore, L has at most two minimal ideals. If there is only one, L is as in 
V(a) or V(c). Otherwise, denote by P, Q the minimal ideals of L, and let K 
be the fifth ideal. As K is not minimal, we can suppose P < K. If Q is not 
contained in K, it follows that L = P + Q and therefore K = P, which is a 
contradiction. We conclude that P + Q = K, and this yields s(L) is as in 

V(b). n 

In the terminology of lattice theory, a lattice 9 which is totally ordered 
by set inclusion is said to be a chain. Then the lattices represented by the 
diagrams I, II, III, IV(a), V( a in Figure 2 are n-element chains with n = 1, > 
2, 3, 4, 5 respectively. The other lattices will be denoted by [Figure 2, *], 
where * = IV(b), V(b), V(c). In [l], we studied the problem of determining 
the structure of a Lie algebra L for which !C?:( L) is a chain. We were able to 
classify completely the supersolvable Lie algebras in this class. In the general 
case, we only obtained the classification of those Lie algebras for which C?(L) 
is a l-, 2-, or S-element chain. Now, from Theorem 2.3, we shall get the 
complete structure of a Lie algebra L in which s(L) is a 4- or 5-element 
chain. The following lemma is obtained in [l]. Its proof is presented here for 
completeness. 

LEMMA 2.2 [I]. Let L be a Lie algebra. Suppose dim L > 1 and L is not 

simple. Then the following properties of L are equivalent: 

(i) L has a unique maximal ideal. 

(ii> L = Nil( L> 4 S, where 5’ is 1 - dimensional or simple and ad, S 
acts nontrivially on every ad L S-invariant subspace of Nil( L)/Nil( Lj2 

FIG. 2. 
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Proof. (i) = (ii): We have that J(L) is the unique maximal ideal of L. 
Then L/J(L) is one-dimensional or simple. From Theorem 3.1 of [6], 
J(L) = [L, Rad( L)] Q Nil(L). We claim that J(L) = Nil(L). If L/J(L) is 
simple, it is clear that J(L) = Nil(L). Assume then dim L/J(L) = 1. If 

J(L) # Nil(L), we conclude that L is nilpotent. Then J(L) = L’, and L2 is 
a nonzero ideal because dim L > 1. Now consider L/L3. As dim L/L2 = 1, 
we can write L/L3 = L2/L3 i(( y)). Since L2/L3 Q Z( L/L3), we get L2 = 
L3, which is a contradiction because L is nilpotent. Thus J(L) = Nil(L). 
Therefore L = Nil(L) i S, where S is one-dimensional or simple (the 

decomposition in the case S simple follows from the Levi theorem). Notice 
that Nil( L/Nil( L>2) = Nil( L)/Nil( L)2 = I( L/Nil( L)2) (see [7, Proposition 

1.41). Assume NiJ(L)2 = 0. Then L = Nil(L) -k S with S = ((x)) or S 

simple and Nil(L) abelian. We have the following: If S = ((x)1, then 
Nil(L) = J(L) = L2 = [Nil(L), x] and therefore ad, rlNiI(L) is nonsingular. 
If S is simple, Nil(L) = J(L) = [L, Rad(L)] = [S, Nil(L)]. In that case, let 
A be an ad,S-invariant subspace of Nil(L). As Nil(L) is ad,S-completely 

reducible (see [3, p. 7911, th ere exists an ad,S-invariant subspace B such that 
Nil(L) = A @ B. Then [A CD B, S] = [A, S] @ [B, S] = A @ B, and this 
yields [A, S] = A. Therefore, (ii) follows. 

(ii) * (i): Write N = Nil(L). It is easily checked that N = N 2 + [N, SJ. 

Then N G /(L) = [L, Rad( L)] 6 N. Thus N is the unique maximal ideal of 

L. n 

THEOREM 2.3. Let L be a Lie algebra. Then L has at most five ideals if 
and only if one of the following holds: 

(i> L = 0. 

(ii) L is either one-dimensional or simple. 

(iii) L = N i (( x)), where N is a nonxero abelian ideal, ad L X/N is 
nonsingular and cyclic, and its minimal polynomial has the form V(X)“, 
where r(X) is irreducible and 1 < n =G 3. 

(iv) L = N +((x)), where N is a nilpotent ideal of nilpotency index three, 
ad, x/N/N”, ad, xIN2 are cyclic, and their minimal polynomials have the 

form n(X)“, p(X)” respectively, where: 

(a) r(X), p(X) are irreducible and s~( X) # X. 
(b) (n, m) is one of the following pairs: (1, 11, (1,2), or (2, 0. Moreover, if 
(n, m) = (2,l) and Z(N) # N2, then a(X) = p(X) and the minimal poly- 
nomial of ad, xlz(N) is T(X>~. 

(v) L = N i (( x)), where N is a nilpotent ideal of nilpotency index four, 

ad, AN,NZ, ad, XINZ,N 3, ad, x I N3 are cyclic with irreducible minimal poly- 
nomials, and ad, x I NlN2 is nonsingular. 
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(vi) L = N i S, where N is a nonzero nilpotent ideal of nilpotency index 

n with 2 < n < 4, N/N2 is a faithful ad, S-module, and N”/N”’ is an 

irreducible ad, S-module for 1 < i < n - 1. 

(vii) L = ((x)) CB S, where S is a simple ideal and (( r)) is the center. 

(viii) L = S, @ S,, where S,, S, are simple ideals 

(ix) L = N i(( x)), where N is a nonzero abelian ideal, ad, xlN is 
nonsingular and cyclic, and its minimal polynomial is a product of two 

distinct irreducibles. 

(x) L = N i S, where N is an abelian ideal, S is a simple subalgebra, 

and N = N, CB N, with N,, Ns irreducible, faithful, and nonisomorphic 

ad L S-modules. 

(xi) L = N i S, where N is an abelian ideal, S is an algebra of the type 

described in (vii) or (viii), and N is an irreducible and faithful ad, S-module. 

Moreover, if L is as in (xi) with S = ((xl) CB S,, the minimal polynomial 

of ad, x 1 N is irreducible. Thus if ad, xl N is split, then the transformation 

ad, x is scalar in N and N must be an irreducible ad, S,-module. 

Proof. From Lemma 2.1, 3(L) is one of the lattice diagrams in Figure 
2. We study each diagram separately. 

Case 1: 3(L) is an n-element chain, 1 < n < 5. If n = 1 or 2 it is 
immediate that L is as in 6) or (ii). Suppose then n > 3. As L has a unique 
maximal ideal, from Lemma 2.2 we have that L = N 4 S, where N = 
Nil(L) # 0, S is a simple subalgebra or S = c(x)), and ad, S acts nontrivially 
on every ad, S-invariant subspace of N/N 2. Let k be the nilpotency index of 
N. Then k < 4, because the terms of the 1.c.s. of N are ideals of L. Assume 
first S is simple, and consider N’/N if ’ for 1 < i < k - 1. We can write 
N”/N’+l = A,/Nifl @ . . . @ A,/N”+‘, where each Aj/Ni+’ is an irre- 
ducible ad, S-module [3, p. 791. Th en AjisanidealofLforI<j<m.As 
3(L) is a chain, we conclude that m = 1 and therefore L is as in (vi). Now, 
suppose S = c(x)>. Consider N i/N”+ ’ for 1 < i < k - 1. Notice that every 
ad, x-stable subspace of Ni/N”+ ’ is an ideal of L. As 3(L) is a chain, it 
follows that ad, xlNi,Ni+l is an indecomposable transformation. Therefore, 
ad, x)N*,~~+~ is cyclic and its minimal polynomial is a power of an irre- 
ducible [4, p. 1291. If N is abehan, we obtain that L is as in (iii). Assume 
then k = 3. We have that 0, N2, N, L E D(L). Thus 3(L) has 4 or 5 
elements. If D(L) is a 4-element chain, it follows that 0 < N 2 < N < L is 
the chain of ideals of L. Therefore L is as in (iv) with (n, m) = (1,l). If 
3(L) is a 5-element chain, there exists an ideal K such that either 0 < K < 
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N2 or N2 < K < N. In the first case, L is as in (iv) with (n, m) = (1,2). In 
the second one, we conclude that L is as in (iv) with (n, m) = (2,l). In this 
last case, if Z(N) # N2, it follows that Z(N) = K. As every ad, x-stable 
subspace of Z(N) is an ideal of L, ((x)) acts cyclically on Z(N) with minimal 
polynomial S(X)2, where 6(X) is irreducible. Denote by 7~( X)’ and p(X) 
the minimal polynomials of ad, x on N/N2 and N” respectively. Notice 
that N” < Z(N) < N. Thus, S(X) = rr(X) = p(X), which proves the last 
assertion of (iv)(b). Finally, suppose k = 4. Then 0 < N 3 < N 2 < N < L is 
the chain of ideals of L, and this yields that L is as in (v). 

Case 2: 3(L) is as in [Figure 2, IV(b)]. Then, L = A 83 B, where 
A, B are the only two minimal ideals of L. If both of them are abelian, we 
conclude that L is abelian of dimensionality 2, which is a contradiction. 
Therefore, L is as in (vii) or (viii). 

Case 3: s(L) is as in [Figure 2, V(b)]. From Lemma 2.2, we have that 
L = N i S, where N = Nil(L) # 0, S is one-dimensional or simple, and 
ad, S acts nontrivially on every ad, S-invariant subspace of N/N’. More- 
over, N = A @ B, where A, B are the only two minimal ideals of L. It 
follows that N is abelian. Notice that ad, S acts irreducibly on A and B 
because of their minimality. Suppose first S = ((x)). Then ad, xlA and 
ad, r 1 s are cyclic with prime minimal polynomials r(X), p(X) respectively 

(see 14, p. 1281). If r(X) = p(X), we can take la,]l G i G n, ii+}, d i G ,L as a 
basis for A and B with respect to which ad, XI A, ad, x] s are represented by 
the same Jordan canonical matrix (see [4, p. 701). Then the subspace 
P = ((a, + bi : 1 < i < n)) is an ideal of L different from A and B, which is 
a contradiction. Therefore 7~( X) # p( X ), and this yields L is as in (ix). Now, 
assume S is simple. If A, B are isomorphic ad, S-modules, we can take 
{ail1 4 i ~ n, {bJ, 4 i ~ n basis of A and B with respect to which the action of 
ad, S is the same. Then P = ((a, + bi : 1 < i < n)) is a minimal ideal of L 
different from A, B, which is a contradiction. Therefore, L is as in (x). 

Case 4: s(L) is us in [Figure 2, V(c).] We have that the Jacobson 
radical, J(L), is unique minimal ideal of L, and L/J(L) is as in (vii) or (viii). 
As J(L) is nilpotent (see [6, Corollary 3.11) we conclude that /(L) is abelian. 
Suppose first L/](L) 1s as in (viii). Then J(L) = Rad( L) and, from the Levi 
theorem, L = J(L) i S,, where S, is a direct sum of two simple subalge- 
bras. Now, assume L/J(L) is as in (vii). Then, J(L) is of codimension 1 in 
Rad( L) and L = Rad(L) i S, w h ere S, is a simple subalgebra. As J(L) and 
Rad( L) are ad, &-modules, we have that Rad( L) = J(L) i B, where B is a 
one-dimensional ad, S,-module. Therefore B = ((x)) and [x, S,] = 0 (see 
[5, p. 281). Consequently, we can decompose L as J(L) i S, where S is a 
subalgebra as in (vii) or (viii). Notice that ad, S acts faithfully and irreducibly 
on I< L) in both cases, because J(L) is the unique minimal ideal of L. Then 
L is as in (xi). 
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Now we shall prove the converse. It is immediate if L is as in (i), (ii), 
(vii), or (viii). Notice that if L is as in (iii), (iv), (v), (vi), or (ix), then from 
Lemma 2.2 N is the unique maximal ideal of L. Suppose L is as in (iii) or 
(ix). Then the p ro p er ideals of L are the ad, x-invariant subspaces of N. 
Therefore, if L is as in (iii), we conclude that 3(L) is one of the following 
chains: 

0 < Ker(r(ad, xlN)) = N < L for n = 1, 

0 < Ker(r(ad, xlN)) < Ker(r’(ad, X(N)) = N < L for n = 2, 

0 < Ker(a(ad, x)N)) < Ker(r2(ad, xlN)) 

< Ker(r’(ad, x(N)) = N <L for n = 3, 

where Ker(rr”(ad, ~1~)) = {a E N: anYad, X.(N)) = 0). If L is as in (ix) 
and we denote by r( X)p( X) the minimal polynomial of ad, xlN, we obtain 
that 0, Kel(r(ad, xlN)), Kel( /.Aad, xIN)), N, and L are the elements of 
XL). 

Now, let L be as in (iv) with (n, m) = (1,l) or (1,2). Pick an ideal P of 
L such that N2 < P < N. Since ((r)) acts irreducibly on N/N2 in both 
cases, P = N 2 or P = N. It follows that Z(N) = N 2. Next, let K be a 
minimal ideal of L. From [7, Propositions 3.71, we have that K 6 Z(N) = N 2. 
If (n, m) = (1, l), we conclude that K = N2 is the unique minimal ideal of 
L. Thus 3(L) is the 4-element chain 0 < N2 < N < L. If (n, m) = (1,2), 
then as (( x>> acts cyclically on N 2, we obtain that K = Kel(rr(ad, xlNe)>. 
Then, Kel(rr(ad, ~(~2)) is the unique minimal ideal of L. Moreover, 
L/Kel(rr(ad, xlNs>) is as in (iv) with (n, m> = (1, 1). It follows that s:(L) is 
the 5-element chain 0 < Ker(n(ad, xIN2>) < N2 < N < L. 

Next assume L is as in (iv) with (n, m> = (2,1>. Notice that N2 is a 
minimal ideal. If Z(N) = N 2 as in the above paragraph, it is easily checked 
that N 2 is the unique minimal ideal of L. Now, L/N2 is as in (iii> with 
n = 2. Thus, B(L) is a 5-element chain. If Z(N) # N 2, then from (iv) (b), 
((x1) acts cyclically on Z(N). It follows that Kel(n(ad, xIZ(N))) and 

Ker(rr2(adL xIZ(N) >> = Z(N) are the only two ad, x-invariant subspaces of 
Z( N >. Then we deduce that N 2 = Ker(r(ad, x lZcN))), which is the unique 
minimal ideal of L. Consequently, as in the above case, we obtain that D(L) 
is a 5-element chain. Now, let L be as in (v). We have that N3 < Z(N). 
Suppose N 3 f Z(N). The Lie algebra L/N 3 is as in (iv) with (n, m) = (1, 1). 
Then 0 < N2/N3 < N/N3 < L/N3 is the lattice of ideals of L/N 3. It 
follows that Z(N) = N or N 2, which is a contradiction. Therefore Z(N) = 
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N3, and this yields that N3 is the unique minimal ideal for L. Then, from 
(iv), we conclude that L is a 5-element chain. If L is as in (vi), it is easily 
checked that the 1.c.s. of N coincides with the U.C.S. Consequently, 3(L) is 
the (n + l)-element chain 0 < N”- ’ < *** < N < L, where n = 2,3,4. 

Now, let L be as in (x). Take P a minimal abelian ideal of L. Then 
P Q N, because N = Nil(L). As ad, S is completely reducible on N (see [3, 
p. 79]), there exists an ad, S-module C such that N = P @ C. From the 
Jordan-Holder theorem, we can suppose that P and Ni are isomorphic 
ad, S-modules. Then P f~ N, = 0. If P # N,, we obtain that N = P @ Nl 
= P 8 N,, and this yields that Ni, N, are isomorphic ad, S-modules, which 
is a contradiction, It follows that N,, N, are the unique ad, S-invariant 
subspaces of N. Thus, from Lemma 2.2, N is the unique maximal ideal of L. 
Consequently, 0, Ni, N,, N, and L are the ideals of L. 

Finally, assume L is as in (xi). Suppose first L/N is as in (viii). It follows 
that N = Nil(L). Let P be a minimal ideal of L. Then P is either abelian or 
simple. If P is simple, we deduce that P < S (see [3, p. 921). As [P, N] = 0, 
it follows that ad,S is not faithful on N, which is a contradiction. Thus P is 
abelian, and therefore P = N because of the minimality of N. Now, as 
S = S, @ S,, we conclude that 0, N, N i S,, N i S,, L are the ideals of L. 
Next, let L = N 4((x)) @ S. We claim that N = Nil(L). Notice that Rad( L) 
= N i ((xl). Thus we need only prove that ad, x 1 N is not nilpotent. If that is 
not the case, from Engel’s theorem (see [3, p. 361) the minimal polynomial of 
ad, x[N is of the form X”. As ad,[((r)) @ S] is completely reducible on N, 
it follows that ad, xIN is semisimple (see [3, p. 811). Consequently, [N, x] = 
0, which is a contradiction. Now, as in the above case, it is easily checked that 
N is the unique minimal ideal of L. Then we conclude that 0, N, N i((r>>, 
N i S, and L are the ideals of L. 

To prove the last assertion of the theorem, consider L = N i c(x)) @J S,. 
Notice that ad, xlN is semisimple because ad,[((x)) o S,] is completely 
reducible on N (see [3, p. 811). Th en we can write its minimal polynomial as 
7r,(X> *** T”(X) with n,(X) distinct irreducibles for 1 Q i Q n. Conse- 
quently, we can decompose N as N,,, 4 *** 4 N, , where N,, = {a E 

N : arr,(ad, x) = 0). On the other hand, [ad, r, ad, si = 0 for every s E S,. 
Then from 13, p. 401 we obtain that N,, is ad, S,-invariant for 1 < i Q n, and 
this yields that each N?,, is an ideal’of L. As N is a minimal ideal, we 
conclude that n = 1. Now the last part of the assertion is immediate. The 
proof is complete. n 

REMARK 2.4. Notice that every Lie algebra L listed in Theorem 2.3 
determines 3(L) uniquely as one of the lattices in Figure 2. Moreover, given 
a lattice _Y’ of the type described in Figure 2, if there exists a Lie algebra L 
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for which 9’ is its lattice of ideals, 9 determines the structure of L (not 
uniquely). This allows us to deal with the existence problem that will be our 
next task. 

3. THE EXISTENCE PROBLEM 

The results of the last section reveal the structure of the Lie algebras 
which have at most five ideals. But it remains to be shown that these 
structures are possible. The existence problem for Lie algebras of types (i), 
(ii), (iii), (vii), (viii), (ix), (xl in Theorem 2.3 is readily solved, and in each case 
it is easy to obtain a basis and give the corresponding multiplication table. If 
the base field is algebraically closed, then case (xi) is easy too. The existence 
problem for the rest will be solved by the two following corollaries and the 
final examples in Example 3.4. 

LEMMA 3.1. Let L be a Lie algebra direct sum of a nilpotent ideal N and 
a one-dimensional subalgebra ((x)). Then ad, xIN is split if and only if 
ad, z-IN/N2 is split. 

Proof. The “only if’ is immediate. We shall prove the “if.” Let S be the 
largest subspace of N such that ad, xls is split. Notice that S is a subalgebra 
(see [3, p. 641). Th en ad, XI N,(N2+ s) does not have eigenvalues in the field. 
It follows that N = N 2 + S. Let M be a maximal subalgebra such that 
S i(x) < M. By Theorem 6.5 of [81, N2 < M. Then M = L, which is a 
contradiction. Therefore S = N, and this yields that ad, xIN is split. n 

COROLLARY 3.2. Let L be a solvable Lie algebra over an algebraically 
closedfield of characteristic zero. Then, L has at most five ideals if and only if 
one of the following holds (only nonzero products are given): 

(1) L = 0. 
(2) L is one-dimensional. 
(3) L is the (n + 1)dimensional Lie algebra, 1 < n < 3, with basts 

(al,. . . , a,, yl and products [a,, y] = a, + ai+l for 1 < i < n - 1, [a,, y] 
=a “. 

(4) L is the four-dimensional Lie algebra with basis {al, a2, a3, y] and 

products [aI, a21 = a3, [q, yl = a, + a2, [a2, yl = a2, [a,, yl = 2a3. 
(5) L is the three-dimensional Lie algebra with basis {a,, a2, y} and 

products [aI, y] = aI, [a2, y] = aa2, where (Y # 0, 1. 
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Moreover, two Lie algebras as in (5) corresponding to scalars (Y, /3 are 
isomorphic if and only if CY = p or (Y = I/p. 

Proof. Suppose dim L > 1 and L has no more than five ideals, so that 
L has the structure described in (iii), (iv), (v), or (ix) of Theorem 2.3. Then L 
is a direct sum of a nonzero nilpotent ideal N and a one-dimensional 
subalgebra ((x)). We study the different cases separately. 

(a) Let L be as in Theorem 2.3 (iii). It follows that N is an n-dimen- 
sional abelian ideal and ad, x IN has minimal polynomial (X - a)“, where 
l<n<3,(~#O.Take y=/_~with~=I/a,andpickabasis{a,}~~~~~ 
for N with respect to which ad, y]N is represented by a matrix in classical 
canonical form (see [4, p. 731). Then {a,, Y}~,,, n is a basis for L as in 3). 

(b) Let L be as in Theorem 2.3 (iv). As dim N/N2 > 1, there is only one 
possibility, which is that dim N = 3, dim N2 = 1, and c(x)) acts on N/N2 
and N 2 with minimal polynomials (X - a)2, (Y f 0, X - /? respectively. 
Now we consider the subspace N, = {z E N: z(adL x - (YZ)” = 0). We 
have that N = N, + N2. As N2 < Z(N), we have 0 # N2 = [N,, N,] < N,, 
(see [3, p. 641) and this yields /3 = 2a. Consequently, we can decompose 
N = N, i N2,, where N, = {z E N: z(ad, x - CUZ)’ = O] and Nz, = {a 
E N : [a, x] = 2 aa} = N’. Now, we can take a basis a, b, c, for N such that 
[a, x] = oa + b, [b,x] = cub, [c, x] = 2oc. Notice that [a, b] = AC for 
some h # 0. Then a, pb, Apt, t_~x, where Z_L = l/o, is a basis for L as in 

(4). 
(c) From [3, p.ll], there exist only two nilpotent Lie algebras of dimen- 

sionality 3: the S-dimensional abelian Lie algebra and the Lie algebra 
M = ((x, y, z>> with products [x, y] = z, [z, x] = [z, y] = 0. Hence there 
are no Lie algebras as in Theorem 2.3 (v). 

(d) Let L be as in Theorem 2.3 (ix). Then L has a basis aI, a2, x such 
that [ai, x] = 6a, and [a2, x] = Paz, where 6, /3 # 0 and 6 # ~3. It follows 
that a,, a2, t.~x, where p = l/6, is a basis for L as in (5) with CY = p/S. 

The last assertion is easily checked. The converse follows from Theorem 
2.3. I 

COROLLARY 3.3. Let L be a solvable Lie algebra over the real field. Then 
L has at most five ideals if and only if one of the following holds <only 
nonzero products are given): 

(1) L is one of the Lie algebras listed in Corollary 3.2. 

(2) L is the (2n + l)-dimensional Lie algebra with basis 

{a,, fi, . . > antfn, ~1, 1 G n 6 3, and products [ai, x] =J1, [J;, x] = -a, + 
zf2+,at+, f&- 1 < i < n - 1, [a,,, IX] =fn, [fn, x] = -a, + ofn with 0 < 
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(3) L is the 4-dimensional Lie algebra with basis (al, at, a3, xl and 

products [aI, x] = a2, [a,, x] = -a, + craz, [a,, x] = aaa, [aI, a,1 = a3 
with 0 < CY < 2. 

(4) L is the 6-dimensional Lie algebra with basis {al, a2, a3, a4, a5, x} 
and products [al, x] = a2, [a,, x] = -a, + Lya2 + a3, [a3, x] = a4, [a_,, x] 
= -a3 + cxaq, [as, x] = oas, [al, a4] = -as, [az, as] = as with 0 < (Y < 2. 

(5) L is the 7-dimensional Lie algebra with basis {a,, a2, ax, a4, a5, a6, x} 
and products [a,, x] = a2, [a2, x] = -a, + oaz + a3, [a3, x] = a4, [a4, xl 
= -a3 + aa4, [as, x] = a6, [a6? x] = -4a, + 2oa6, [aI, a31 = as, [azT a31 
= [aI, a41 = +a6, [a,, a41 = -a5 + (o/2)a6, [aI, az] = -[(.u/(o’ - 4)]a, 
+ [l/(c? - 4)]a, with 0 < LY < 2. 

(6) L is the 6-dimensional Lie algebra with basis {a,, a2, a3, a4, as, x} 
and products [a,, x] = ag, [az, x] = -a, + oaz, [a,, x] = oag, [a,, x] = 

a5> [a,, xl = -(2a2 + l)a, + 3oa,, [al, a2] = a3, [aI, a31 = a4, [a,, a31 = 
- oaq + a5 with 0 < CY < 2. 

(7) L is the 6-dimensional Lie algebra with basis {a,, a*, a3, a4, as, x] 
and products [aI, x] = a2, [a,, x] = -a, + a4, [a3, x] = 0, [a4, x] = a5, 

[as, xl = -a4, [aI, +I = a3, [a,, a31 = a4, [a2, a,1 = a5. 
(8) L is the 6-dimensional Lie algebra with basis {a,, a2, a3, a4, a5, x] 

and products [al, x] = a2, [az, x] = -a, + a4, [a3, x] = 0, [a4, x] = as, 

[a,, xl = -a4, Ial, a,1 = a3, Ial, a31 = a5, [a,, a31 = -a4. 
(9) L is the 4-dimensional Lie algebra with basis {a,, a2, a,, x} and 

products [aI, x] = aI, [a2, x] = a3, [a3, x] = pa2 + ou3 with CY’ + 4p < 0. 
(10) L is the 5-dimensional Lie algebra with basis {a,, a2, a3, a4, x] and 

products Ial, x] = a2, [a,, x] = -a, + oaz, [a3, x] = a4, [a4, x] = @a3 + 
pa, with 0 < cy < 2, -1<p<0,and~2+4/3<0. 

(11) L is the 5-dimensional Lie algebra with basis {al, a,, a3, a4, x} and 
products [aI, x] = a2, [az, xl = --al, [a3, x] = a4, [a4, x] = -a3 + pa, 
with -2 < TV < 2, /.L # 0 or (Y, and 0 < cx < 2. Moreover, two Lie alge- 
bras of this family corresponding to scalars ( CY, p), ((Y ‘, /A’) are isomorphic if 
and only if CY ’ = -p and t_~’ = -CY. 

(12) L is the 5-dimensional Lie algebra with basis (aI, a2, a3, a4, x) and 

products [aI, xl = a2, [a2, xl = -a,, Ias, xl = a4, [a,, xl = paa + pa, 
with 0 < t.~, -1~p<O,~~~+4P<O,and(P,~)#(-1,0). 

NO two algebras described above (including diferent members of the 
families) are isomorphic. 

Proof. Suppose dim L > 1 and L has no more than five ideals, so that 
L has the structure described in (iii), (iv), (v), or (ix) of Theorem 2.3. Then L 
is a direct sum of a nilpotent ideal N and a one-dimensional subalgebra ((xl). 
Take notice that the irreducible polynomials over the real field are linear or 
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quadratic. If ad, xl N/N2 is split, from Lemma 3.1 we conclude that L is one 
of the Lie algebras listed in Corollary 3.2. Then we can assume ad, X]N/NZ is 
not split. We study the different cases separately. 

(a) Let L be as in Theorem 2.3 (iii). Then the minimal polynomial of 
ad, x]N has the form (X2 - c,X - c,,)“, where 1 Q n ,< 3, cl2 + 4c, < 0, 
and N is a 2ndimensional abelian ideal. Take y = px, where p = 
1/ 6. It f 11 o ows that the minimal polynomial of ad, y ] N is (X 2 - aX 

+ 1)” with LY = ci/ 6. N o ice that -2 < Q < 2. Consequently, we t’ 
can pick a basis ai, fi, . . , , a,, fn for N with respect to which ad, y]N is 
represented by a matrix in classical canonical form. Then a,, fi, . . . , a,, fn, y 
is a basis for L as in (2). It is easily checked that two Lie algebras of this 
family corresponding to scalars CY, (Y ’ are isomorphic if and only if (Y ’ = + a. 
Therefore, we can take the restriction 0 Q (Y < 2. 

(b) Let L be as in Theorem 2.3 (iv). Then, 0 # N 2 < Z(N) because the 
nilpotency index of N is three. As L/N 2 is as in Theorem 2.3 (iii) with 
n = 1,2, from (a) we have dim N/N 2 = 2 or 4, and we can consider without 
loss of generality that the minimal polynomial of ad, x]N,N* is either 
X2 - aX + 1 or (X2 - CUX + 1j2 respectively with 0 Q (Y < 2. Now, let 
p(X)“’ be the minimal polynomial of ad, x I N2. Notice that if dim N/N 2 = 2, 
then dim N2 = 1. Therefore m = 1, and /J(X) is a linear polynomial. If 
dim N/N2 = 4, from Theorem 2.3 (iv)(b) we conclude that m = 1 and 
p(X) is either a linear or a quadratic irreducible polynomial. Consequently, 
ad, x acts irreducibly on N 2, and its minimal polynomial has the form either 
X-j3 or X2 -c,X-c, where ct + 4c, < 0. We claim that fl = (Y, 

= 2 a, and c,, = -4. Consider the Lie algebra L, = L Q C. Notice that 
?Z (NC)2 = (N2), Q Z(N,) (see [3, p. 271) and ad, x]N, adLc x]N, have 
the same characteristic polynomial. Denote by 6, 8 E @ the roots of X2 - 
aX + 1. Then we can decompose Nc as (Ng i N,) + (NQ)2. We have that 
6 + 8 = a; then from [3, p. 641, 0 # (Ncj2 < (Nc)2g +(N,),, /(NC),, 
where <Nc)y = 0 if v is not a root of the characteristic polynomial of 

adLc FIN,. Consequently, either P = (I! or 2 S, 28 E @ are the roots of 
X2 - ci X - c,,, and therefore, ci = 2 (Y and c,, = - 4, which proves our 
claim. Then, if dim N/N 2 = 2, it follows that dim N 2 = 1 and X - (Y must 
be the minimal polynomial of ad, XI Nz. Thus, we can decompose N = N,(x) 
i N,, where r(X) = X2 - aX + 1, N?,(x) = {z E N: zm(ad, x> = O], and 
N, = {a E N : [a, x] = au). Notice that N2 = N,. Now, we can pick a basis 

~1, ~2 for X(x, such that [a,, x] = u2 and [a,, x] = -a, + ou2. Then 
N2 = (([a,, a,])), and therefore a,, u2, [ai, u2], x is a basis for L as in (3). If 
dim N/N 2 = 4, it follows dim N 2 = 1 or 2. Thus, the minimal polynomial of 
ad, x]Nz is X - (Y or X2 - 2aX + 4. In the first case, we can take a basis 

Pi, 917 P2, 923 z for N such that [pl, XI = ql, [p2, XI = 92, 141, XI = -pl 
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+ a91 + p,, [9s, x] = -p, + oqz, [z, x] = oz. By using the Jacobi iden- 
tity, we obtain the following identities: 

(3.3.1) 

From the above identities, as ad, ~(~2 = Zo, it is easily checked that 

[pi, psi = [9i, 9A = [pz, 9sl = 0 and [pi, 9il = hz, 19i, psi = -[pi, 921 
= ~2, where A, ZA E R. If ZL = 0, we get that p,, 9s E Z(N), which contra- 
dicts the last assertion of (iv)(b) in Theorem 2.3. Thus, Z.A # 0. Now, write 
k = h/p and take the following basis for N: 

cr( 02k + 2) a2k+k+1 
a1 = ‘YPl - 91 + 

a2 + 2 P2 - 
(Y2 + 2 

92~ 

a2 = Pl + 
((Y” + l)(k - 1) a(k - 1) 

a2 + 2 P2 - a2 + 2 92~ 

a3 = “)32 - 92> a4 = P21 a5 = pz. 

It is easily checked that al, u2, us, u4, es, x is a basis for L as in (4). Now, 
assume dim N 2 = 2. Then the minimal polynomial of ad, r]N2 has the form 
X2 - 2crX + 4. Write n(X) = X2 - (YX + 1 and p(X) = X2 - 2aX + 4. 

We can decompose N = N,,, 

such that [pi, ~1 = 91,191, r = -pi + ‘~91 + p,,[ps, ~1 = 92,192, ~1 = 1 

i NW(r). Take a basis p,, 91, p,, 92 for N,,(r) 

-?‘2 + “92. As Np(x) = N2 = Z(N), we have that N2 = [Npcxj, N,rc.,,] = 

R((la, b] : a, b E { pl, 9i, p,, 9&). N o ice t that the identities listed in (3.3.1) 
hold. Consequently, [p,, 92] = 0. If [p,, p2] = 0, from (3.3.Q we obtain 
that N 2 = 0 which is a contradiction. Thus 0 # [ pl, p2] E N 2. Denote 
[pi, p2] = zl. Write [zi, x] = zs. We have that zi, zs is a basis for N2 such 
that [z,, x] = -42, + 2a2,. Now, from this last identity and (3.3.1), it is 
easily checked that pl, 9i, p,, 92, zi, z2, x is a basis for L as in (5). 
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(c) Let L be as in Theorem 2.3 (v). As L/N 3 is as in Theorem 2.3 (iv) 
with (n, m> = (I, 0, from (b) we conclude that dim N/N2 = 2 and 
dim N 2/N 3 = 1. Moreover, we can consider without loss of generality that 
the minimal polynomial of ad, rJN/Na has the form (X2 - aX + 1xX - a> 
with 0 < (Y < 2. Now, by using the same argument as in the above paragraph 
(b) with the Lie algebra L, = L B C, it is easily checked that ad, x must act 
on N3 with minimal polynomial either X - 2 cx or X2 - 3aX + (2 cr2 + 1). 
Suppose first that the minimal polynomial is X - 2a. Then N3 = R((c)) 
and [c, x] = 2ac. As L/N3 is as in (31, we can take linearly independent 
elements a,, ae, a3 for N such that N = R((a,, u2, a,>> + N3 with products 
[a,, x] = a2 (mod N3), [u2, x] = -a, + au2 (mod N3), [u,, x:3 = aus (mod 

N3>, [ai, a21 = u3 (mod N3), 1 al, u3] = [u2, u3] = 0 (mod N3). Notice that 
N3 Q Z(N). Then by th e J acobi identity we obtain the following: 

[[u1,u3lx] - 2a[u,,u3]=[u2,a3] - a[u,,u,] = 0, 

(3.3.2) 

b2, u&l - 2(Y[u,, aa]= - [u,, u,] = 0. 

Consequently, u3 E Z(N), and this yields that N3 = 0, a contradiction. 
Therefore the minimal polynomial of ad, x(N3 is X2 - 3aX + (2 cr2 + 1). 
Let r(X) = X2 - (YX + 1 and p(X) = X2 - 3aX + (2a2 + 1). Notice 
that in the case (Y = 0, the characteristic polynomial of ad, x[N is (X2 + 
1j2X. We have two possibilities: 

Case 1: ad, xIN is semisimple. Then N is ad, x-completely reducible (see 
[4, p. 1291). Consequently, we can decompose N as V + N2, where V is 
ad, x-stable. As N, Q N 2, we deduce that the minimal polynomial of ad, xiv 
is X2- aX + 1. Moreover, N2 has a decomposition as N, i N3. Notice 
that N, = U’@(c)). Now, take a basis a,, u2 for V such that [a,, x] = u2, 

]a,, x] = -a, + LYU~. Then N2 = R((]a,, a,], [a,, c], [a2, cl>>. As dim N2 
= 3, we conclude that [ai, u2], [ai, c], [u2, c] is a basis for N2. Now, by using 
the Jacobi identity, we can easily check that [a,, a,] = hc with 0 # h E IR 
and therefore a,, u2, AC, A[ur, c], h[[u,, ~1x1, z is a basis for L as in (6). 
Case 2: ad, x( N is not semisimple. Then its minimal polynomial has the 
form (X2 + 1j2X. Consequently, we can decompose N = NWcxj i N,,. In 
that case, ad, x must act on Nrcxj cyclically. Take a basis b,, b,, b,, b, for 
N n(xj such that [b,, x] = b,, [b,, x] = -b, + b,, [b,, x] = b,, [b5. xl = 
- b4. Pick c E N,. Then N, = lR((c)) and [c, x] = 0. Notice that the only 
ad, x-invariant subspaces of Nflixj are Ker m(ad, xlN1 and Nmcxj. Thus 
N 3 = Ker z-(ad, x]N) = R((b,, b,)). As dim N2 = 3, we conclude that 
[b,, b,], [b,, c], [b,, c] is a basis for N2. Now by the Jacobi identity, it is 
easily checked that [b,, b,] = AC, [b,, AC] = pb4 + pb,, and [b,, AC] = 
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- pb, + fibs, where 0 f h and ( fi, pu> # (0, 0). Write b, = AC. If /3 > 0, 

consider the following elements: 

y = K,b, + x, 

a1 = K,b,; a2 = K,b, + K,K, fib4 + K,K, Fb,, a3 = ( K,)‘b3, 

a4 = K,(l - 2K,E.L)b4 + 2K,K,flb5, 

a5 = -2K,K, Pb4 + K,(l - 2K, k)bs> 

where 

K, = 
P Jr-- and K, = 

P 

P2 + P2 2( P2 + 9) 

It is immediate that {al, a2, us, ad, as, y} is a basis for L as in (7). If j3 < 0, 
consider the following elements: 

y = K,b, - x, 

a1 = K,b,, a2 = -K,b, + K,K, pb4 + K,K, pb5. a3 = -( K,)‘b,, 

a4 = K,(l + 2K,p)bq - 2K,K,pb5, 

a5 = -2K1K2/3b, - K,(l + 2K,k)b,, 

where 

K, = and K, = 
-P 

2(P2 + P”)’ 

It is immediate that (al, a2, us, u4, us, y} is a basis for L as in (7). If p = 0, it 
follows p # 0. Then consider the following basis (al, a2, a3, u4, us, y) for L: 
if p > 0. 

K=fi and y =x; 

1 1 1 1 1 
al = - Kbl, a2 = zb”, a3 = sb,, a4 = kb4, a5 = Eb,; 
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if, p < 0, 

K=fi and y=bb3+r, 

1 
al=- Kb 1, a2 = ib2 + ibs, a3 = $b,, a4 = -kb,, a5 = -$b,. 

It is easily checked that L is as in (8). 

(d) Let L be as in Theorem 2.3 (ix), so that the characteristic polyno- 
mial of ad, x ( N has one of the following forms: ( X - (Y X X 2 - c, X - c,) or 
(X2 - c,x - c&X2 - d,X - d,) with (Y # 0, cl2 + 4c, < 0, dr2 f 4d, 
< 0, and (cr, c,) z (d,, d,). In the first case, taking y = Ax with A = l/a, 

we obtain that the characteristic polynomial of ad, y 1 N is (X - lx X 2 - PX 
- P) with p2 + 40 < 0. Now, we can pick a basis al, a2, a3 for N such that 

[al, yl = a,, [a2, yl = a3, [a,, yl = P a2 + pa,. Consequently L is as in (9). 
In the second case, we can assume without loss of generality that the minimal 
polynomial of ad, xIN is (X2 - aX + 1)(X2 - 7X - 6) where -2 < (Y < 
2, y2 + 46 < 0, and (y, 6) # (a, - 1). Now, we can take a basis a,, a2, as, a4 

for N such that [a,, x] = a2, [az, x] = -ai + cru2, [a,, x] = a4, [u4, XI = 
6a, + ya,. It is easily checked that two Lie algebras of these families 
corresponding to scalars ( cy , P, p) and ( CY ‘, fi ‘, ,!L’> are isomorphic if and 
only if ((Y ‘, P’, P’) = CPU/ \/- P, I/P, o/ \/- P)> 
(- p/ m, l/p, - CY/ m>, or (- (Y, /3, - p). From the above isomor- 
phism characterization, the restrictions 0 < cr < 2 and - 1 < /3 < 0 are 
immediate. Now, if p # - 1, 0 < (Y < 2, we conclude that L is as in (10) or 
(12). Notice that in case (12) we can take p > 0. If p = - 1, we obtain that 
L is as in (11) or (12). 

The converse follows from Theorem 2.3. n 

EXAMPLE 3.4. The following examples ensure the existence of Lie 
algebras of the type in Theorem 2.3(vi) with nonabelian nilradical. A final 
remark: if L is as in Theorem 2.3(vi), the structures of Nil(L) and the Levi 
factor of L influence each other. 

(1) Let N be the nilpotent S-dimensional Lie algebra with basis 
{a,, a2, u3} having as its only nonzero products [al, a,] = a3 = - [a2, all. If 
N is the nilradical of a Lie algebra L as in Theorem 2.3(vi), it is easily 
checked that L/N must be isomorphic to the split three-dimensional simple 
Lie algebra. Now, from [5, p. 321, L has a basis {al, u2, as, x, y, h) with 
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products [a,, a21 = a3, Ial, a31 = 0, [a,, a31 = 0, ix, a,1 = 0, Lx, a21 = a,, 
[x, a31 = 0, [ y, a,1 = a2, 1 y, a21 = 0, 1 y, a31 = 0, [h, all = a,, [k a21 = 
-a2, [h, a31 = 0, [h, x] = 2x, [h, y] = -2y, [r, y] = h. Notice that 3(L) 
is the following d-element chain: 

0 < F((u3)) = N2 < F((a,, a2, u,)) = N < L. 

(2) Let M be the Lie algebra with basis (al, a2, u3, u4, as, x, y, h} and 

products [aI, a21 = a3, [al, a31 = a4, [az, a31 = as, ix, a,1 = 0, [x, a21 = al, 
Lx, a31 = 0, Lx, a41 = 0, [x, a51 = a4, [y, a11 = a2, [y, a21 = 0, [y, a31 = 0, 
[y, a41 = as, [y, a,1 = 0, [h, alI = al, [h, a21 = -u2, [h, a31 = 0, [h, a41 = 
a4, [h,u,] = -as, [h, x] = 2x, [x, y] = h, [h, y] = -2~. It is immediate 
that M is as in Theorem 2.3(vi), where 3(L) is the following 5-element 
chain: 

0 < F((a4, us)) = Nil( L)3 < F(( u3, u4, u,)) = Nil( L)2 

<F((u,,u,,u,,a,,u,)) = Nil(L) <L. n 
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