
Forrester Diagrams and Continuous Petri Nets: A Comparative View

E. Jimhez
Dept. Ingenieria ElCctrica
Universidad de La Rioja

Luis de Ulloa 20, E-26004, Logroiio (Spain)
E-mail: emilio.jimenezm@die.unirioja.es

Abstract - Forrester Diagrams (El)) and Petri Nets (PN) are
formalisms introduced in the sixties to model complex systems.
This paper explores similarities and differences between FDs
and the continuous relaxation of the originally discrete PNs.
Historically speaking, the approaches were quite different: the
PNs paradigm was introduced at a very abstract level, without
timing interpretation, while FDs led to a modelling methodol-
ogy were the systematic simulation of a set of differential equa-
tions was the goal. Strict flow conservation around valves, non
explicit fork and join operations, separation of information and
material flows, are peculiarities of FDs. In PN models the ex-
istence of global Conservation laws is a potential for structural
analysis.

I INTRODUCTION

The decade of 1960’s sees the consolidation, among oth-
ers, of two “very different” formalisms and methodologies
for modelling dynamic systems. On the one side, Jay W.
Forrester, an engineer with an Automatic Control back-
ground, working in the modelling of industrial and urban
systems, started the System Dynamics Group at MIT, from
which Systems Dynamics derives [7,9]. In essence, a mod-
elling methodology using Causal Diagrams (CD) and, the
later called, Forrester Diagrams (FD) allows to systema-
tise the construction of continuous models based on sys-
tems of non-linear, multivariable, time dependent differen-
tial equations. The focus is in model building, while anal-
ysis is basically bounded to simulation. Insufficiencies of
the simulation approach were pointed out and formal anal-
ysis techniques are also in use from the 1980’s [12]. On
the other side, C. A. Petri, a mathematician working in
Computer Science, defines in 1962 a formalism to deal
with concurrency and cooperation relationships in Discrete
Event Dynamics Systems (DEDS), computer systems, in
particular. This formalism and modelling methodologies
were further developed at MIT by A. Holt’s group, who
baptised it as Petri Nets, and at GMD (Germany) by the
Petri’s Group. Successive developments in this field led
to a family of related formalisms. Different abstraction
levels (elementary [21], place/transition [16], colored [lo],
predicate/transition [l l] . . .) and different interpretations

*This work has been partially supported by Project CICYT TAp98-0679.

L. Recalde and M. Silva *
Dept. Inform6tica e Ingenieria de Sistemas

Universidad de Zaragoza
Maria de Luna 3, E-50015, Zaragoza (Spain)

E-mail: { lrecalde, silva}@posta.unizar.es

(timed, stochastic . . .) provide a rich modelling paradigm
for DEDS [19].

In both cases, the modelling of “general enough” sys-
tems was contemplated. Forrester’s view leads to continuous
models, while Petri’s view deals with discrete models. In the
first case, modelling was the key issue, while in the second
much effort has been devoted to formal analysis techniques
(state space exploration, model reduction, mathematical pro-
gramming . . .) [20]. The state explosion problem, inherent
to the enumerative analysis of DEDS models, is particularly
crucial when large populations are flowing through a sys-
tem, But large populations usually lead to “relatively small
errors”, if the discrete model is relaxed to a continuous ap-
proximation. This way, in 1987 Petri Nets (PN) were in-
terpreted with markings in the non-negative reals (Contin-
uous PNs) [5]. Continuous nets are particularly interest-
ing in the framework of performance evaluation, in which
computing an “educated guess” for some performance in-
dexes is the goal. At the same time the state equation as-
sociated to discrete PNs was similarly relaxed for the pur-
pose of analysability, leading usually to semi-decision al-
gorithms [17]. Recently it has been realised that although
different, this two relaxations are “essentially” identical in
practice [15]. At this point a natural question appears:
Which are the similarities and the differences between For-
rester Diagrams and continuous Petri Nets? The purpose of
this work is to advance in providing answers to this question,
a topic that was just brought to mind in [18]. The present pa-
per is structured as follows. Petri Nets and its continuous re-
laxation are addressed in Section 11, while System Dynamics
and Forrester Diagrams is the topic of Section 111. A simple
manufacturing system is considered from both perspectives
in Section IV. Finally, Section V presents some preliminary
comparative remarks.

I1 CONTINUOUS PETRI NETS

A. PNs definitions

Petri nets (PNs) constitute a well-known formal paradigm
for the modelling, analysis, synthesis and implementation
of systems that “can be seen” as discrete. We assume the
reader is familiar with PNs (see for instance [13, 16, 193
for an introduction of the basic concepts and notations of
PNs). We will just remark that a system is an structure

0-7803-7241-7/01/$10.00 (~)2001 IEEE
85

N = (P, T, Pre, Post) (Pre and Post represent the static
structure of the model, from which the token flow matrix
C = Post - Pre can be deduced) provided with an ini-
tial marking over P, mo. A Petri net structure can also be
represented as a bipartite directed graph, in which places are
usually represented as circles and transitions as bars. In a
PN, the marking defines the state of the system, and it is
changed by the firing of transitions, thanks to the occurrence
of their associated events. Starting from a PN system, a state
(or fundamental) equation can be written:

m = mo + C . cr, wherea E NIT1, andm E NIp[

The places of a PN system could be seen as the state vari-
ables, and the marking vector as the state vector. However,
it must be taken into account that there may exist redundan-
cies. That is, it may happen that the marking of a place can
be always obtained as a linear combination of the marking
of other places.

The set of reachable states of a discrete PN system may
easily become extremely large (the so called state explosion
problem). A way to try to overcome this problem, is to con-
tinuize the system, what allows the use of different math-
ematical tools (linear programming techniques, differential
equations.. .).

The usual PN system, (N,mo), will be said to be dis-
crete so as to distinguish it from its continuous relaxation.
In a discrete PN the marking is restricted to be integer,
while in continuous PNs any non-negative real number is
allowed. In continuous PNs the firing is modified in the
same way, that is, a transition t is enabled at m iff for ev-
ery p E ‘t , m[p] > 0. Its enabling degree is defined as
enab(t, m) = minpE.t{m[pl/PreIp, t]}. The firing o f t in
a certain amount QI 5 enab(t, m) leads to a new marking
m’ = m + QI . C[P, t].

The continuization of a net system is intended as an ap-
proximation. A first thing to point out is that not all net sys-
tems allow a “reasonable” continuization. Examples can be
shown for which the lack of relationship between the qual-
itative properties of the discrete and the continuous system
may certainly look surprising [15]. For example, deadlock-
freeness of the continuous systems is neither necessary nor
sufficient for deadlock-freeness of the discrete system (not
even under structural boundedness).

Different timing interpretations can be associated to a
(discrete) Petri net. One possibility is to assign a determin-
istic fixed delay to each transition (deterministic timed nets).
Another one is to consider that the delay of each transition is
exponentially distributed (markovian stochastic Petri nets).
For continuous nets we will use a deterministic approxima-
tion for both interpretations, and either the deterministic de-
lay or the mean value of the exponential distribution function
will be used to define the firing speed of the transition.
As in discrete systems, in a continuous PN the state equa-

tion m = mo + C . a summarises the marking evolu-
tion. But, in continuous systems, the marking is continu-
ously changing, so we may consider the derivative of m with
respect to time. This way we obtain that m = C . U, plus
the initial condition m(0) = mo. Let us call f = U, since

it represents theflow through the transitions. In general f is
not constant, but may depend locally on the marking, thus
on time. Observe that if a steady state is reached, m = 0,
and so C . f = 0 (since f 2 0, it is a T-semiflow, according
to the usual notation)

If f (T) is defined by an interpretative extension, the timed
evolution of the continuous PN can be obtained. Two partic-
ularly interesting semantics are often used in discrete PNs,
and they can be extended to the continuous case [14]:

1. Infinite servers semantics. [n this case, transitions are
fired with: f (~) [t ,] = X[t ,] e (~) [t ,] , wheree(~)[t ,] =
minpE.t, {mb]/Pre[p, t,]} is the enabling degree of
t,, and X[t ,] is the rate associated to t,. That is, e (~) [t ,]
represents the number of active servers in the station
(transition), at instant T .

Observe that the fluidified model is a set of switching
systems of linear differential equations with constant
coefficients. In the example of Figure 1, if it is seen
as a continuous PN system with infinite-servers seman-
tics, the flow vector is:

Figure 1: A continuous PN system

2. Finite servers semantics. In discrete PNs, the constraint
on the number of servers can be made explicit by el-
ementary self-loops around each transition t , marked
with let* tokens, as many as the number of servers.
However, the meaning of tlhe “servers tokens” and the
“client tokens” is very different for continuous systems,
since the latter represent large populations while the
former are count as units. This immediately suggests
that the speed f (~)] [t ,] has just an upper bound (ktz
times the speed of a server, F[t,]). Then f (~) [t ,] 5
I C t z . F[t,] (knowing that at least a transition will be in
saturation, that is, its utilisation will be equal to 1).

In continuous PNs terminology, infinite servers semantics
is “variable speed”; while finite servers semantics is named
“constant speed” (see for instance [l]), what in fact corre-
sponds to a “bounded” speed.

86

B. A basic population model

Let us consider a simple version of the predatodprey model
of Volterra-Lotka. This is a so well-known model that, for
brevity reasons, is not explicitly introduced here (it can be
found, for instance, in [3]).

The colored PN in Figure 2(a) represents the problem us-
ing a discrete model (more realistic hypothesis could be in-
troduced in a simple way, but providing a more elaborated
model is not our goal here). The use of colored PNs is sim-
ply methodological here, to reveal the existence of individ-
uals that can be grouped in homogenous populations. To
do that, the model has to be decoloured [6] and we have to
obtain the firing rates of the new transitions. Let m[f] and
m[r] be the number of predators and preys (foxes and rab-
bits, for example). If we consider the colored transition t 3

at a certain instant, it is enabled in m[r] . m[f] differently
colored ways. For this reason in the decoloured (discrete)
model (see Figure 2@)) t 3 has an associated firing rate equal
to X[t3] . m[r] . m[f]. Both discrete net systems in Figure 2
are non bounded and non live. In fact, they have two ab-
sorbent “states” (or attractors): in both of them m[f] = 0,
and either m[r] = 0 or m[r] = w (w is an arbitrarily large
number). Only m[r] = m[f] = 0 is a steady state.

Observe that with m[r].m[f], theproduct ofvariables has
been introduced as a rate, i.e., a new semantics has appeared
from the “decoloration” of the usual infinite servers of the
colored transition.

If the constants in Figure 2(a) (death and birth rates) are
defined as a, = 0, a f = a, PT = 2, Pf = 0 (Figure 2@)),
the equations associated to the continuous and decoloured
PN are the classical Volterra-Lotka equations:

m[r] = A[tl] . m[r] - A[t3] . m[r] . m[f]
m[f] = -A[t2] . m[f] + (a - 1) . X[t3] . m[r] . m[f]

Figure 2: Colored and place/transition net model of a preda-
tor/prey system

For m[r] = m[f] = 0 the classical equilibrium solu-
tion is found: m[r] = A[t2]/(A[t,](a - 1)) and m[f] =
X[tl]/X[t~]. However, it must be noticed that according to
this model, the system does not have equilibrium solutions,
but oscillates in orbits defined by the initial populations.

In our example, the discrete PNs (colored or not) are
stochastic non bounded and non live models. In particular,
in a “large enough” run, predators will disappear (with prob-
ability 1) and preys will either disappear or grow infinitely.

Figure 3: Place/transition net model of a bounded preda-
tor/prey system.

35.

30.

3
3 -

25 -

20 -

Figure 4: Trajectories obtained for the system in Figure 3
with X[tl] = X[t2] = 20, X[t3] = 0.75, a = 2,m0[r] =
mo[f] = 20, mo[-f] = 40 and mo[-r] = IC.

The continuous PN, which was intended to be an “approxi-
mation” of the discrete model, is deterministic, bounded and
live! One could imagine that boundedness and liveness are
due to a “certain equilibrium” between the non boundedness
and the deadlocks of the discrete system. To deepen into
this question, the discrete PN in Figure 2@) has been trans-
formed into a bounded net system, just adding complemen-
tary places to r (- r) and f (- f) (see Figure 3). Seen as dis-
crete, this system is bounded and contains deadlocks. The
underlying stochastic process will sooner or latter enter into
one of the deadlocks (m[f] = 0, with either m[r] = 0 or
m[r] = IC + 20). Nevertheless, its continuous approximation
is live.

Just as an exercise, Figure 4 shows the trajectories for the
case of having a maximal number of preys of 20 + IC. Since,
for the given mo, the place -f is always greater than 0, it
never restricts the enabling of t3. Hence, the equation of f
in the steady state is: X[t3] . m[r] . m[f] - A[t,] . m[f] = 0,
and so: m[r] = X[t2]/X[t3] = 80/3. The behaviour of
the system when IC decreases shows that in a first transitory
phase, the limitation has the effect of placing the system
in an orbit closer to the non null equilibrium point. From
a critical value, the evolution does not lead the system to
an orbit, but it directly goes to an equilibrium point, with
m[r] = 80/3 (obtained from the equation m[f] = 0). For

87

tk = 20, the main constraint for tl is always -r, hence the
flow at tl is 20 . m[7-1 which (by conservation) must be
equal to the flow at t Z , 20 . m[f]; and so m[f] = m[-r].
Therefore m[r] + m[-r] = 20 + IC = 40 + m[-r] =
40 - 80/3 = 40/3, and so m[f] = 40/3. (In fact, for
IC = 20, m[r] = -m[f], from which the straight line in the
figure.)

Some final remarks:

0 If the starting point is a colored net, it is necessary first
to decolour (from which large populations can be ob-
tained) and later to fluidih. The reverse, first fluidify
and then decolour, does not make sense, specially con-
sidering that “addition” and “min” operations do not
commute.

e If just infinite and finite-servers semantics are allowed,
the continuous PN is in fact a set of switching linear
systems. The use of the product of the markings as
the firing rate allows to represent more complex be-
haviours. However still the locality principle is pre-
served. That is, the rate depends only on the making
of the input places (Le., a local precondition).

0 If functions that depend on the global state of the sys-
tem are allowed in f (T) [t], chaotic behaviours (even the
classical of Lorenz [12]) may be represented with con-
tinuous PNs. Since continuization is a relatively strong
relaxation, the chaotic trajectories may not be very rep-
resentative. Hence, it is possible that just their qualita-
tive properties make sense (see [2, 121 for some reflec-
tions about this).

I11 FORRESTER DIAGRAMS

A. Forrester Diagrams definitions

Forrester Diagrams (FD) are specific modelling tools in-
side System Dynamics (SD) [7, 8, 91. SD is a methodol-
ogy for the study and analysis of complex continuous sys-
tems, which tries to build dynamic models of complex sys-
tems, by searching the relationships between the subsystems
(specially the feedback loops). It looks at the system as a
whole, usually using the computer for simulation. The gene-
sis and the development of SD constitute a manifestation of
the paradigm of systems.

The methodology to build a model in SD could be sum-
marised in several steps [8], which are applied in an iterative
way until the desired adjustment is obtained:

1. Conceptualisation, which includes: a) identifying the
system and its parts, b) looking for the causal relation-
ship and feedback loops, and c) building the Causal Di-
agram.

2. Representation and formulation, which include: d)
building the so called Forrester Diagram, and e) writ-
ing the equations of the system.

3. Analysis and evaluation, which include: f) model anal-
ysis: comparison to the reference model and sensibility

analysis, and g) evaluating and implementing the sys-
tem.

In this methodology two graphical models are used:
Causal Diagrams, and Forrester Diagrams. A differential
equations based model is straightforwardly derived from the
later.

Causal Diagrams (CD) qualitatively show the causal re-
lationships between the parts (subsystems), by means of ar-
rows with a sign that indicates if the relationship is posi-
tive (greatedless cause implies greater/less effect) or nega-
tive (the opposite). In these diagrams it is not distinguished
if the parts will be state variables or another type of variables.
Special attention is paid to the feedback loops (a closed chain
of causal relationships) because they provide a first idea of
how the system will evolve dynamically: positive feedback
loops (even number of negative relationships) “indicate” an
exponential grow, and negative feedback loops indicate the
possibility of balance and equilibrium.

Certain recommendations exist for the construction of
Causal Diagrams: avoid the fictitious loops, use easily quan-
tifiable elements, do not use twice the same relationship,
avoid redundant loops and do not use time like a causal fac-
tor.

Forrester Diagrams provide a graphic representation of
dynamic systems (see Figure 5), imodelling quantitatively the
relationships between the parts by means of some symbols,
which correspond to an hydrodynamic interpretation of the
system.

Figure 5: Forrester Diagrams elements

The levels (stocks) correspond to the state variables in
systems theory. They represent the variables whose evo-
lution is more significant for thle study of the system. The
levels accumulate “material” from material channels, which
are controlled by the valves (flow variables). This mate-
rial flow is strictly conservative (balance around the valves).
Valves define the behaviour of the system, since they deter-
mine the speed of the material flow (through the material
channels) according to a set of associated equations. The
equations depend on the information that the valves receive
from the system (levels, auxiliary variables and parameters)
and from the environment (exogenous variables). The in-
formation is transmitted instantaneously through informa-
tion channels. Auxiliary variabr’es correspond to intermedi-
ate steps in the calculation of the functions associated to the
valves. They can be used to simplify the process, either be-
cause some mathematical calculations are used for several
equations (reused computation of flows), or because they
have certain physical meaning or interpretation that could

88

be interesting to observe, but they can always be removed.
The clouds represent sources and sinks, that is to say, a non
determined (infinite) amount of material, and the parame-
ters are constant values of the system. The interaction of
the system with the exterior is represented with the aoge-
nous variables, which have an evolution that is assumed to
be independent from the evolution of the system. The delays
can affect the material or the information transmission, but
in both cases they do not introduce more description capac-
ity, because they just correspond to a compact notation of
elements that produce these delays (see Figure 6).

Figure 6: Material and information first order delays in For-
rester Diagrams

The interest of the hydrodynamic analogy is that indicates
that a FD model is equivalent to a first order (eventually
non linear, time dependent) differential equation system, and
vice versa. The equations of the model are simply the ana-
lytic representation of the FD, and allow not only simulation
of the model but also the application of modem control the-
ory techniques. The equations just correspond to the material
balance in each deposit:

where x are the level variables, and f r N and f o U T represent
the functions associated to the valves (flow functions) that
introduce or take out respectively material in a level. Since
the flow variables, f i ~ and f O U T , depend both on the lev-
els and on the exogenous variables (the auxiliary variables
can always be eliminated), it corresponds to a system of first
order differential equations:

dx/d t = f(z, U)

where U represents the exogenous variables.

B. A basic population model

Let us consider the same very simple predator/prey model as
in Section I1.B. The goal of this example is just instrumental,
to show the process of model construction, but not to provide
a real approximation by a complex model. The Causal Di-
agram of that system is shown in Figure 7. Note that in the
diagram the 'Captures' should influence the 'Foxes' through
the 'Foxes births' and the 'Foxes deaths' rates, (2) and (3),
instead of directly (l), but to simplify the model and make

it more similar to the previous one, (2) and (3) relationships
have been summarised by their equivalent (1).

Rabbits Rabbits

births
natural Foxes Foxes
deaths ' births , deaths

(3)

Figure 7: Causal Diagram of basic predatodprey model

The FD obtained after further elaboration is shown in Fig-
ure 8. It can be realised that valve ~b includes the effect of
births and deaths of rabbits for natural causes, and that f b

includes the effect of births and deaths of foxes for natu-
ral causes (excluding the captures effect). In both cases the
valves could be divided into two, one for each cause. Ob-
serve that flow equations must be included in the FD to fully
describe the model. In this case, the equations correspond to
a model that is equivalent to the PN model in Section 1I.B
(Figure 2(a)), which comes from a discrete model.

Figure 9 corresponds to the PN model of Figure 3, where
the populations capacities are bounded. This limitation, or
any other one, can be introduced in models either through
the flow equation (for example in bounding the foxes level,
by f m a z) , or through its graph (or a chart of values) that de-
scribes the function (as in the limitation of the rabbits level,
by Zim?). Models in Figures 3 and 9 lead to the same system
of equations.

IV A SIMPLE MANUFACTURING SYSTEM

Let us consider the simple manufacturing system sketched
in figure 10. It basically consists in the manipulation in ma-
chines and the storage in buffers of two types of parts, a
and b, that are assembled to obtain a final product. One of
each kind of parts comes to machine 2 (through its respective
machines, l a or lb, and buffers, l a or lb), where they are
joined. The resulting part is stored again in another buffer,
and waits until the machine 3 generates the final product.
Taking a part from a buffer takes 0.2 time unites, and each
operation needs 1 time unit. All buffers capacities are 3.
There is a limitation in the number of parts of the system,
represented by parameter k.

Parts A

Pans B

Figure 10: Diagram of the Simple Manufacturing System

This is a discrete system. A discrete PN model is shown
in Figure ll(a), where each element has been modelled by
means of two places (a place and its complementary one).
Therefore, it can be observed that the number of places is

89

Figure 8: Forrester Diagram of a basic predatodprey model (equivalent to Figure 2(a))

Zim,(r)

if f < f m a z then
captures = A3 . r . f

else captures = 0
T b = A1 . Zim,(r)
r d = capture:; . (1 - a,)
f b = captures. (ap - 1)
fd = A2 . (1 - Pp) . f

Figure 9: Forrester Diagram of a bounded basic predator/prey model

different from the number of state variables, because only a
state variable is needed for each element. However, for large
markings, great computational effort is required to carry out
the simulation as discrete, and a continuous approximation
may be interesting. The model in Figure ll(a) can be inter-
preted as a continuous system, with infinite servers seman-
tics (usually used in this paper). The finite servers seman-
tics model can be built too, keeping in mind that a server
(machine) cannot simultaneously load and unload parts, and
therefore the two delays should be added. In this latter case
the system has a very similar interpretation to an hybrid sys-
tem, as it can be observed in Figure 11@), where machines
have been represented as discrete places, and the remaining
places, and all the transitions, are continuous.

Up to now we have seen that this discrete system can be
analysed with a PN using a discrete deterministic model, a
continuous model with infinite servers semantics, and a con-
tinuous model with finite servers semantics. We could won-
der if they all will give "similar" results, and it is not really
the case. The results of the referred cases are represented in
Table 1. It shows the throughput in steady-state for the ini-
tial marking shown in Figure 11, depending on k (the bound
on the number of parts in the system). Note that in this case
continuous infinite servers and discrete deterministic mod-
els provide the same production rates, a general result for

0.833 0.833 0.833

Table 1: Comparing the througlhput of the discrete and the
continuous models (under infinite and finite servers seman-
tics) of the manufacturing system

strongly connected Marked Graphs.
These values indicate that it is necessary to be careful

when analysing the behaviour of a model if approximations
are used. With the continuous alpproximations the computa-
tion is simplified but some accuracy may be lost. This dif-
ference can be observed more cl.early in the extreme case of
having a single part of each type (IC = 1). In that case it is
evident that as deterministic discrete, the time for producing
a new part, i.e., the inverse of thlz throughput, in steady-state
is the sum of the times of the slowest branch, that is, 3.6
seconds. But as continuous with finite server semantics, the
time is only that of the slowest tr,ansition, that is, 1.2 seconds.
Thus, a coefficient of three makes the difference (!).

The behaviour of the system can also be simulated with
Forrester Diagrams. When modelling the system by means

90

Figure 11: a) PN model of a manufacturing system (can be seen as discrete or as continuous), b) PN model of the manufac-
turing system under finite servers semantics

of FDs the machines are considered as material delays be-
tween the levels, which are the buffers (Figure 12(a)). The
greater the order of the delay is, the more it may look like
the deterministic discrete system. Nevertheless, this is not
crucial, because the usual procedure in FDs is to adjust the
time parameters in the delays to get the observed production
rate.

Any continuous PN can be translated into a FD, build-
ing the FD from the equations that derive from the PN. A
direct translation of the PN in Figure l l(a) into a FD is
shown in Figure 12@) (obviously the finite servers seman-
tics model could have been translated too). The FDs in fig-
ures 12(a) and 12@) are “different” although of course both
have “equivalent” behaviours. The methodologies of both
formalisms, PNs and FDs, have driven in this case to differ-
ent models.

Figures 12(a) and 12@) show that the parts flow is bro-
ken when they join in machine 2. To model that a part of
type a and a part of type b are joined in machine 2 produc-
ing a new part, the FDs operate as follows: the information
of how many parts come in machine 2 is used to eliminate
these parts from buffers l a and l b and to generate from an-
other source the corresponding number of parts, which rep-
resent the parts produced in machine 2. The connectivity
(and the synchronisation) in the process is broken down in
the structure of the FDs. They are implicitly conserved by
the equations. On the contrary, PNs preserve this informa-
tion in the structure, by means of the and-nodes (fork and
joins) and the weights in the arcs.

V CONTINUOUS PNs vs. FDs: SOME REMARKS

In the previous sections continuous PNs and FDs have
been briefly presented and some examples analysed from
both points of view. Both provide a graphical support for
easy generation of systems of differential equations. A clear
correspondence exists among the main types of nodes in
both: place/level and transitiordvalve (or firing speed/flow
variable). However, this correspondence should not hide the
differences that appear:

1. Marking of places vs. levels. In FDs each level cor-
responds, to a state variable. However, although in
PNs places are essentially state variables, redundan-
cies may exist due to token conservation laws derived
from P-flows (y is a P-flow iff y . C = 0, thus
yT . m = yT . mol. Particular cases are structural im-
plicit places (a place is implicit iff it never restricts the
firing of its output transitions) [4] and conservativeness
(3y > 0 such that y . C = 0). From conservativeness
the existence of a basis of non-negative left annullers
of the token flow matrix, C, can be deduced. For ex-
ample, in Figure 13(a), p4 is implicit as continuous if
5. mob41 2 3 1 mo[p2] + 7 . mo [p3]. In other words, re-
moving p4 from the system preserves its behaviour for
any (temporal) interpretation. Moreover, p1, p2 and p3
form a conservative component, where the token con-
servation law is 5 . mbl] + 3 . mbz] + 7 . m[p3] =
5 . mob11 + 3 . rnolpz] + 7 . mo[ps] = 55. Thus,
one of these three places is redundant (for instance,
mb3] = (55 - 5 . mo[pl] - 3 . mo[p2])/7).

Furthermore, the cycle that results when the implicit
place p4 is removed can be transformed into an or-
dinary cycle (with unitary arc weights), by means of
a linear transformation, making a reinterpretation of
the net (the places, the transitions and the flow rates).
If the following change is carried out in the places:
pi = 5 . ~ 1 , p i = 3 . ~ 2 , and pi = 7 . ~ 3 , the resulting net
is an ordinary cycle (with the new places and marking
interpretation). If the PN has finite servers semantics
interpretation, as the firing rate does not depend on the
enabling, when the previous transformation is applied,
the resulting net is that in Figure 13@)), and we should
name: 0: = 01/15, 19; = 02/21, and 04 = 03/35
(where 6 represents times, not speeds), to have the basic
cycle. It can be demonstrated that these transformations
can be made in general in nets that are conservative and
topologically state machines (I’tl = It*[= 1). This
property does not hold for more general subclasses, for
instance, the net system in Figure 14, has a simple con-
servative component (m[pl] + m[P2] + mb3] = 3) and
can be simulated with only two state variables, but there

91

I

MACH 2
BUF I. MACH 1.

'---d I

MACH 2

Figure 12: a) FD model of the manufacturing system, b) Translation of the PN in Figure ll(a) into a FD

are weights that cannot be removed.

P

Figure 13: a) PN with an implicit placepd and a conservative
component: 5 . m[pl] + 3 . m[pa] + 7 . m[ps] = 55, and b)
Reinterpretation of the PN, after removing p4

All these cases show that a direct translation of the
PN into the FD will usually produce redundant equa-

Figure 14: A non topologically state machine PN with a con-
servative component

t

t + I

Figure 15: Translation from a PN model of a bounded
prey/predator system to a FD mcidel (Figure 3)

(the flow) takes place according to the information that
valves receive of the whole system state, through the
flow of information. The evolution of the PNs (the fir-
ing) takes place according to the information that each
transition receives from its input places. That is, FDs
separate the material and the information flows, and

tions. The FD in Figure 9, which corresponds to the
prey/predator model, is different from the FD obtained
by direct translation of the PN of Figure 3 (see Fig-
ure 15). Observe here that there are four levels but only
two state variables (there exist only two independent
conservation laws).

2. Transitions vs. valves: flows. The evolution of FDs evolve according to global information of the system,

92

whereas PNs have only a flow of material that carries
the information implicitly, and evolve according to in-
formation that in standard uses is local to each transi-
tion (its input places). Figure 16 makes explicit a hypo-
thetical separation of material and information flows in
the PN of Figure 2@).

t*

Figure 16: Hypothetical separation of flows in a PN (a > 1)

A more detailed comparison can be made between the
flows:

(a) Material. In FDs material is strictly conservative
around the valves, that is, the relationship among
input and output flow is always 1 : 1, but this does
not imply the existence of conservative laws over
the set of levels. In this sense valves in FDs act
like stations in Jackson or Gordon-Newel1 Queu-
ing Networks: identity of customers is preserved
when a service is provided. On the other hand,
in PNs weighted conservation is frequent, even if
joins and forks exist. In a general case, around
a transition with n input arcs and m output arcs,
n, x m ratios ai : bj will exist, with i = 1 . . . n,
and j = 1 . . . m (Figure 17).

POUT I

POUT- PIN

Figure 17: And-node (Join and Fork)

Synchronizations are not structurally and explic-
itly modelled with FDs: there exist no elements to
represent “rendez-vous”, and must be simulated
by means of flow equations. The simulation of the
PN in Figure 17 by means of FDs can be carried
out in a generic way according to Figure 18(a),
where a cloud and a valve are used to simulate
each incoming or salient arc of the PN. It can be
seen that the connectivity in the structure of the
material graph is completely broken. A more ef-
ficient simulation can be carried out if a linear
transformation is used in the interpretation of the
levels. Thus material connectivity is possible for
rnin(n, m) channels (see Figure 18@)); simulta-
neously the same quantity of valves (and clouds)
is saved in the simulation.

(b) Information. In FDs the information affects to the
dynamics of the valves in a global way, as it has
been already commented. Moreover it affects in
a generic way, since arbitrary equations (includ-
ing any kind of non linearities) can be associated
to the valves. However, in PNs the information af-
fects to the dynamics (evolution) of the system not
only locally, but also according to a limited num-
ber of functions: basic functions depending on
the semantics (like infinite servers semantics, or
finite server semantics) and additional functions
that may arise for example from the decoloration
of a colored net. If basic semantics are kept, some
properties of the original discrete systems could
subsist. But nothing prevents to define any other
global firing functions, and this way the graphical
tool that we obtain includes continuous PNs and
FDs.

3. On their typical application domains
FDs have been traditionally used to model existing
complex socio-technical and bio-ecological systems,
whose behaviour has to be studied. Usually, those mod-
els are used for the analysis, mainly by means of simu-
lation. There exist several computer programs to create
and simulate a FD, and are friendly enough to be used
even by non experts in the subject.
Continuous PNs have been mostly used in the design of
“technical” systems, and much effort has been made in
formal analysis techniques. The analysis has been done
at two levels:

0 As untimed models: if time (firing speed) is not
taken into account, some properties of the au-
tonomous PN (liveness, boundedness, reliability,
etc.) can be analysed.

0 As timed models performance properties have
been analysed.

Hence, different application domains and approaches ap-
pear. Moreover, the analysis of these two formalisms, PNs
and FDs, from the point of view of the other, leads us to ap-
preciate some features that could go unnoticed (information
flow in PNs, invariants and synchronizations in FDs ...).
Methodological comparisons between the use of both for-
malisms for model building and the analysis of correspon-
dences and differences can show their advantages and disad-
vantages, and drive to a deeper knowledge of them. The
richer material structure of PNs exhibits some potentials
for the analysis of the underlying untimed non-deterministic
systems (for example for the analysis of qualitative or logical
properties like deadlock-freeness or certain classes of mutual
exclusions).

VI REFERENCES

[l] H. Alla and R. David. Continuous and hybrid Petri
nets. Journal of Circuits, Systems, and Computers,
8(1):159-188,1998.

93

Figure 18: Generic simulation with FD of a PN transition

[2] J. Aracil. Bifurcations and structural stability in the dy-
namical systems modeling process. Systems Research,
3(4):243-252,1986.

[3] F. E. Cellier. Continuous System Modeling. Springer,
1991.

[4] J. M. Colom and M. Silva. Improving the linearly based
characterization of P/T nets. In G. Rozenberg, editor,
Advances in Petri Nets 1990, volume 483 of Lecture
Notes in Computer Science, pages 113-145. Springer,
1991.

[5] R. David and H. Alla. Continuous petri nets. In
EWATPN 1987: 8th European Workshop on Appli-
cation and Theory of Petri Nets, pages 275-294,
Zaragoza, 1987.

[131 T. Murata. Petri nets: Properties, analysis and applica-
tions. Proceedings of the IEEE, 77(4):541-580,1989.

[14] L. Recalde and M. Silva. PN fluidification revisited:
Semantics and steady state. In J. Zaytoon S. Engell,
S. Kowalewski, editor, ADPM 2000: 4th Int. Con& on
Automation of Mired Processes: Hybrid Dynamic Sys-
tems, pages 279-286, Dortmund, 2000.

[E] L. Recalde, E. Teruel, and hi. Silva. Autonomous con-
tinuous P/T systems. In ;I. Kleijn S. Donatelli, edi-
tor, Application and Theory of Petri Nets 1999, vol-
ume 1639 of Lecture Notes in Computer Science, pages
107-126. Springer, 1999.

[16] M. Silva. Introducing Petri nets. In Practice of Petri
Nets in Manufacturing, pages 1-62. Chapman & Hall,
1993.

[6] C. Dutheillet, G. Franceschinis, and s. Haddad. Anal- [17] M. Silva and J.M. &lorn. On the structural computa-
ysis techniques for colored well-formed systems. In
G. Balbo and M. Silva, editors, Performance Mod-
els for Discrete Event Systems with Synchronozations:
Formalisms and Analysis Techniques, chapter 7, pages
233-284. Jaca, Spain, 1998.

[7] Jay W. Forrester. Industrial Dynamics. MIT Press,
Cambridge, Mass, 1961.

[8] Jay W. Forrester. Principles of Systems. Productivity
Press, 1968.

[9] Jay W. Forrester. Urban Dynamics. Productivity Press,
1969.

[lo] K. Jensen. Coloured Petri Nets: Basic Concepts, Anal-

tion of synchronic invariants in P E nets. In EWATPN
1987: 8th European Workshop on Application and
Theory of Petri Nets, pages 237-258, Zaragoza, 1987.

181 M. Silva and L. Recalde. Reseaux de Petri et re-
laxations de l’integralitb: Une vision des rCseaux
continus. In Confkrence Internationale Francophone
d’Automatique (CIFA 2000), pages 37-48, Lille, 2000.

191 M. Silva and E. Teruel. A systems theory perspec-
tive of discrete event dynamic systems: The Petri net
paradigm. In P. Borne, J. C. Gentina, E. Craye, and
S. El Khattabi, editors, Syniposium on Discrete Events
and Manufacturing Systems. CESA ’96 IUACS Multi-
conference, pages 1-12, Lille, July 1996.

- -
ysis Methods, and Practical Use. EATCS Monographs [20] M. Silva and E. Teruel. Petri nets for the design and
on Theoretical Computer Science. Springer, 1994. operation of manufacturing systems. European Journal

of Control, 3(3):182-199,1.997.
[ll] K. Jensen and G. Rozenberg, editors. High-level Petri

Nets. Springer, 1991. [21] P. S. Thiagarajan. Elementary net systems. In
W. Brauer, W. Reisig, and (3. Rozenberg, editors, Petri
Nets: Central Models and their Properties. Advances
in Petri Nets 1986, Part I , volume 254 of Lecture Notes
in Computer Science, pagess 26-59. Springer, 1987.

[12] E. Mosekilde, J. Aracil, and P.M. Allen. Instabilities
and chaos in nonlinear dynamic systems. Systems Dy-
namics Review, 4(1-2):14-55,1988.

94

