
UML2PROV: Automating Provenance Capture
in Software Engineering

Carlos Sáenz-Adán1∗, Beatriz Pérez1, Trung Dong Huynh2, and Luc Moreau3

1 Department of Mathematics and Computer Science, University of La Rioja,
La Rioja, Spain,

{carlos.saenz,beatriz.perez}@unirioja.es
2 Department of Electronics & Computer Science, University of Southampton,

Southampton, UK,
tdh@ecs.soton.ac.uk

3 Department of Informatics, King’s College London, London, UK,
luc.moreau@kcl.ac.uk

Abstract. In this paper we present UML2PROV, an approach address-
ing the gap between application design, through UML diagrams, and
provenance design, using PROV-Template. PROV-Template is a declar-
ative approach that enables software engineers to develop programs that
generate provenance following the PROV standard. The main contri-
butions of this paper are: (i) a mapping strategy from UML diagrams
(UML State Machine and Sequence diagrams) to templates, (ii) a code
generation technique that creates libraries, which can be deployed in
an application by creating suitable artefacts for provenance generation,
and (iii) a demonstration of the feasibility of UML2PROV implemented
with Java, and a preliminary quantitative evaluation that shows benefits
regarding aspects such as design, development and provenance capture.

Keywords: provenance data modeling and capture · PROV-Template · UML

1 Introduction

Over the last few years, there has been a growing interest in the origin of data,
in order to enable its rating, validation, and reproducibility. In this context,
the term provenance has emerged to refer to “the information about entities,
activities, and people involved in producing a piece of data or thing, which can
be used to form assessments about its quality, reliability or trustworthiness” [1].

This interest in provenance has led to various point solutions developed to
capture provenance (such as PASS [2], PERM [3], Taverna [4], Vistrails [5] or Ke-
pler [6]). The need for interoperability between systems has been a driver for the
creation of the PROV standard [1,7,8], a conceptual data model for provenance,
and its serialization to various Web technologies. Since PROV’s aim is the inter-
operable exchange of provenance information, toolkits supporting PROV [9,10]
have been facilitating the software engineer’s task of creating, storing, reading

and exchanging provenance; however, such toolkits do not help decide what infor-
mation should be included in provenance, and how software should be designed
to allow for its capture. Therefore, the ability to consider the use of provenance,
specially during the software engineering design phase, has become critically im-
portant to support the software designer in making provenance-enabled systems.
PrIMe [11], the Provenance Incorporation Methodology, is the first provenance-
focused methodology for adapting applications to make them provenance-aware.
Although the application of this methodology has demonstrated promising re-
sults, PrIMe is standalone, and does not integrate with existing software engi-
neering methodologies, which makes it challenging to use in practice.

In contrast, design techniques have been proposed to shorten the develop-
ment time of software products, as well as to increase their quality, avoiding
developers from expending extra time and efforts during subsequent phases.
Among such techniques, the Unified Modelling Language (UML) [12] is widely
accepted as the de-facto method for designing object-oriented software systems.
However, the UML design methodology offers no specific support for provenance.
Specifically, UML does not provide the means to express elements of response
to provenance questions, such as the activity that lead to a specific result, or
the elements involved in its creation. In fact, our experience in developing soft-
ware applications augmented with support for provenance is that the inclusion
of provenance within the design phase can entail significant changes to an appli-
cation design [11]. This is a cumbersome task for the designers and programmers
alike, since they have to be knowledgeable about provenance, to deal with com-
plex diagrams, and to maintain an application’s provenance-specific code base.
In short, the gap between software engineering design methodologies and prove-
nance engineering can result in applications generating provenance that is not
aligned with what the application actually does, or that is not fit for purpose.
Against this background, PROV-Template [13] is a recent development allowing
the structure of provenance to be described declaratively: a provenance template
is a document containing placeholders (referred as variables). An expansion al-
gorithm instantiates a template with values, which are contained in bindings as-
sociating variables with concrete values. Although this approach reduces the de-
velopment and maintenance effort, separating responsibilities between software
and provenance designers, it still requires designers with provenance knowledge.

The aim of this paper is to propose UML2PROV, an approach that addresses
the gap between application design, through UML diagrams, and provenance
design, by means of PROV-Template. The contributions of this paper are as
follows: (i) a mapping of UML diagrams (UML State Machine and Sequence
diagrams) to templates according to a set of transformation rules, (ii) a code
generation technique that creates libraries, that need to be linked with the ap-
plication to generate provenance, and (iii) a demonstration of the feasibility
of UML2PROV by implementing it with Java, whose preliminary quantitative
evaluation shows significant benefits of the approach. These benefits, which will
appeal to designers in early stages of the development process, are mainly: (1)
design/development, since we provide a way to include provenance capabilities
during the design phase without changing the way in which software designers

2

Entity Activity

Agent

wasInvalidatedBy

wasGeneratedBy

used

wasDerivedFrom

specializationOf
wasAttributedTo wasAssociatedWith

activity(ex:activity, [])

entity(ex:entity, [...])

agent(ex:agent, [])

wasDerivedFrom(ex:entity, ex:entity)

specializationOf(ex:entity, ex:entity)

used(ex:activity, ex:entity, - , [...])

wasGeneratedBy(ex:entity, ex:activity, -, [...])

wasInvalidatedBy(ex:entity, ex:activity, -, [...])

wasAttributedTo(ex:entity, ex:agent, [...])

wasAssociatedWith(ex:activity, ex:agent)

Activity

Entity

Agent

PROV Graph

 Notation

Fig. 1. PROV UML Class Diagram with graphical and textual PROV notation [7,8]

use UML (provenance generation is handled automatically from such UML), and
(2) capturing provenance, since the provenance capture is performed automati-
cally thanks to UML2PROV’s code generation technique, which provides clear
benefits over the more traditional approach of provenance capture.

This paper is organized as follows. We outline the background of this research
in Section 2. In Section 3, we give an overview of UML2PROV. Sections 4 and 5
describe our approach, while Section 6 presents a complete implementation of
it. A quantitative evaluation is provided in Section 7, while Section 8 discusses
related work. Finally, conclusions and further work are set out in Section 9.

2 Background

In this section, we first introduce the PROV standard for provenance and provide
an overview of the main insights concerning the use of PROV-Template. Second,
we highlight key aspects of the UML diagrams used in this work.

2.1 The PROV standard and PROV-Template

PROV [1] is a World Wide Web Consortium (W3C) standard that aims to facil-
itate the publication and interchange of provenance among applications. PROV
is fully specified in a family of documents, which cover various of its aspects
such as modeling, serialization, access, interchange, translation and ways to rea-
son over it. For the purpose of our paper, we illustrate PROV focusing on the
PROV Data Model (PROV-DM) [7], which is a conceptual model that forms the
basis for the remainder PROV family of specifications, and the PROV Notation
(PROV-N) [8], a textual representation suitable for human consumption.

PROV is based around three concepts, together with their relationships which
are depicted in the left part of Figure 1. In the right part, we also show the
PROV-N representation of these concepts, together with their graphical nota-
tion. More specifically, an Entity is a physical, digital, conceptual or other kind
of thing. An Activity is a set of actions that act upon or with entities during a
specific time frame. Finally, an Agent refers to something which takes responsi-
bilities of entities or activities through attribution or association, respectively.

As shown in Figure 1, these concepts are associated through relationships
such as usage (used), which represents an activity beginning to utilize an en-
tity, generation (wasGeneratedBy) used when an activity produces a new entity,
derivation (wasDerivedFrom) which denotes an entity update, invalidation (was-
InvalidatedBy) used when an activity starts the destruction or invalidation of
an entity, association (wasAssociatedWith) which indicates that an agent had a
role in an activity, attribution (wasAttributedTo) which shows an agent bearing
the responsibility for an entity, and specialization (specializationOf) used when
an entity shares the aspects of another entity, but also has more specific aspects.

3

Fig. 2. The UML2PROV approach. The red and blue colours are used to refer to design
time and runtime aspects of the approach, respectively.

PROV-Template [13] is a declarative approach to creating PROV compliant
provenance-enabled applications. It consists of three main key elements: prove-
nance templates, bindings, and a provenance template expansion algorithm. The
overall process supported by PROV-Template is as follows. The provenance tem-
plates are firstly designed and embedded in the application’s code, which logs the
values in the form of bindings during its execution. Finally, provenance is auto-
matically generated by template expansion. For further details regarding PROV
and PROV-Templates, the reader is referred to [1,7,8] and [13], respectively.

2.2 UML Diagrams

UML [12] distinguishes two major categories of diagrams: structural diagrams are
concerned with the static structure of a system, whereas behavioural diagrams
capture the behavioural features of a system, including aspects concerning its
runtime execution. This latter type of diagrams describes the dynamics between
objects of a system in terms of states, interactions, collaborations, etc. Since
provenance bears a strong relation with all the data taken part in producing a
final item (that is, information related to involved entities together with the dif-
ferent states they go through over time, conducted activities, interactions among
such entities, etc.), we considered UML Sequence Diagrams (Sq Diagrams) and
UML State Machine Diagrams (SM Diagrams), to be the most suitable ones for
our purpose. Briefly speaking, Sq Diagrams are used to model the interactions
among collaborating objects in terms of messages exchanged from a sender to
a receiver’s lifeline. SM Diagrams specify the various states that an object goes
through during its lifecycle. They mainly consist of states, transitions and other
types of vertexes called pseudostates. For the sake of brevity, we do not delve
into more detail regarding Sq and SM Diagrams; we refer the reader to [12].

3 Overview: Generating PROV Templates from UML

In this section, we provide an overview of the UML2PROV approach identifying
its key facets, and distinguishing its different stakeholders: software designers
and provenance consumers. We illustrate our explanations by means of Figure 2,
where design time elements (red) are distinguished from runtime elements (blue).
Design time facets are the Sq/SM diagrams, the associated PROV templates
generated from those, and the bindings generation module. In particular, this
module is composed by two main components: a context-independent component,
which contains the bindings’s generation code that is common to all applications,
and a context-dependent component, which is generated from the system’s UML
diagrams and includes the bindings’s generation code specific to the concrete

4

t1

t2 t3 t5

t4

t6

t9 t8

t7

m1

m2

m3

m4

Fig. 3. On the left side, a Sq diagram showing the interaction between Student,
Seminar and Course. On the right side, the SM diagram of the Seminar class.

application. The runtime execution facets consist of the values logged by the
application, in the form of bindings, and the PROV documents.

Software designers are responsible for creating the Sq and SM diagrams based
on the concrete domain’s requirements (see upper part of Figure 2). Since UML
Sq and SM diagrams show interconnected behavioural views of an overall sys-
tem, before applying our approach, those diagrams must satisfy a set of Object
Constraint Language (OCL) [14] rules we have defined to ensure that those di-
agrams are consistent with each other (for details about these rules, we refer
to [15]). UML2PROV takes as input the UML diagrams satisfying such rules,
and automatically generates: PROV templates, as defined by the UML to tem-
plates mapping (Section 4), and the context-dependent component in the bindings
generation module (Section 5). UML2PROV determines (1) what provenance in-
formation is considered from the Sq/SM diagrams to be captured, and (2) how
the application is wrapped with the functionality needed to allow such a capture
(i.e. the functionality implemented by the bindings generation module).

Finally, the provenance consumer uses the provenance template expander to
generate PROV documents from both the templates and the bindings. By distin-
guishing among the different stakeholders, we allow them having clearly defined
roles and focusing on their specific responsibilities, avoiding task collision.

4 From UML Diagrams to provenance Templates

In this section, we present the mapping from Sq and SM diagrams satisfying our
OCL constraints, to provenance templates. We have defined a set of patterns
that identify commonly appearing structures on both Sq and SM diagrams and
a set of translation rules that translate each single UML element involved in
such patterns to PROV elements. We only outline the patterns due to space
constraints, whereas a complete description of the rules is provided in [15]. To
illustrate our explanations, we use a case study of a system that manages the
enrolment and attendance of students to seminars of a University course. Figure 3
shows two Sq and SM diagrams defined for such a case study.

4.1 From Sequence Diagrams to Templates

We illustrate our translation approach by means of the SeqP1-SeqP4 patterns
presented in Figure 4, together with the template of Figure 5 which shows the
translation of the message m1 from the case study’s Sq diagram in Figure 3.

For each pattern identified, the sender object lifeline is mapped to a prov:Agent

(identified by var:lifeline) that assumes the responsibility of such an object

5

http://www.w3.org/ns/prov#Agent

ID Message Type PROV Graph ID Message Type PROV Graph

SeqP1
SeqP3

SeqP2 SeqP4

Lifeline1:

Lifeline2:
create destroyvar:lifeline var:message

wasAssociatedWith
var:lifeline

var:messagewasAssociatedWith

var:lifeline
var:input...

var:output...

var:lifeline var:message

var:input... usedwasAssociatedWith

used
async(input, ...) sync(input, ...)

sync(output, ...)
wasAssociatedWith

wasGeneratedBy

wasDerivedFrom
Lifeline1: Lifeline2:

Lifeline1: Lifeline2:

Lifeline1: Lifeline2:

var:message

Fig. 4. Sq Diagrams’ Patterns and their provenance templates

1 agent(var:lifeline,[prov:type='exe:Student'])
2 ac�vity✁ (var:message,[prov:type='exe:enrolStudent',
3 tmpl:startTime = '...', tmpl:endTime='...'])
4 en�ty✁ (var:input0, [prov:value='var:input0value'])
5 en�ty✁ (var:output0, [prov:value='var:output0value'])

6 wasAssociatedWith(var:message, var:lifeline,-,[])
7 used(var:message,var:input0,-,[prov:role='exe:st'])
8 wasGeneratedBy(var:output0,var:message,-,
9 [prov:role='exe:booleanResponse'])
10 wasDerivedFrom(var:output0,var:input0)

Fig. 5. An extract of a template generated from the case study’s Sq diagram.

(e.g. in line 1 of Figure 5 we show how the object Student is translated into
a prov:Agent). The message sent is modelled as a prov:Activity (identified by
var:message) that represents the invocation of the message’s operation (e.g. the
message enrolStudent is mapped to the prov:Activity showed in lines 2-3 of Fig-
ure 5). Additionally, when an object lifeline sends a message to another lifeline,
a new prov:wasAssociatedWith relationship is generated between the message
identified by var:message, and the sender lifeline identified by var:lifeline (e.g.
the statement in line 6 of Figure 5 shows this relationship).

Patterns SeqP2 and SeqP4 depict the communication between two lifelines
through a reply asynchronous/synchronous message with arguments. Each mes-
sage’s argument is modelled as a prov:Entity, identified by var:input... Addi-
tionally, to assert that the argument is a parameter of the request message,
the relationship prov:used links the message var:message and the argument
var:input... Focusing on the message m1 in Figure 3, the argument st is trans-
lated into the prov:Entity showed in line 4 of Figure 5, together with the link
between the identifiers of both the argument and the message, shown in line 7.

SeqP4 additionally encompasses a reply message with an output argument.
Additionally, the output argument is modelled as a prov:Entity (identified by
var:output...) that was “generated” as part of the reply. Thus, the relationship
prov:wasGeneratedBy is created between the message identified by var:message

and the argument var:output... Regarding the reply message m4 in Figure 3, the
output argument is translated into the prov:Entity showed in line 5 of Figure 5,
while its relation with the message prov:Activity is shown in lines 8-9.

We note that in PROV two relationships of the form (B, prov:used,A) and
(C, prov:wasGeneratedBy, B) are usually enriched with (C, prov:wasDerivedFrom,A)
to express the dependency of C on A. This structure refers to a provenance con-
struction called Use-generate-derive triangle [16] which includes the three ele-
ments involved. SeqP4 in Figure 4 depicts such a situation between the request’s
and the response’s arguments: when both request and reply messages have ar-
guments, we use the prov:wasDerivedFrom relationship. In line 10 of Figure 5 we
reflect such a situation between the input and output arguments of enrolStudent.

4.2 From State Machine Diagrams to Templates

We now present the mapping from SM diagrams to provenance templates. Our
explanation is illustrated by using the StP1-StP6 patterns presented in Figure 6

6

http://www.w3.org/ns/prov#Agent
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#wasAssociatedWith
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#used,
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#wasDerivedFrom,
http://www.w3.org/ns/prov#wasDerivedFrom

ID Type
Transition

source
Transition

target
PROV Graph ID Type

Transition
source

Transition
target

PROV Graph

StP1 StP4

StP2 StP5

StP3 StP6

State

Composite

State

Composite

State

Composite

State

Composite

State

Composite

State

Composite

State

Composite

State

Composite

var:event

var:object

var:object

var:target

var:event

wasAttributedTo

specializationOf

wasGeneratedBy

var:source

wasAttributedTo specializationOf

var:objectSMD

used

wasInvalidatedBy

var:event

var:objectSMD

var:object var:source

var:target

wasAttributedTo

specializationOf

specializationOf

used

wasGeneratedBy

wasInvalidatedBy

wasDerivedFrom

var:objectSMD var:object

var:target

var:event
wasAttributedTo

specializationOf wasGeneratedBy

var:compState
hadMember

var:objectSMD var:object

var:source

var:event

wasAttributedTo

specializationOf used

var:compState hadMember

wasInvalidatedBy

var:objectSMD var:object

var:source

var:event

wasAttributedTo

specializationOf

used
var:compState hadMember

wasInvalidatedBy

var:target

wasGeneratedBy

wasDerivedFrom

had
Me
mbe

r

E
x
t
e
r
n
a
l
T
r
a
n
s
it
io

n
s

I
n
t
e
r
n
a
l
T
r
a
n
s
it
io

n
s

var:objectSMD

Fig. 6. Patterns identified in SM diagrams

and the provenance template showed in Figure 7, which depicts an extract of the
translation resulted from the case study’s SM diagram in Figure 3.

SM Diagrams represent the evolution of an object using transitions between
states. In fact, among the patterns depicted in Figure 6, we can identify four
common UML elements shared by all of them. (1) The object whose behaviour
is modelled by the SM diagram is translated into a prov:Agent identified by
var:object (e.g. in line 1 of Figure 7 the object Seminar whose behaviour is
modelled by the SM diagram in Figure 3 is translated into a prov:Agent).
(2) The object ’s state machine is represented as a prov:Entity (identified by
var:objectSMD). Additionally, var:objectSMD is related to the object, identified
by var:object, using prov:wasAttributedTo relationship (e.g. the object ’s state
machine of Figure 3 is translated into the prov:Entity in line 2, which is asso-
ciated with the corresponding object by means of line 11). (3) The event that
triggers a state change is translated into a prov:Activity identified by var:event

(e.g. the event enrolStudent is represented by the prov:Activity in line 3-4 of
Figure 7). Finally, (4) the state, simple or composite, which denotes the object ’s
situation is mapped to a prov:Entity identified by var:source, var:target or
var:compState. For example, the source state, the target state, and the composite
state involved in the transition t3 of Figure 3 are translated into the prov:Entity

showed in lines 5-6, 7-8, 9-10 of Figure 7, respectively. To represent that the
source state influences the outcome of a transition, we adopt the prov:used re-
lationship between the source state identified by var:source and the event iden-
tified by var:event. Additionally, to represent that the object is no longer in
the source state, the relationship prov:wasInvalidatedBy links the source state
var:source and the event var:event. Finally, to represent that the target state
results from the triggering of the transition, a prov:wasGeneratedBy relationship
links the target state var:target and the event var:event. For instance, focus-
ing on the transition t3 in Figure 3, the source state Enroling represented by
a prov:Entity and the event enrolStudent represented by a prov:Activity are
linked by the relationships prov:used and prov:wasInvalidatedBy depicted in
lines 12 and 13 of Figure 7. In addition, the target state Enroling represented by
a prov:Entity is related to the event enrolStudent represented by a prov:Agent

by means of the relationship prov:wasGeneratedBy shown in line 14.
Although these patterns share the previous cited aspects, the complete trans-

lation of all the elements within a SM diagram depends on the particular nuances
such as the target/composite elements and the type of transition (internal or ex-
ternal). Whenever the transition is not enclosed within a composite state (StP1-

7

http://www.w3.org/ns/prov#Agent
http://www.w3.org/ns/prov#Agent
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#wasAttributedTo
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#wasInvalidatedBy
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#wasInvalidatedBy
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Agent
http://www.w3.org/ns/prov#wasGeneratedBy

1 agent(var:object,[prov:type='exe:Seminar'])
2 en�ty

✁
✁ (var:objectSMD,[prov:type='exe:StateMachine'])

3 ac�vity
✁

✁ (var:event,[prov:type='exe:enrolStudent',
4 tmpl:startTime = '...', tmpl:endTime='...'])
5 en�ty

✁✁
(var:source, [exe:state='exe:Enroling',

6 prov:type='exe:Seminar'])
7 en�ty

✁

✁ (var:target, [exe:state='exe:Enroling',
8 prov:type='exe:Seminar'])
9 en�ty

✁

✁ (var:performing, [exe:state='exe:Performing',
10 prov:type='exe:Seminar'])

11 wasA�ributedTo
✂
✂ (var:objectSMD, var:object,[])

12 used(var:event,var:source,-)
13 wasInvalidatedBy(var:source, var:event,-)
14 wasGeneratedBy(var:target,var:event,-)
15 wasDerivedFrom(var:target,var:source)
16 specializa�onOf

✁

✁
(var:performing, var:objectSMD)

17 hadMember(var:performing,var:source)
18 hadMember(var:performing,var:target)

Fig. 7. An extract of a template generated from the case study’s SM diagram.

StP3), its source and target states are related to the state machine, identified
by var:objectSMD, through prov:specializationOf. In contrast, if the transition
is enclosed within a composite state (StP4-StP6), its source and target states
(identified by var:source and var:target, respectively) are related to the com-
posite state (identified by var:compState) through prov:hadMember. Additionally,
the composite state is related to the state machine using prov:specializationOf.
For instance, since the transition t3 in Figure 3 is enclosed in a composite state,
it follows the pattern StP6. Thus, its source and target states are related to
the composite state by the statements in lines 17 and 18 of Figure 7, while the
composite state is linked to the state machine by line 16.

Finally, similarly to Section 4.1, StP3 and StP6 exploit the Use-generate-
derive triangle [16] among the source state var:source, the event var:event and
the target state var:target. Thus, we define a direct relationship between both
the var:source and the var:target by means of the prov:wasDerivedFrom relation-
ship, representing the fact that the target state is a consequence of the triggering
of the transition from the source state. In line 15 of Figure 6 we reflect such a
situation between the source and target states of transition t3.

5 Bindings Generation Strategy

As explained in Section 2, the PROV-Template approach takes a provenance
template together with a set of bindings as input of the template expansion pro-
cess. Such a process replaces variables in the provenance templates by real values
in the bindings, producing PROV documents. Obtaining the bindings becomes
a key focus of the runtime execution, requiring adaptation of existing applica-
tion code. Although a manual adaptation of the source code is a valid option to
extract bindings, software engineers would need to expend a great deal of effort
on traversing the overall application’s source code, and adding suitable instruc-
tions to generate the bindings structures. Thus, it would constitute a tedious,
time-consuming and error prone process. To avoid that, PROV2UML creates
bindings automatically by applying the Proxy Pattern [17], thus requiring minor
modifications, without obfuscating the existing code with new statements.

Briefly speaking, the Proxy Pattern provides a surrogate for another object
to control its behaviour. It is mainly intended to manage the access to objects’
methods, allowing us to modify their behaviour. This benefit has led to a wide
use of this pattern in, for example, Aspect-Oriented Programming (AOP)-based
frameworks. The Proxy Pattern is composed of the following four elements. (1)
The Subject Interface includes all the methods implemented by the Real Subject.
(2) The Real Subject is the object whose behaviour we want to modify, must
implement the Subject Interface. (3) The Proxy element also implements the

8

http://www.w3.org/ns/prov#specializationOf
http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#specializationOf
http://www.w3.org/ns/prov#wasDerivedFrom

{"var":{
 "source":[{"@id":"exe:Seminar@57fa26b7_1"}],

"event":[{"@id":"exe:enrolStudent_1"}],
"lifeline":[{"@id":"exe:Student@28180122"}],
"performing":[{"@id":"exe:Performing_1"}],
"objectSMD":[{"@id":"exe:Seminar@57fa26b7_0"}],

 "object":[{"@id":"exe:Seminar@57fa26b7"}],

"eventStartTime":[{"@type":"xsd:dateTime",
"@value":"2017-02-09T11:54:24"}],

"target":[{"@id":"exe:enrolStudent_1"}],
"eventEndTime":[{"@type":"xsd:dateTime",

"@value":"2017-02-09T11:54:24"}]},
"vargen":{},
"context":{"exe":"h�p://uml2prov.../execu�on#"}}

Fig. 8. Example of bindings collected from the method enrolStudent in Figure 3

Subject Interface so that it can be used in any location where the Real Subject
can be used. The Proxy element maintains a reference to the Real Subject and
executes its own code before and after the Real Subject ’s usual execution. (4)
The Client element is in charge of invoking the Subject, which allows the Client
to interact with the Proxy as though it were the Real Subject. Thus, the Proxy
constitutes the intermediary between the Client and the Real Subject. This pat-
tern helps us collect suitable information to construct the bindings before and
after the usual execution of the objects’ methods. Harnessing the potential of
this pattern to generate the bindings has two main advantages: (1) we deal with
the concept of proxy independently of any programming language, and (2) this
solution is suitable for both already developed applications, and applications yet
to be developed. In particular, the Proxy element wraps the Real Subject allow-
ing us to extract provenance information for each method defined in the Subject
Interface. When a method is called, the Proxy intercepts the method invocation
and gathers concrete information about the system execution (e.g. time) and
specific information about the method (such as the parameters). We note that
each captured value is directly related to a variable included in a provenance
template (e.g. var:message value is given by the name of the method).

In Figure 8, we show an example of bindings in JSON format representing
the bindings captured when the transition t3 in Figure 3 is triggered. More
specifically, it shows the bindings between several variables appearing in the
provenance templates of Figure 7 and their corresponding values; for example,
the variable event is associated with the concrete value exe:enrolStudent 1.

6 Implementation

In this section, we discuss a reference implementation of UML2PROV in Java.
Regarding the translation of UML to provenance templates, we have chosen
Extensible Stylesheet Language Transformations (XSLT) [18] to implement the
patterns. More specifically, we have defined two XSLT transformation files, each
one tackling a type of diagram (Sq and SM diagrams). The diagrams are expected
to be encoded in XMI format, a standardized XML representation for UML
diagrams supported by mainstream UML designers such as UML 2 Eclipse plug-
in, Modelio [19] or Papyrus [20]. We use Papyrus which not only is able to
represent UML diagrams graphically, serialising them into XMI, but it is also
able to check OCL constraints on UML diagrams, that is, it allows us to verify
our OCL constraints on the source diagrams before applying UML2PROV. The
XMI files are taken as input by each XSLT transformation, which automatically
generates the corresponding provenance templates in PROV-N.

Aiming at generating bindings for Java applications, we provide a Java class
named as ProxyProvGenerator which relies on the java.lang.reflect package.
Basically, this class has a method which receives a subject object implementing its

9

exe:enrolStudent_1exe:Seminar@57fa26b7_1
used

prov:startTime 2017-02-09T10:54:24+00:00

prov:endTime 2017-02-09T10:54:24+00:00

prov:type exe:enrolStudent

exe:Seminar@57fa26b7_2

wasGeneratedBy
wasDerivedFrom

prov:type exe:Seminar

exe:state exe:Enroling

wasInvalidatedByprov:type exe:Seminar

exe:state exe:Enroling

exe:Seminar@57fa26b7_0

exe:Seminar@57fa26b7

wasAttributedTo

prov:type exe:StateMachine

exe:Performing_1
hadMember

hadMember

specializationOf

prov:type exe:Seminar

exe:state exe:Performing

prov:type exe:Seminar

Fig. 9. Expanded PROV document

corresponding subject interface and then, the method returns the subject object ’s
proxy. Such a proxy is created with all the bindings generation instructions
within. The ProxyProvGenerator is application independent since it is agnostic
about the subject object given. Providing the ProxyProvGenerator to the software
developer is enough to automatically generate a proxy for each subject object
with provenance capturing capabilities. Thus, this class constitutes the context-
independent component in the bindings generation module.

We have applied the UML2PROV implementation to the case study in Fig-
ure 3 obtaining 3 and 6 templates from the Sq diagram and the SM diagram,
respectively (Figures 5 and 7 show actual extracts of such provenance templates).
Figure 9 depicts the PROV document generated from the set of bindings shown
in Figure 8 and the template from Figure 7, by applying the template expander.

7 Quantitative Evaluation and Discussion

This section evaluates the strengths and weaknesses of UML2PROV. More specif-
ically, we have applied it to five case studies and analysed the results in the light
of several criteria pertaining to design time: (1) the number of generated prove-
nance template elements, (2) the time that took to generate the templates, and
(3) the amount of automatically generated code. As for runtime execution, we
discuss (4) how much provenance is being generated after expansion.

Table 1 depicts the results given by applying UML2PROV to the five case
studies, organized depending on the type of diagram. The first case study (CS1)
corresponds to the complete seminars’ system. The remainder case studies, which
have been selected from Internet because their diagrams are varied in size, are
associated to a water system (CS2), a system representing the Model-View-
Controller pattern (CS3), a phone call system (CS4), and an elevator system
(CS5). The relevant documents related to the case studies can be found on [15].

Regarding the analysis of (1) the number of provenance template elements
that are generated, and (2) the time that took to generate such templates,
we study the relation between the number of UML elements and the number
of PROV elements, as well as, the relation between the number of UML ele-
ments and the translation time taken. With this study we check the capability
of UML2PROV to handle the growing amount of UML elements and its poten-
tial to accommodate such a growth. In particular, we observe that the average
time (in Sq and SM diagrams) is significantly larger for the CS5 case study, but
likewise, the average size of generated PROV elements for this application is
larger. This confirms that the cost per UML element remains constant. To vali-
date this, we applied Pearson’s correlation test and obtained a ρ-value of 0.9978
(relating to Sq diagrams’ elements) and a ρ-value of 0.9713 (relating to SM dia-
grams’ elements) showing a strong correlation. Similarly, we have computed the

10

Table 1. Results obtained from the cases studies using a personal computer, Intel(R)
CoreRTM i7 CPU, 3.6 GHz, with 16 GB RAM, running Windows 10 Enterprise.

Num. Diagr. Number of SqD and SMD diagrams modelling the system.

Num. Diagr. Elemen. The total number of elements within each

diagram (lifelines, messages, arguments,

transitions, and simple and composite states).

Templ. Num. The number of generated PROV templates.

Num. PROV Elemen. The number of PROV template elements.

 Var. Num. The number of variables in these templates.

Inferf. code lines.The lines of code in the generated subject interfaces.

Avera. Time (ms). The average time taken by 12 executions of the

translation process.

Legend:
Diagr.

Type

Num.

Diagr.

Num.

Diagr.

Elemen.

Templ.

Num.

Num.

PROV
Elemen.

Var.

Num.

SqD 1 10 3 18 45.4

SMD 3 19 9 146 25

SqD 4 18 8 40 53

SMD 2 22 8 163 22

SqD 1 17 5 34 50.2

SMD 4 20 6 148 23.6

SqD 1 12 5 25 47.2

SMD 3 16 8 117 22.2

SqD 2 50 9 67 90.4

SMD 5 52 13 369 37.4

CS1 83 11

Id

UML Elements PROV elements
Interf.

code

lines

Avera.

time

(ms)

CS2 88 12

CS3 56 13

CS4 84 11

CS5 131 47

Pearson’s correlation coefficient to measure the strength of the linear association
between the number of source UML elements and the generated PROV elements,
obtaining a ρ-value of 0.9660 (for Sq diagrams’ elements) and a ρ-value of 0.9996
(for SM diagrams’ elements), which demonstrates good performance results.

As for the code required to be created for bindings generation, as explained
in Section 5, UML2PROV only requires the Subject Interfaces to be created,
which are used together with the ProxyProvGenerator class. Since such interfaces
are automatically generated by UML2PROV from the source UML diagrams,
software developers do not have to develop them manually, and thus, they do not
need to write the number of lines of code presented in Table 1 (see column “Interf.
code lines”). Without using UML2PROV, software developers would have to
write additional code within the application to create bindings. Typically, for
each variable in a template, a method call is needed to assign a value to it, thus,
a developer would need to write one line of code for each variable in a template.
In our five case studies, although being relatively small, these number of lines
of code are presented in column “Var. Num.” in Table 1. With UML2PROV,
writing such code is not required, since the proxy constructs that automatically.

Finally, regarding the provenance obtained after expansion, we would like to
note that, in case of a repetitive cycle or sequence of actions in the Sq diagrams,
the number of PROV documents obtained after the expansion process grows
proportionally to the length of these cycles or sequences.

8 Related Work

Although provenance has been widely addressed from different perspectives
[21,22,23,24], to the best of our knowledge, it has been scarcely investigated from
the point of view of determining the provenance to be generated as software is
being designed. In contrast to our proposal, other works undertake the develop-
ment of provenance-aware systems by means of weaving provenance generation
instructions into programs, which makes code maintenance a cumbersome task.
Examples of these include PASS [25], which is a storage system which supports
the automatic collection and maintenance of provenance; PERM [3], which is
a provenance database middleware that enables provenance computation; and
finally, workflow systems such as Taverna [4], Vistrails [5] and Kepler [6] which
incorporate provenance capabilities into the workflow system.

Alternatively, there are different approaches that include provenance gen-
eration instructions into source code. For instance, Ghosal et al. [26] extract
provenance from log files, Cheney et al. [27,28] use statistic analysis to create

11

executables that produce provenance information, and Brauer et al. [29] use
an Aspect-Oriented Architecture to interweave aspects generating provenance.
This approach bears relationship with our work since, as discussed previously,
the Proxy Pattern used in our approach is widely applied in AOP. However,
UML2PROV not only gives a general solution to include provenance with min-
imum interferences with the original system, but it also addresses the design of
the provenance to be generated using PROV-Template [11].

Finally, it is worth mentioning the standalone methodology PrIMe [11]. It
could be said that UML2PROV complements PrIMe, since UML2PROV inte-
grates the design of provenance by means of PROV-Templates with the design
of applications using the well-known de-facto standard notation UML.

9 Conclusions and Future Work

Bridging the gap between application design and provenance design remains an
adoption hurdle for provenance technology. In this paper, we present UML2PROV
that addresses such a challenge for the particular case of Sq and SM Diagrams,
taken as design methodology, and PROV-Template, used as provenance design.
Our contributions are as follows: (i) a mapping of UML diagrams to prove-
nance templates, (ii) a code generation technique that creates libraries to be
linked with the application to generate provenance, and (iii) a demonstration
of the feasibility of UML2PROV by providing an implementation, and a pre-
liminary quantitative evaluation that shows significant benefits of the approach.
Our evaluation shows that our approach significantly reduces efforts in design
time, resulting in an increased productivity. The automated provenance capture
also provides clear benefits over the traditional approach of provenance capture,
showing the amount of code that software developers will need to write with-
out UML2PROV. The experiments also confirm that the approach is tractable,
requiring milliseconds for generating PROV templates.

Although our proposal takes into account two of the most used UML be-
havioural diagrams, considering a wider number of UML elements, including
other kind of UML Diagrams (such as UML Activity Diagrams), and other ele-
ments (such as SM Diagram’s pseudostates, not considered in our patterns) to
constitute a more complete provenance-aware methodology, is a line of further
work. Additionally, using a strategy based on, for example, UML stereotypes, to
monitoring only concrete messages, constitutes an interesting direction of further
work. We use XSLT as a first attempt to implement our patterns; other approach
of future work is to consider using a Model Driven Development (MDD) tool
chain based on MDD-based tools such as ATL [30] and XPand [31]. Finally,
performing a systematic quantitative evaluation of the approach and a study of
the quality of provenance being generated from a real situation (involving users,
designers or developers) constitute another line of future work.

Acknowledgements. This work was partially supported by the spanish MINECO
project EDU2016-79838-P, and by the U. of La Rioja (grant FPI-UR-2015).

12

References

1. Groth, P., Moreau (eds.), L.: PROV-Overview. An Overview of the PROV
Family of Documents. W3C Working Group Note NOTE-prov-overview-
20130430, World Wide Web Consortium (April 2013) http://www.w3.org/TR/

2013/NOTE-prov-overview-20130430/.

2. Holland, D., Braun, U., Maclean, D., Muniswamy-Reddy, K.K., Seltzer, M.I.:
Choosing a data model and query language for provenance. In: Proceedings of
the International Provenance and Annotation Workshop, (IPAW’08). (2008) 98–
115

3. Glavic, B., Alonso, G.: Perm: Processing Provenance and Data on the same Data
Model through Query Rewriting. In: Proceedings of the 25th IEEE International
Conference on Data Engineering (ICDE’09). (2009) 174–185

4. Wolstencroft, K., Haines, R., Fellows, D., Williams, A., Withers, D., Owen, S.,
Soiland-Reyes, S., Dunlop, I., Nenadic, A., Fisher, P., et al.: The Taverna workflow
suite: designing and executing workflows of Web Services on the desktop, web or
in the cloud. Nucleic acids research (2013) 557–561

5. Silva, C.T., Anderson, E., Santos, E., Freire, J.: Using vistrails and provenance for
teaching scientific visualization. Computer Graphics Forum 30(1) (2011) 75–84

6. Altintas, I., Barney, O., Jaeger-Frank, E. In: Provenance Collection Support in the
Kepler Scientific Workflow System. (2006) 118–132

7. Moreau, L., Missier (eds.), P., Belhajjame, K., B’Far, R., Cheney, J., Coppens,
S., Cresswell, S., Gil, Y., Groth, P., Klyne, G., Lebo, T., McCusker, J., Miles,
S., Myers, J., Sahoo, S., Tilmes, C.: PROV-DM: The PROV Data Model. W3C
Recommendation REC-prov-dm-20130430, World Wide Web Consortium (2013)
http://www.w3.org/TR/2013/REC-prov-dm-20130430/.

8. Moreau, L., Missier (eds.), P., Cheney, J., Soiland-Reyes, S.: PROV-N: The Prove-
nance Notation. W3C Recommendation REC-prov-n-20130430, World Wide Web
Consortium (April 2013) http://www.w3.org/TR/2013/REC-prov-n-20130430/.

9. A library for W3C Provenance Data Model supporting PROV-JSON, PROV-XML
and PROV-O (RDF), P.: (October 2017) https://pypi.python.org/pypi/prov.
Last visited on October 2017.

10. ProvToolbox. Java library to create and convert W3C PROV data model repre-
sentations: http://lucmoreau.github.io/ProvToolbox/. Last visited on October
2017.

11. Miles, S., Groth, P.T., Munroe, S., Moreau, L.: Prime: A methodology for devel-
oping provenance-aware applications. ACM Trans. Softw. Eng. Methodol. 20(3)
(2011) 8:1–8:42

12. OMG. Unified Modeling Language (UML). Version 2.5: (2015) formal/15-03-01,
http://www.omg.org/spec/UML/2.5/.

13. Moreau, L., Batlajery, B.V., Huynh, T.D., Michaelides, D., Packer, H.: A templat-
ing system to generate provenance. IEEE Transactions on Software Engineering
(2017 (In Press)) http://eprints.soton.ac.uk/405025/.

14. OMG: Object Constraint Language, Version 2.4 (2014) formal/2014-02-03 http:

//www.omg.org/spec/OCL/2.4/PDF.

15. Supplementary material of UML2PROV: (October 2017) https://uml2prov.

github.io/. Last accessed October, 2017.

16. Kwasnikowska, N., Moreau, L., Bussche, J.V.D.: A formal account of the open
provenance model. ACM Trans. Web 9(2) (May 2015) 10:1–10:44

13

http://www.w3.org/TR/2013/NOTE-prov-overview-20130430/
http://www.w3.org/TR/2013/NOTE-prov-overview-20130430/
http://www.w3.org/TR/2013/REC-prov-dm-20130430/
http://www.w3.org/TR/2013/REC-prov-n-20130430/
https://pypi.python.org/pypi/prov
http://lucmoreau.github.io/ProvToolbox/
http://www.omg.org/spec/UML/2.5/
http://eprints.soton.ac.uk/405025/
http://www.omg.org/spec/OCL/2.4/PDF
http://www.omg.org/spec/OCL/2.4/PDF
https://uml2prov.github.io/
https://uml2prov.github.io/

17. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. Addison Wesley (1995)

18. XSL Transformations (XSLT) Version 3.0: (February 2017) W3C Recommendation
8 June 2017. https://www.w3.org/TR/xslt-30/.

19. Modelio, UML modeling tool. Version 3.6: (february 2017) http://www.

modeliosoft.com/. Last visited on October 2017.
20. Papyrus, Modeling environment . Version 2.0.2 (Neon release): (January 2017)

https://eclipse.org/papyrus/. Last visited on October 2017.
21. Tan, W.C.: Provenance in Databases: Past, Current, and Future. IEEE Data Eng.

Bull. 30(4) (2007) 3–12
22. Davidson, S.B., Freire, J.: Provenance and scientific workflows: challenges and op-

portunities. In: Proceedings of the 2008 ACM SIGMOD International Conference
on Management of Data (MOD’08), New York, NY, USA, ACM (2008) 1345–1350

23. Moreau, L.: The Foundations for Provenance on the Web. Foundations and Trends
in Web Science 2(2–3) (2010) 99–241

24. Simmhan, Y.L., Plale, B., Gannon, D.: A Survey of Data Provenance Techniques.
Technical Report 612 Extended version of SIGMOD Record 2005. Available at:
http://www.cs.indiana.edu/pub/techreports/TR618.pdf.

25. Glavic, B., Dittrich, K.R.: Data Provenance: A Categorization of Existing Ap-
proaches. In: Proceedings of Datenbanksysteme in Bro, Technik und Wissenschaft
(BTW’07). (2007) 227–241

26. Ghoshal, D., Plale, B.: Provenance from log files: a bigdata problem. In: Proceed-
ings of the Joint EDBT/ICDT 2013 Workshops, ACM (2013) 290–297

27. Cheney, J., Ahmed, A., Acar, U.A.: Provenance as dependency analysis. 21(6)
(2011) 1301–1337

28. Cheney, J.: Program slicing and data provenance. IEEE Data Eng. Bull. 30(4)
(2007) 22–28

29. Brauer, P.C., Fittkau, F., Hasselbring, W.: The aspect-oriented architecture of
the caps framework for capturing, analyzing and archiving provenance data. In:
International Provenance and Annotation Workshop, Springer (2014) 223–225

30. Jouault, F., Kurtev, I.: Transforming models with atl. In: International Conference
on Model Driven Engineering Languages and Systems, Springer (2005) 128–138

31. XPand: Eclipse platform (2017) https://wiki.eclipse.org/Xpand, Last visited
on October 2017.

14

https://www.w3.org/TR/xslt-30/
http://www.modeliosoft.com/
http://www.modeliosoft.com/
https://eclipse.org/papyrus/
http://www.cs.indiana.edu/pub/techreports/TR618.pdf
https://wiki.eclipse.org/Xpand

	UML2PROV: Automating Provenance Capture in Software Engineering

