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Abstract - Forrester Diagrams (El)) and Petri Nets (PN) are 
formalisms introduced in the sixties to model complex systems. 
This paper explores similarities and differences between FDs 
and the continuous relaxation of the originally discrete PNs. 
Historically speaking, the approaches were quite different: the 
PNs paradigm was introduced at a very abstract level, without 
timing interpretation, while FDs led to a modelling methodol- 
ogy were the systematic simulation of a set of differential equa- 
tions was the goal. Strict flow conservation around valves, non 
explicit fork and join operations, separation of information and 
material flows, are peculiarities of FDs. In PN models the ex- 
istence of global Conservation laws is a potential for structural 
analysis. 

I INTRODUCTION 

The decade of 1960’s sees the consolidation, among oth- 
ers, of two “very different” formalisms and methodologies 
for modelling dynamic systems. On the one side, Jay W. 
Forrester, an engineer with an Automatic Control back- 
ground, working in the modelling of industrial and urban 
systems, started the System Dynamics Group at MIT, from 
which Systems Dynamics derives [7,9]. In essence, a mod- 
elling methodology using Causal Diagrams (CD) and, the 
later called, Forrester Diagrams (FD) allows to systema- 
tise the construction of continuous models based on sys- 
tems of non-linear, multivariable, time dependent differen- 
tial equations. The focus is in model building, while anal- 
ysis is basically bounded to simulation. Insufficiencies of 
the simulation approach were pointed out and formal anal- 
ysis techniques are also in use from the 1980’s [12]. On 
the other side, C. A. Petri, a mathematician working in 
Computer Science, defines in 1962 a formalism to deal 
with concurrency and cooperation relationships in Discrete 
Event Dynamics Systems (DEDS), computer systems, in 
particular. This formalism and modelling methodologies 
were further developed at MIT by A. Holt’s group, who 
baptised it as Petri Nets, and at GMD (Germany) by the 
Petri’s Group. Successive developments in this field led 
to a family of related formalisms. Different abstraction 
levels (elementary [21], place/transition [16], colored [lo], 
predicate/transition [ l l ]  . . .) and different interpretations 
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(timed, stochastic . . .) provide a rich modelling paradigm 
for DEDS [19]. 

In both cases, the modelling of “general enough” sys- 
tems was contemplated. Forrester’s view leads to continuous 
models, while Petri’s view deals with discrete models. In the 
first case, modelling was the key issue, while in the second 
much effort has been devoted to formal analysis techniques 
(state space exploration, model reduction, mathematical pro- 
gramming . . .) [20]. The state explosion problem, inherent 
to the enumerative analysis of DEDS models, is particularly 
crucial when large populations are flowing through a sys- 
tem, But large populations usually lead to “relatively small 
errors”, if the discrete model is relaxed to a continuous ap- 
proximation. This way, in 1987 Petri Nets (PN) were in- 
terpreted with markings in the non-negative reals (Contin- 
uous PNs) [5]. Continuous nets are particularly interest- 
ing in the framework of performance evaluation, in which 
computing an “educated guess” for some performance in- 
dexes is the goal. At the same time the state equation as- 
sociated to discrete PNs was similarly relaxed for the pur- 
pose of analysability, leading usually to semi-decision al- 
gorithms [17]. Recently it has been realised that although 
different, this two relaxations are “essentially” identical in 
practice [15]. At this point a natural question appears: 
Which are the similarities and the differences between For- 
rester Diagrams and continuous Petri Nets? The purpose of 
this work is to advance in providing answers to this question, 
a topic that was just brought to mind in [18]. The present pa- 
per is structured as follows. Petri Nets and its continuous re- 
laxation are addressed in Section 11, while System Dynamics 
and Forrester Diagrams is the topic of Section 111. A simple 
manufacturing system is considered from both perspectives 
in Section IV. Finally, Section V presents some preliminary 
comparative remarks. 

I1 CONTINUOUS PETRI NETS 

A. PNs definitions 

Petri nets (PNs) constitute a well-known formal paradigm 
for the modelling, analysis, synthesis and implementation 
of systems that “can be seen” as discrete. We assume the 
reader is familiar with PNs (see for instance [13, 16, 193 
for an introduction of the basic concepts and notations of 
PNs). We will just remark that a system is an structure 
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N = (P, T, Pre, Post) (Pre and Post represent the static 
structure of the model, from which the token flow matrix 
C = Post - Pre can be deduced) provided with an ini- 
tial marking over P, mo. A Petri net structure can also be 
represented as a bipartite directed graph, in which places are 
usually represented as circles and transitions as bars. In a 
PN, the marking defines the state of the system, and it is 
changed by the firing of transitions, thanks to the occurrence 
of their associated events. Starting from a PN system, a state 
(or fundamental) equation can be written: 

m = mo + C . cr, wherea E NIT1, andm E NIp[ 

The places of a PN system could be seen as the state vari- 
ables, and the marking vector as the state vector. However, 
it must be taken into account that there may exist redundan- 
cies. That is, it may happen that the marking of a place can 
be always obtained as a linear combination of the marking 
of other places. 

The set of reachable states of a discrete PN system may 
easily become extremely large (the so called state explosion 
problem). A way to try to overcome this problem, is to con- 
tinuize the system, what allows the use of different math- 
ematical tools (linear programming techniques, differential 
equations.. .). 

The usual PN system, (N,mo), will be said to be dis- 
crete so as to distinguish it from its continuous relaxation. 
In a discrete PN the marking is restricted to be integer, 
while in continuous PNs any non-negative real number is 
allowed. In continuous PNs the firing is modified in the 
same way, that is, a transition t is enabled at m iff for ev- 
ery p E ‘t ,  m[p] > 0. Its enabling degree is defined as 
enab(t, m) = minpE.t{m[pl/PreIp, t]}. The firing o f t  in 
a certain amount QI 5 enab(t, m) leads to a new marking 
m’ = m + QI . C[P, t]. 

The continuization of a net system is intended as an ap- 
proximation. A first thing to point out is that not all net sys- 
tems allow a “reasonable” continuization. Examples can be 
shown for which the lack of relationship between the qual- 
itative properties of the discrete and the continuous system 
may certainly look surprising [15]. For example, deadlock- 
freeness of the continuous systems is neither necessary nor 
sufficient for deadlock-freeness of the discrete system (not 
even under structural boundedness). 

Different timing interpretations can be associated to a 
(discrete) Petri net. One possibility is to assign a determin- 
istic fixed delay to each transition (deterministic timed nets). 
Another one is to consider that the delay of each transition is 
exponentially distributed (markovian stochastic Petri nets). 
For continuous nets we will use a deterministic approxima- 
tion for both interpretations, and either the deterministic de- 
lay or the mean value of the exponential distribution function 
will be used to define the firing speed of the transition. 
As in discrete systems, in a continuous PN the state equa- 

tion m = mo + C . a summarises the marking evolu- 
tion. But, in continuous systems, the marking is continu- 
ously changing, so we may consider the derivative of m with 
respect to time. This way we obtain that m = C . U, plus 
the initial condition m(0) = mo. Let us call f = U, since 

it represents theflow through the transitions. In general f is 
not constant, but may depend locally on the marking, thus 
on time. Observe that if a steady state is reached, m = 0, 
and so C . f = 0 (since f 2 0, it is a T-semiflow, according 
to the usual notation) 

If f (T) is defined by an interpretative extension, the timed 
evolution of the continuous PN can be obtained. Two partic- 
ularly interesting semantics are often used in discrete PNs, 
and they can be extended to the continuous case [14]: 

1. Infinite servers semantics. [n this case, transitions are 
fired with: f ( ~ ) [ t , ]  = X[t , ]  e (~ ) [ t , ] ,  wheree(~)[ t , ]  = 
minpE.t, {mb]/Pre[p, t,]} is the enabling degree of 
t,, and X[t , ]  is the rate associated to t,. That is, e (~ ) [ t , ]  
represents the number of active servers in the station 
(transition), at instant T .  

Observe that the fluidified model is a set of switching 
systems of linear differential equations with constant 
coefficients. In the example of Figure 1, if it is seen 
as a continuous PN system with infinite-servers seman- 
tics, the flow vector is: 

Figure 1: A continuous PN system 

2. Finite servers semantics. In discrete PNs, the constraint 
on the number of servers can be made explicit by el- 
ementary self-loops around each transition t ,  marked 
with let* tokens, as many as the number of servers. 
However, the meaning of tlhe “servers tokens” and the 
“client tokens” is very different for continuous systems, 
since the latter represent large populations while the 
former are count as units. This immediately suggests 
that the speed f (~) ] [ t , ]  has just an upper bound (ktz 
times the speed of a server, F[t,] ). Then f ( ~ ) [ t , ]  5 
I C t z  . F[t,] (knowing that at least a transition will be in 
saturation, that is, its utilisation will be equal to 1). 

In continuous PNs terminology, infinite servers semantics 
is “variable speed”; while finite servers semantics is named 
“constant speed” (see for instance [l]), what in fact corre- 
sponds to a “bounded” speed. 
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B. A basic population model 

Let us consider a simple version of the predatodprey model 
of Volterra-Lotka. This is a so well-known model that, for 
brevity reasons, is not explicitly introduced here (it can be 
found, for instance, in [3]). 

The colored PN in Figure 2(a) represents the problem us- 
ing a discrete model (more realistic hypothesis could be in- 
troduced in a simple way, but providing a more elaborated 
model is not our goal here). The use of colored PNs is sim- 
ply methodological here, to reveal the existence of individ- 
uals that can be grouped in homogenous populations. To 
do that, the model has to be decoloured [6] and we have to 
obtain the firing rates of the new transitions. Let m[f] and 
m[r] be the number of predators and preys (foxes and rab- 
bits, for example). If we consider the colored transition t 3  

at a certain instant, it is enabled in m[r] . m[f] differently 
colored ways. For this reason in the decoloured (discrete) 
model (see Figure 2@)) t 3  has an associated firing rate equal 
to X[t3] . m[r] . m[f]. Both discrete net systems in Figure 2 
are non bounded and non live. In fact, they have two ab- 
sorbent “states” (or attractors): in both of them m[f] = 0, 
and either m[r] = 0 or m[r] = w (w is an arbitrarily large 
number). Only m[r] = m[f] = 0 is a steady state. 

Observe that with m[r].m[f], theproduct ofvariables has 
been introduced as a rate, i.e., a new semantics has appeared 
from the “decoloration” of the usual infinite servers of the 
colored transition. 

If the constants in Figure 2(a) (death and birth rates) are 
defined as a, = 0, a f  = a, PT = 2, Pf = 0 (Figure 2@)), 
the equations associated to the continuous and decoloured 
PN are the classical Volterra-Lotka equations: 

m[r] = A[tl] . m[r] - A[t3] . m[r] . m[f] 
m[f] = -A[t2] . m[f] + (a - 1) . X[t3] . m[r] . m[f] 

Figure 2: Colored and place/transition net model of a preda- 
tor/prey system 

For m[r] = m[f] = 0 the classical equilibrium solu- 
tion is found: m[r] = A[t2]/(A[t,](a - 1)) and m[f] = 
X[tl]/X[t~]. However, it must be noticed that according to 
this model, the system does not have equilibrium solutions, 
but oscillates in orbits defined by the initial populations. 

In our example, the discrete PNs (colored or not) are 
stochastic non bounded and non live models. In particular, 
in a “large enough” run, predators will disappear (with prob- 
ability 1) and preys will either disappear or grow infinitely. 

Figure 3: Place/transition net model of a bounded preda- 
tor/prey system. 

35. 

30. 

3 
3 -  

25 - 

20 - 

Figure 4: Trajectories obtained for the system in Figure 3 
with X[tl] = X[t2] = 20, X[t3] = 0.75, a = 2,m0[r] = 
mo[f] = 20, mo[-f] = 40 and mo[-r] = IC. 

The continuous PN, which was intended to be an “approxi- 
mation” of the discrete model, is deterministic, bounded and 
live! One could imagine that boundedness and liveness are 
due to a “certain equilibrium” between the non boundedness 
and the deadlocks of the discrete system. To deepen into 
this question, the discrete PN in Figure 2@) has been trans- 
formed into a bounded net system, just adding complemen- 
tary places to r (- r )  and f (- f )  (see Figure 3). Seen as dis- 
crete, this system is bounded and contains deadlocks. The 
underlying stochastic process will sooner or latter enter into 
one of the deadlocks (m[f] = 0, with either m[r] = 0 or 
m[r] = IC + 20). Nevertheless, its continuous approximation 
is live. 

Just as an exercise, Figure 4 shows the trajectories for the 
case of having a maximal number of preys of 20 + IC. Since, 
for the given mo, the place -f is always greater than 0, it 
never restricts the enabling of t3. Hence, the equation of f 
in the steady state is: X[t3] . m[r] . m[f] - A[t,] . m[f] = 0, 
and so: m[r] = X[t2]/X[t3] = 80/3. The behaviour of 
the system when IC decreases shows that in a first transitory 
phase, the limitation has the effect of placing the system 
in an orbit closer to the non null equilibrium point. From 
a critical value, the evolution does not lead the system to 
an orbit, but it directly goes to an equilibrium point, with 
m[r] = 80/3 (obtained from the equation m[f] = 0). For 
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tk = 20, the main constraint for tl is always -r, hence the 
flow at tl is 20 . m[ 7-1 which (by conservation) must be 
equal to the flow at t Z ,  20 . m[f]; and so m[f] = m[-r]. 
Therefore m[r] + m[-r] = 20 + IC = 40 + m[-r] = 
40 - 80/3 = 40/3, and so m[f] = 40/3. (In fact, for 
IC = 20, m[r] = -m[f], from which the straight line in the 
figure.) 

Some final remarks: 

0 If the starting point is a colored net, it is necessary first 
to decolour (from which large populations can be ob- 
tained) and later to fluidih. The reverse, first fluidify 
and then decolour, does not make sense, specially con- 
sidering that “addition” and “min” operations do not 
commute. 

e If just infinite and finite-servers semantics are allowed, 
the continuous PN is in fact a set of switching linear 
systems. The use of the product of the markings as 
the firing rate allows to represent more complex be- 
haviours. However still the locality principle is pre- 
served. That is, the rate depends only on the making 
of the input places (Le., a local precondition). 

0 If functions that depend on the global state of the sys- 
tem are allowed in f (T) [t], chaotic behaviours (even the 
classical of Lorenz [12]) may be represented with con- 
tinuous PNs. Since continuization is a relatively strong 
relaxation, the chaotic trajectories may not be very rep- 
resentative. Hence, it is possible that just their qualita- 
tive properties make sense (see [2, 121 for some reflec- 
tions about this). 

I11 FORRESTER DIAGRAMS 

A. Forrester Diagrams definitions 

Forrester Diagrams (FD) are specific modelling tools in- 
side System Dynamics (SD) [7, 8, 91. SD is a methodol- 
ogy for the study and analysis of complex continuous sys- 
tems, which tries to build dynamic models of complex sys- 
tems, by searching the relationships between the subsystems 
(specially the feedback loops). It looks at the system as a 
whole, usually using the computer for simulation. The gene- 
sis and the development of SD constitute a manifestation of 
the paradigm of systems. 

The methodology to build a model in SD could be sum- 
marised in several steps [8], which are applied in an iterative 
way until the desired adjustment is obtained: 

1. Conceptualisation, which includes: a) identifying the 
system and its parts, b) looking for the causal relation- 
ship and feedback loops, and c) building the Causal Di- 
agram. 

2. Representation and formulation, which include: d) 
building the so called Forrester Diagram, and e) writ- 
ing the equations of the system. 

3.  Analysis and evaluation, which include: f )  model anal- 
ysis: comparison to the reference model and sensibility 

analysis, and g) evaluating and implementing the sys- 
tem. 

In this methodology two graphical models are used: 
Causal Diagrams, and Forrester Diagrams. A differential 
equations based model is straightforwardly derived from the 
later. 

Causal Diagrams (CD) qualitatively show the causal re- 
lationships between the parts (subsystems), by means of ar- 
rows with a sign that indicates if the relationship is posi- 
tive (greatedless cause implies greater/less effect) or nega- 
tive (the opposite). In these diagrams it is not distinguished 
if the parts will be state variables or another type of variables. 
Special attention is paid to the feedback loops (a closed chain 
of causal relationships) because they provide a first idea of 
how the system will evolve dynamically: positive feedback 
loops (even number of negative relationships) “indicate” an 
exponential grow, and negative feedback loops indicate the 
possibility of balance and equilibrium. 

Certain recommendations exist for the construction of 
Causal Diagrams: avoid the fictitious loops, use easily quan- 
tifiable elements, do not use twice the same relationship, 
avoid redundant loops and do not use time like a causal fac- 
tor. 

Forrester Diagrams provide a graphic representation of 
dynamic systems (see Figure 5), imodelling quantitatively the 
relationships between the parts by means of some symbols, 
which correspond to an hydrodynamic interpretation of the 
system. 

Figure 5: Forrester Diagrams elements 

The levels (stocks) correspond to the state variables in 
systems theory. They represent the variables whose evo- 
lution is more significant for thle study of the system. The 
levels accumulate “material” from material channels, which 
are controlled by the valves (flow variables). This mate- 
rial flow is strictly conservative (balance around the valves). 
Valves define the behaviour of the system, since they deter- 
mine the speed of the material flow (through the material 
channels) according to a set of associated equations. The 
equations depend on the information that the valves receive 
from the system (levels, auxiliary variables and parameters) 
and from the environment (exogenous variables). The in- 
formation is transmitted instantaneously through informa- 
tion channels. Auxiliary variabr’es correspond to intermedi- 
ate steps in the calculation of the functions associated to the 
valves. They can be used to simplify the process, either be- 
cause some mathematical calculations are used for several 
equations (reused computation of flows), or because they 
have certain physical meaning or interpretation that could 
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be interesting to observe, but they can always be removed. 
The clouds represent sources and sinks, that is to say, a non 
determined (infinite) amount of material, and the parame- 
ters are constant values of the system. The interaction of 
the system with the exterior is represented with the aoge- 
nous variables, which have an evolution that is assumed to 
be independent from the evolution of the system. The delays 
can affect the material or the information transmission, but 
in both cases they do not introduce more description capac- 
ity, because they just correspond to a compact notation of 
elements that produce these delays (see Figure 6). 

Figure 6: Material and information first order delays in For- 
rester Diagrams 

The interest of the hydrodynamic analogy is that indicates 
that a FD model is equivalent to a first order (eventually 
non linear, time dependent) differential equation system, and 
vice versa. The equations of the model are simply the ana- 
lytic representation of the FD, and allow not only simulation 
of the model but also the application of modem control the- 
ory techniques. The equations just correspond to the material 
balance in each deposit: 

where x are the level variables, and f r N  and f o U T  represent 
the functions associated to the valves (flow functions) that 
introduce or take out respectively material in a level. Since 
the flow variables, f i ~  and f O U T ,  depend both on the lev- 
els and on the exogenous variables (the auxiliary variables 
can always be eliminated), it corresponds to a system of first 
order differential equations: 

dx/d t  = f(z, U )  

where U represents the exogenous variables. 

B. A basic population model 

Let us consider the same very simple predator/prey model as 
in Section I1.B. The goal of this example is just instrumental, 
to show the process of model construction, but not to provide 
a real approximation by a complex model. The Causal Di- 
agram of that system is shown in Figure 7. Note that in the 
diagram the 'Captures' should influence the 'Foxes' through 
the 'Foxes births' and the 'Foxes deaths' rates, (2) and (3), 
instead of directly (l), but to simplify the model and make 

it more similar to the previous one, (2) and (3) relationships 
have been summarised by their equivalent (1). 

Rabbits Rabbits 

births 
natural Foxes Foxes 
deaths ' births , deaths 

(3) 

Figure 7: Causal Diagram of basic predatodprey model 

The FD obtained after further elaboration is shown in Fig- 
ure 8. It can be realised that valve ~b includes the effect of 
births and deaths of rabbits for natural causes, and that f b  

includes the effect of births and deaths of foxes for natu- 
ral causes (excluding the captures effect). In both cases the 
valves could be divided into two, one for each cause. Ob- 
serve that flow equations must be included in the FD to fully 
describe the model. In this case, the equations correspond to 
a model that is equivalent to the PN model in Section 1I.B 
(Figure 2(a)), which comes from a discrete model. 

Figure 9 corresponds to the PN model of Figure 3, where 
the populations capacities are bounded. This limitation, or 
any other one, can be introduced in models either through 
the flow equation (for example in bounding the foxes level, 
by f m a z ) ,  or through its graph (or a chart of values) that de- 
scribes the function (as in the limitation of the rabbits level, 
by Zim?). Models in Figures 3 and 9 lead to the same system 
of equations. 

IV A SIMPLE MANUFACTURING SYSTEM 

Let us consider the simple manufacturing system sketched 
in figure 10. It basically consists in the manipulation in ma- 
chines and the storage in buffers of two types of parts, a 
and b, that are assembled to obtain a final product. One of 
each kind of parts comes to machine 2 (through its respective 
machines, l a  or lb, and buffers, l a  or lb), where they are 
joined. The resulting part is stored again in another buffer, 
and waits until the machine 3 generates the final product. 
Taking a part from a buffer takes 0.2 time unites, and each 
operation needs 1 time unit. All buffers capacities are 3. 
There is a limitation in the number of parts of the system, 
represented by parameter k. 

Parts A 

Pans B 

Figure 10: Diagram of the Simple Manufacturing System 

This is a discrete system. A discrete PN model is shown 
in Figure ll(a), where each element has been modelled by 
means of two places (a place and its complementary one). 
Therefore, it can be observed that the number of places is 
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Figure 8: Forrester Diagram of a basic predatodprey model (equivalent to Figure 2(a)) 

Zim,(r) 

if f < f m a z  then 
captures = A3 . r . f 

else captures = 0 
T b  = A1 . Zim,(r) 
r d  = capture:; . (1 - a,) 
f b  = captures. (ap - 1) 
fd = A2 . (1 - Pp)  . f 

Figure 9: Forrester Diagram of a bounded basic predator/prey model 

different from the number of state variables, because only a 
state variable is needed for each element. However, for large 
markings, great computational effort is required to carry out 
the simulation as discrete, and a continuous approximation 
may be interesting. The model in Figure ll(a) can be inter- 
preted as a continuous system, with infinite servers seman- 
tics (usually used in this paper). The finite servers seman- 
tics model can be built too, keeping in mind that a server 
(machine) cannot simultaneously load and unload parts, and 
therefore the two delays should be added. In this latter case 
the system has a very similar interpretation to an hybrid sys- 
tem, as it can be observed in Figure 11@), where machines 
have been represented as discrete places, and the remaining 
places, and all the transitions, are continuous. 

Up to now we have seen that this discrete system can be 
analysed with a PN using a discrete deterministic model, a 
continuous model with infinite servers semantics, and a con- 
tinuous model with finite servers semantics. We could won- 
der if they all will give "similar" results, and it is not really 
the case. The results of the referred cases are represented in 
Table 1. It shows the throughput in steady-state for the ini- 
tial marking shown in Figure 11, depending on k (the bound 
on the number of parts in the system). Note that in this case 
continuous infinite servers and discrete deterministic mod- 
els provide the same production rates, a general result for 

0.833 0.833 0.833 

Table 1: Comparing the througlhput of the discrete and the 
continuous models (under infinite and finite servers seman- 
tics) of the manufacturing system 

strongly connected Marked Graphs. 
These values indicate that it is necessary to be careful 

when analysing the behaviour of a model if approximations 
are used. With the continuous alpproximations the computa- 
tion is simplified but some accuracy may be lost. This dif- 
ference can be observed more cl.early in the extreme case of 
having a single part of each type (IC = 1). In that case it is 
evident that as deterministic discrete, the time for producing 
a new part, i.e., the inverse of thlz throughput, in steady-state 
is the sum of the times of the slowest branch, that is, 3.6 
seconds. But as continuous with finite server semantics, the 
time is only that of the slowest tr,ansition, that is, 1.2 seconds. 
Thus, a coefficient of three makes the difference (!). 

The behaviour of the system can also be simulated with 
Forrester Diagrams. When modelling the system by means 
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Figure 11: a) PN model of a manufacturing system (can be seen as discrete or as continuous), b) PN model of the manufac- 
turing system under finite servers semantics 

of FDs the machines are considered as material delays be- 
tween the levels, which are the buffers (Figure 12(a)). The 
greater the order of the delay is, the more it may look like 
the deterministic discrete system. Nevertheless, this is not 
crucial, because the usual procedure in FDs is to adjust the 
time parameters in the delays to get the observed production 
rate. 

Any continuous PN can be translated into a FD, build- 
ing the FD from the equations that derive from the PN. A 
direct translation of the PN in Figure l l(a) into a FD is 
shown in Figure 12@) (obviously the finite servers seman- 
tics model could have been translated too). The FDs in fig- 
ures 12(a) and 12@) are “different” although of course both 
have “equivalent” behaviours. The methodologies of both 
formalisms, PNs and FDs, have driven in this case to differ- 
ent models. 

Figures 12(a) and 12@) show that the parts flow is bro- 
ken when they join in machine 2. To model that a part of 
type a and a part of type b are joined in machine 2 produc- 
ing a new part, the FDs operate as follows: the information 
of how many parts come in machine 2 is used to eliminate 
these parts from buffers l a  and l b  and to generate from an- 
other source the corresponding number of parts, which rep- 
resent the parts produced in machine 2. The connectivity 
(and the synchronisation) in the process is broken down in 
the structure of the FDs. They are implicitly conserved by 
the equations. On the contrary, PNs preserve this informa- 
tion in the structure, by means of the and-nodes (fork and 
joins) and the weights in the arcs. 

V CONTINUOUS PNs vs. FDs: SOME REMARKS 

In the previous sections continuous PNs and FDs have 
been briefly presented and some examples analysed from 
both points of view. Both provide a graphical support for 
easy generation of systems of differential equations. A clear 
correspondence exists among the main types of nodes in 
both: place/level and transitiordvalve (or firing speed/flow 
variable). However, this correspondence should not hide the 
differences that appear: 

1. Marking of places vs. levels. In FDs each level cor- 
responds, to a state variable. However, although in 
PNs places are essentially state variables, redundan- 
cies may exist due to token conservation laws derived 
from P-flows (y is a P-flow iff y . C = 0, thus 
yT . m = yT . mol. Particular cases are structural im- 
plicit places (a place is implicit iff it never restricts the 
firing of its output transitions) [4] and conservativeness 
(3y > 0 such that y . C = 0). From conservativeness 
the existence of a basis of non-negative left annullers 
of the token flow matrix, C, can be deduced. For ex- 
ample, in Figure 13(a), p4 is implicit as continuous if 
5. mob41 2 3 1 mo[p2] + 7 .  mo [p3]. In other words, re- 
moving p4 from the system preserves its behaviour for 
any (temporal) interpretation. Moreover, p1, p2 and p3 
form a conservative component, where the token con- 
servation law is 5 . mbl] + 3 . mbz] + 7 . m[p3] = 
5 . mob11 + 3 . rnolpz] + 7 . mo[ps] = 55. Thus, 
one of these three places is redundant (for instance, 
mb3] = (55 - 5 .  mo[pl] - 3 .  mo[p2])/7). 

Furthermore, the cycle that results when the implicit 
place p4 is removed can be transformed into an or- 
dinary cycle (with unitary arc weights), by means of 
a linear transformation, making a reinterpretation of 
the net (the places, the transitions and the flow rates). 
If the following change is carried out in the places: 
pi = 5 . ~ 1 ,  p i  = 3 . ~ 2 ,  and pi = 7 . ~ 3 ,  the resulting net 
is an ordinary cycle (with the new places and marking 
interpretation). If the PN has finite servers semantics 
interpretation, as the firing rate does not depend on the 
enabling, when the previous transformation is applied, 
the resulting net is that in Figure 13@)), and we should 
name: 0: = 01/15, 19; = 02/21, and 04 = 03/35 
(where 6 represents times, not speeds), to have the basic 
cycle. It can be demonstrated that these transformations 
can be made in general in nets that are conservative and 
topologically state machines (I’tl = It*[ = 1). This 
property does not hold for more general subclasses, for 
instance, the net system in Figure 14, has a simple con- 
servative component (m[pl] + m[P2] + mb3] = 3) and 
can be simulated with only two state variables, but there 
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Figure 12: a) FD model of the manufacturing system, b) Translation of the PN in Figure ll(a) into a FD 

are weights that cannot be removed. 

P 

Figure 13: a) PN with an implicit placepd and a conservative 
component: 5 . m[pl] + 3 .  m[pa] + 7 .  m[ps] = 55, and b) 
Reinterpretation of the PN, after removing p4 

All these cases show that a direct translation of the 
PN into the FD will usually produce redundant equa- 

Figure 14: A non topologically state machine PN with a con- 
servative component 

t 

t +  I 

Figure 15: Translation from a PN model of a bounded 
prey/predator system to a FD mcidel (Figure 3) 

(the flow) takes place according to the information that 
valves receive of the whole system state, through the 
flow of information. The evolution of the PNs (the fir- 
ing) takes place according to the information that each 
transition receives from its input places. That is, FDs 
separate the material and the information flows, and 

tions. The FD in Figure 9, which corresponds to the 
prey/predator model, is different from the FD obtained 
by direct translation of the PN of Figure 3 (see Fig- 
ure 15). Observe here that there are four levels but only 
two state variables (there exist only two independent 
conservation laws). 

2.  Transitions vs. valves: flows. The evolution of FDs evolve according to global information of the system, 
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whereas PNs have only a flow of material that carries 
the information implicitly, and evolve according to in- 
formation that in standard uses is local to each transi- 
tion (its input places). Figure 16 makes explicit a hypo- 
thetical separation of material and information flows in 
the PN of Figure 2@). 

t* 

Figure 16: Hypothetical separation of flows in a PN (a > 1) 

A more detailed comparison can be made between the 
flows: 

(a) Material. In FDs material is strictly conservative 
around the valves, that is, the relationship among 
input and output flow is always 1 : 1, but this does 
not imply the existence of conservative laws over 
the set of levels. In this sense valves in FDs act 
like stations in Jackson or Gordon-Newel1 Queu- 
ing Networks: identity of customers is preserved 
when a service is provided. On the other hand, 
in PNs weighted conservation is frequent, even if 
joins and forks exist. In a general case, around 
a transition with n input arcs and m output arcs, 
n, x m ratios ai : bj will exist, with i = 1 . . . n, 
and j = 1 . . . m (Figure 17). 

POUT I 

POUT- PIN 

Figure 17: And-node (Join and Fork) 

Synchronizations are not structurally and explic- 
itly modelled with FDs: there exist no elements to 
represent “rendez-vous”, and must be simulated 
by means of flow equations. The simulation of the 
PN in Figure 17 by means of FDs can be carried 
out in a generic way according to Figure 18(a), 
where a cloud and a valve are used to simulate 
each incoming or salient arc of the PN. It can be 
seen that the connectivity in the structure of the 
material graph is completely broken. A more ef- 
ficient simulation can be carried out if a linear 
transformation is used in the interpretation of the 
levels. Thus material connectivity is possible for 
rnin(n, m) channels (see Figure 18@)); simulta- 
neously the same quantity of valves (and clouds) 
is saved in the simulation. 

(b) Information. In FDs the information affects to the 
dynamics of the valves in a global way, as it has 
been already commented. Moreover it affects in 
a generic way, since arbitrary equations (includ- 
ing any kind of non linearities) can be associated 
to the valves. However, in PNs the information af- 
fects to the dynamics (evolution) of the system not 
only locally, but also according to a limited num- 
ber of functions: basic functions depending on 
the semantics (like infinite servers semantics, or 
finite server semantics) and additional functions 
that may arise for example from the decoloration 
of a colored net. If basic semantics are kept, some 
properties of the original discrete systems could 
subsist. But nothing prevents to define any other 
global firing functions, and this way the graphical 
tool that we obtain includes continuous PNs and 
FDs. 

3. On their typical application domains 
FDs have been traditionally used to model existing 
complex socio-technical and bio-ecological systems, 
whose behaviour has to be studied. Usually, those mod- 
els are used for the analysis, mainly by means of simu- 
lation. There exist several computer programs to create 
and simulate a FD, and are friendly enough to be used 
even by non experts in the subject. 
Continuous PNs have been mostly used in the design of 
“technical” systems, and much effort has been made in 
formal analysis techniques. The analysis has been done 
at two levels: 

0 As untimed models: if time (firing speed) is not 
taken into account, some properties of the au- 
tonomous PN (liveness, boundedness, reliability, 
etc.) can be analysed. 

0 As timed models performance properties have 
been analysed. 

Hence, different application domains and approaches ap- 
pear. Moreover, the analysis of these two formalisms, PNs 
and FDs, from the point of view of the other, leads us to ap- 
preciate some features that could go unnoticed (information 
flow in PNs, invariants and synchronizations in FDs ...). 
Methodological comparisons between the use of both for- 
malisms for model building and the analysis of correspon- 
dences and differences can show their advantages and disad- 
vantages, and drive to a deeper knowledge of them. The 
richer material structure of PNs exhibits some potentials 
for the analysis of the underlying untimed non-deterministic 
systems (for example for the analysis of qualitative or logical 
properties like deadlock-freeness or certain classes of mutual 
exclusions). 
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