
INTEGRAL SECURITY MODEL FOR THE EXCHANGE OF
OBJECTS IN SERVICES ORIENTED ARCHITECTURE

Emilio Rodriguez-Priego, Francisco J. García-Izquierdo
Universidad de La Rioja (Dpto. de Matemáticas y Computación), Edificio Vives, Luis de Ulloa s/n.E-26004 Logroño

emilio.rodriguez@unirioja.es, francisco.garcia@unirioja.es

Keywords: Web services security, mobile code security, Service Oriented Architecture.

Abstract: Nowadays, security approaches and solutions for SOA focus mainly on messages and data, but they forget
the code security (both service code and exchanged code). Moreover, some security aspects (e.g. validity,
correctness...) are usually forgotten. We state that any security approach will be incomplete if the security of
both data (messages) and code (service code) is not addressed in a general sense. In this paper, we extend a
previous approach about securing code in SOA. We analyze general problems related to the exchange of
code and state in SOA and in the specific case of Web Services architectures. A new general model of
security is presented. This model covers any aspect related to the authorship, distribution, transformation,
execution and validation of both code and data.

1 INTRODUCTION

The current interest in Web Services technology and
Service Oriented Architecture (SOA) (OASIS, 2006,
OASIS, 2008) is notorious. One critical aspect in
SOA is security. SOA and Web Services
Architecture (WSA) (W3C, 2004) share common
concepts. WSA can be seen as a specific application
of SOA model. Currently, most works related to
SOA are developed under WSA. Many web services
standards are evolving, most of them about security.

SOA-RM focuses on the service as a central
concept of interaction between a generic consumer
and a provider. It defines service as a “mechanism to
enable access to one or more capabilities” and “its
implementation is typically hidden from the service
consumer except for (1) the information models
exposed through the service interface and (2) the
information required by service consumers to
determine whether a given service is appropriate for
their needs”.

Policies and contracts are other SOA central
concepts, particularly related to security policies.
Most SOA based solutions are based in web services
technologies and security mechanisms. They put
their focus on end to end integrity, confidentiality,

identity and authentication. These mechanisms work
well and, above all, they are applied to messages.
However, code security is not generally addressed,
despite being well known that most threats to the
integrity of the information are precisely focused not
on the data directly but on the code that manages it
(Whitman, 2003).

This paper is the continuation of a previous work
(Rodríguez and García, 2007) that presented an
approach about code security on SOA environments
that can be applied on web services architectures.
We named that approach “Web Services based
Secure Code” (here-in-after WSbSC) and its
reference model WSbSC-RM. This paper extends it
considering more complex situation in which entities
wish to exchange not only data, but also code to
manage that data. So we are now considering objects
(data + code) as input and/or output of services.

The remainder of the paper is organized as
follows. Section 2 is devoted to show some
background necessary to understand the rest of the
paper. Section 3 describes how WSbSC can be
extended from an object-oriented perspective.
Section 4 covers implementation issues. The paper
finalizes with the conclusions and a future work
outline.

1.1 Related work

A considerable amount of related work has been
done. (Rubin and Geer Jr. 1998, Claessens, Preneel
and Vandewalle, 2003) studied security aspects
about Mobile code and Mobile agents and diverse
solutions for specific security threats were proposed.
Besides, each one of the execution environment
actors that appear in this paper –compilers and
processors, e.g., virtual machines (Franz et al, 2003)
and verifiers (Chang et al, 2005, Bhargavan, Fournet
and Gordon, 2004) – have been presented from
different points of view. Security contracts and
policies were analyzed in (Gutiérrez et al, 2005,
Sekar et al, 2001) and more recently in (European
Project, 2006). (Foster et al, 2008) addresses the
object state modelling with Web Services
technologies but without considering security
aspects. An old debate about distributed objects vs.
Web services underlies this paper (Vogels, 2003,
Birman, K.P., 2004).

2 WSBSC-RM AND PSC-CERT

To make the rest of the paper self contained we are
devoting this section to present some background
already published in (Rodríguez and García, 2007).

WSbSC-RM is an abstract framework for
understanding significant relationships among
service providers and consumers that allows an
integral (data+code) secure interaction. WSbSC-RM
relies on SOA-RM, adding new relationships and
concepts to the modelling of the data and code
exchange between services. A key concept in
WSbSC-RM is code: it can be portable, executed in
any compatible execution environment; the
transmission, load and execution of the code can be
carried out in a safe way, and it can be verified in a
secure way. WSbSC-RM states that the
transmission, reception, execution, load,
compilation, validation of the code are services that
can be offered by systems potentially remote and
weakly coupled. In WSbSC code is not only
externally verifiable (Seshadri et al 2006); it’s also
externally compilable and executable.

WSbSC-RM distinguishes these actors: author,
the owner and creator of the code and its legal
owner; supplier, provides the code to a consumer
and distributes it with author’s permission; client,
uses the code provided by a supplier; verifier,
verifies the code according to a established security
policy; compiler, given a code, it compiles another
functional equivalent code; and processor, possesses

an execution environment that executes the code. All
WSbSC-RM actors are service consumers or
providers from the point of view of SOA-RM.
Besides, WSbSC-RM allows the modelling of the
actions of a service by composing services offered
by these actors and according to code-centric
policies and contracts. What is a key added factor of
our approach with reference to SOA is that actors
playing the role of consumers in any relationship to
a provider may impose a certain security policy to
regulate the service that the provider is going to
perform. And this policy, and here is the
contribution, does not only affect the data and the
message as SOA does, but also any aspect of the
service implementation. This policy refers to one or
several security aspects (such as integrity,
confidentiality, validity, and so on) and may specify
a mechanism or a set of mechanisms that the
provider must implement in order to accomplish the
policy. The response to each service request will
include, as well as the result, metadata about the
required, and fulfilled, policy.

Figure 1: General WSbSC-RM

We can illustrate the WSbSC-RM relationships
between actors describing a general example. Fig. 1
shows this general scenario. Interactions involve the
next steps: (1) an author creates the code and sends
it to a supplier for distribution. (2) A client localizes
and requests the code that satisfies its needs from the
supplier and the supplier delivers the code. (3) The
client requests the verification of the code according
to the client policy from a verifier and the verifier
delivers the validated code. (4) If code is not
compiled for the architecture in which is going to be
executed then the client requests its generation from
a compiler. The compiler returns the compiled code.
(5) The client can request validity of the compiled
code from the verifier. The verifier returns the
validated code. (6) The client requests to a processor
execution of the code and the processor returns the
result of the process to the client. At point (5) the
code is associated to the verifier's signature that
guarantees its integrity. By means of that signature
the processor can verify code integrity, or even
correctness with respect to a certain specification

before execution. Moreover, the overall process can
be checked if each actor signs its action.

Therefore, each step generates metadata signed
by the service provider, as well as its signature; e.g.,
the code that results from the compiler can include
metadata related to that compilation. This means that
at the end of the process we can get a code qualified
as "secure" since it is created (author), provided
(supplier), validated (verifier) and generated
(compiler) by trusted identified entities. This code,
that we'll name Portable Secure Code (PSC) is
formally "portable" and "secure". We have that PSC
= Code + PSC-cert (cert stands from certificate).
PSC-cert can be considered as a “metadata security
container” that enables security exchange between
entities providing and using the certified code.

The following listing outlines the structure of a
simple PSC-cert. AuthoredCode block is added
together with author’s signature of that block. All
blocks are added in the same way by each actor
when they finish their tasks. Sections marked with
(*) consist of two main parts: actor related metadata
related (description, e.g., by means of UDDI
business entity; credentials, e.g., SAML
authorization credentials ...) and metadata about its
action, e.g., for the compiler: the compiler
environment, the target language, and so on.

<wsbsc:psc xmlns:wsbsc=..xmlns:ds..>
<wsbsc:code EncodingType="Base64">
 cHVibG .. </wsbsc:code>
<wsbsc:psc-cert>
 <wsbsc:AuthoredCode>..
 </wsbsc:AuthoredCode>
 <ds:Signature ..>..</ds:Signature>
 <wsbsc:SuppliedCode>.(*).
 </wsbsc:SuppliedCode>
 <ds:Signature ..>..</ds:Signature>
 <wsbsc:CompiledCode>.(*).
 </wsbsc:CompiledCode>
 <ds:Signature ..>..</ds:Signature>
 <wsbsc:VerifiedCode>.(*).

 </wsbsc:VerifiedCode>
 <ds:Signature ..>..</ds:Signature>
</wsbsc:psc-cert>
</wsbsc:psc>

3. INFORMATION EXCHANGE
SCENARIOS

In the next sections we describe a specific use of
WSbSC-RM to offer an advanced level of end-to-
end service security using objects as elements
exchanged, assuming that an object is data + code.
Fig. 2 shows the general picture of the three basic
scenarios where a consumer requests a service from
a provider. In case 2.a, the consumer and the
provider exchange only data. This is the common
information model found in SOA. In it, and for the
particular case of Web Services, common security
mechanisms such as public-key cryptography can be
used to securing only the exchanged data (WS-
Security, SAML, XML-DSIG, WS-Policy…). Case
2.b corresponds to a scenario described in section 2.

So far, we have proposed a model in which the
secured code is located in the service provider. The
next step in the discussion is the study of a scenario
where the code travels between consumers and
service providers. Code may travel and not be
locally executed, e.g., for performance reasons
(Lange and Oshima, 1999). Case 2.c depicts this
new scenario. The service requires as input an object
from the consumer. During its execution, the service
will interact with this object and eventually it will
modify its state. The object helps the service to fully
accomplish its mission, allowing the service to use
its methods. E.g., imagine that the scenario
corresponds to the interaction between a flight
reservation service and final users, who send their
personal planner object. The service needs to consult
the planner calendar to determine the user

Consumer entity Provider entity

Input

Consumer entity Provider entity

Input

Result

Consumer entity Provider entity

(a)

(b)

(c)

+Result + PSC-certPSO-cert

+Result PSC-cert

Input + PSO-cert

Figure 2 WSbSC-RM Information Model Cases

availability, and, once the flight has been selected,
the service inserts a new appointment in the planner.

Security requirements in case 2.c are more
complex than for case 2.b, because the consumer
and the provider want to ensure that not only the
service (case 2.b) but its interactions (use and/or
modification) with the input object are secure. So,
they agree to use WSbSC to get a higher level of
security about the performed service. But this is not
enough yet. The security policy of the consumer
requires that the provider accesses and/or modifies
the object state only by means of the object methods.

Fig. 3 shows how we can achieve these high
level security requirements for this scenario using
WSbSC. Interaction begins when the consumer A
requests a service from the provider B. Both A and B
establishes code security policies using WSbSC-
RM. Suppose that the service requires object O1 as
input, being M1 and M2 the object methods and S its
state. The initial problem is that B does not allow
untrusted code to execute. To address this problem
using WSbSC A gets PSC-cert(M1) and PSC-
cert(M2), proving to B that code from A is secure.

3.1. Securing object’s state. WSbSS-RM

A and B could need the same level of security for
state than for code. Apparently, this is similar to case
(2.a) where data is secured by A and B using well-
known security mechanisms. However we can get a
higher level of security for the state.

Similarly to code in section 2, we can distinguish
actors related to object’s state (data). We can

consider that these actors virtually offer services
about state: owner, the owner of the state, A in Fig. 3
(note that state can represent relevant data that an
entity owns); supplier, optionally the owner can
delegate to this actor the action of providing the state
to another entity; client, uses the state provided by a
supplier; verifier, verifies the data consistency (e.g.,
the verifier tests the data structure and its integrity);
converter, optionally it may be necessary to convert
the internal state from one format into another
without changing the state itself (it is similar to code
compilation); and manager, possesses an
environment to manage the state (it’s analogous to
code execution). There is a code/data actors duality
(author-owner; compiler-converter; processor-
manager). In general, these actors can be local o
remote. Using the analogy of WSbSC-RM for code,
we call the dual reference model for the state
WSbSS-RM (Web Services based Secure State –
Reference Model). WSbSS-RM allows providing a
further level of security on data with respect to
scenarios such as the depicted in Fig 2.a.
Consequently, the service consumer gets basic
metadata related to the object state. Continuing the
analogy with code, we will call this metadata PSS-
cert (Portable and Secure State). This certificate will
be generated by the data actors.

3.2 Securing objects’ state and
methods: WSbSO-RM

At this point, the service consumer has metadata
about the whole object (state and methods) that can

Figure 3 Portable and secure objects with WSbSC

be offered to another entity to demonstrate that all
the methods have been created (author), provided
(supplier), generated (compiler) and validated
(verifier) by trusted actors that sign their actions
with a certificate. Moreover, the state of the object
has been identified (owner) and, eventually, it has
been converted (converter) and validated (verifier)
by trusted actors also. We call the certificate that
aggregates both state and methods metadata PSO-
cert. In our example, PSO-cert(O1) = PSC-cert(M1)
+ PSC-cert (M2) + PSS-cert (S). Returning to Fig. 3,
A sends O1 with PSO-cert(O1) to B. Following the
notation, we name Web Services based Secure
Object Reference Model WSbSO-RM. We assume
that A and B trust actors described above. A and B
may even share some of those actors.

Now, B has received the M1 and M2 code.
Perhaps this code is not suitable for its execution in
B’s processor, so B has to transform it (e.g., compile
to generate code compatible with its execution
environment). When B returns A the service result, it
will have to certify that the recompiled versions of
M1 and M2 (M1’ and M2’), were securely executed in
B as WSbSC mandates, i.e., M1’ and M2’ has been
compiled, verified and executed by trusted actors.
This is necessary because A should not allow the
execution of O1 methods, and consequently its state
access/modification, in an untrusted execution
environment. This fact will be returned to A in the
form of M1’ and M2’ PSC-certs. Note that it isn’t
necessary to generate metadata from all WSbSC-RM
actors. For example, if examining original M1 and
M2 PSC-certs, B realizes that its compiler
environment is compatible with M1 and M2, B does
not need to compile them again and it can use
compiled code offered by A.

B performs the service using M1’ and M2’ to
access and/or modify O1 state. We want to borrow
some ideas from SOA and stress the fact that they
are also observed in WSbSC and WSbSS. Surely,
when the service has finished, internal B state has
been modified but as SOA-RM says “internal
actions that service providers and consumers
perform as a result of participation in service
interactions are, by definition, private and
fundamentally unknowable”. In fact, we can
consider that A doesn’t know either B’s internal
actions to realize the service neither its initial nor
final state; and B only handles O1 through its
methods, without needing to know the method
details. Although A and B don’t know neither the
process nor the state details, they have shared “facts”
and processes from a “real world” point of view.
Global process is distributed. SOA-RM focuses on

“the sets of facts shared by the parties”. WSbSC-RM
adds the focus on “shared process” too. SOA-RA is
adding now this missing concept including a similar
term (joint action) not present in SOA-RM.

A gets the service result including O1 that may
have a new state S’ due to the interaction with B by
means of M1’ and M2’. A also receives the service
implementation PSC-cert, as in Fig.2 case 2.b; and
the PSO-cert(O1’), that certifies that the new version
of the object methods is securely executed, verified,
and eventually recompiled in a trusted environment;
and that the objects state may have been converted
and verified by trusted parties also. Note that,
despite being the same object O1, we denote it O1’ to
stress the fact that, eventually, the state may have
changed by new versions of the methods.

A can check integrity of M1’ and M2’, S’ and the
service implementation as was described previously.
Note that for performance reasons, both consumer
and provider haven’t to get PSO-certs every time.
There is a trade-off between performance and
security. Consumer and provider policies may state
in which cases a PSO-cert update is required.

3.3. Securing legal access to state

It must be observed that, for the moment, the
security level that the PSO-cert(O1’) built by B is not
enough. The service consumer A has not the
sufficient guaranty to be sure that the new state S’
has been obtained my means of M1 and M2 (or their
transformed versions M1’ and M2’). In general, it
must be guaranteed that the object state can only be
managed by means of its methods, wherever the
object is used. To reach such a guaranty, a new
verifier actor is needed. While central problems
about data and code verification have been
addressed from different points of view, the problem
of securing legal access to the state through the
object methods is a more complex task, being the
mobile agents scope the research field where the
problem has been mainly addressed (Claessens,
Preneel and Vandewalle, 2003). The verifier also
adds metadata to the PSO-cert(O1) and sign its
information block in such a way that the consumer
can also verify its identity and the verification itself.

We are planning to address this problem from a
WSbSO-RM perspective using secret sharing
techniques. (Shamir, 1979). Another approach (Miao
and Wei, 2003) may be that the verifier reproduces
the state modification following the same sequence
of operations that B has performed. Therefore, B’s
processor must provide the verifier with this
sequence of actions, e.g. using a log file.

4. IMPLEMENTING THE MODEL
WITH WEB SERVICES.

In previous sections, a conceptual framework has
been described based on concepts from SOA and
WSA. We can outline how we can address the
implementation of this model for each specific
scenario using Web services standards. The central
point in this approach is that both service consumer
and provider have to define their respective security
policies related to WSbS*-RM. Expression of these
policies can be based on WS-Policy. On the other
hand, PSO, PSC and PSS can be transmitted in a
secure manner using WS-Security standard. In order
to define PS*-certs, XML-Dsig, XML-Encryption,
SAML and XML-Schema enable security and
mechanisms to ensure all security issues described.
Finally UDDI, could be used to get a reference for
the identity of each WSbS* actors.

5. CONCLUSIONS

The main contribution of our paper is the definition
of a conceptual framework for the assurance of
integral code and state security in SOA. It is a
framework where not only the message security is
considered, but also the security of the code that
processes it. Besides, we propose an extra level of
security in a service interaction considering both
code and state. Finally, an incremental model of
security based on certificates issued by each model
actor provides a means for ensure security and
achieve a trusted environment.

Our main lines of research are: (1) to work on
the implementation of the model in several real
world scenarios; (2) to improve security between
state and methods using secret sharing techniques
(as commented in section 3.3); (3) we have realized
that both code and state share similar actors. This
has suggested us a new line of research for the
definition of a meta-model that would describe
uniformly the structure and the behaviour of the
state and the code security models.

ACKNOWLEDGEMENTS

Partially supported by project FOMENTA 2008/01
of the Comunidad Autónoma de La Rioja.

REFERENCES

Bhargavan, K., Fournet, C., Gordon, A.D., 2004.
Verifying policy-based security for web services. In
Proceedings of the 11th ACM conference on
Computer and communications security, October 2004

Birman, K.P., 2004. Like it or not, web services are
distributed objects. In Communications of the ACM,
december 2004

Chang, B-Y. E., Chlipala, A., Necula, G.C., Schneck,
R.R:, 2005. The open verifier framework for
foundational verifiers. In Proceedings of the 2005
ACM SIGPLAN international workshop on Types in
languages design and implementation, January 2005

Claessens, J., Preneel, B., Vandewalle, J., 2003. (How)
can mobile agents do secure electronic transactions on
untrusted hosts? A survey of the security issues and
the current solutions, ACM Transactions on Internet
Technology (TOIT), February 2003

European Project, 2006. Security of Software and Services
for Mobile Systems,http://www.s3ms.org, March 2006.

Franz, M., Chandra, D., Gal, A., Haldar, V., Reig, F.,
Wang, N., 2003. A portable Virtual Machine target for
Proof-Carrying Code. In Proceedings of the 2003
workshop on Interpreters, virtual machines and
emulators, June 2003

Foster, I., Parastatidis, S.,Watson, P., Mckeown, M., 2008.
How do I model state?: Let me count the ways. In
Communications of the ACM, september 2008.

Gutiérrez, C., Fernández Medina, E. and Piattini, M.,
2005. Web Services Enterprise Security Architecture:
A Case Study. SWS'05, november 11, 2005

Lange, D.B., Oshima, M., 1999. Seven good reasons for
mobile agents”, Communications of the ACM, v.42
n.3, p.88-89, March 1999

Miao, C.,Wei, R., 2003. Secret Sharing for Mobile Agent
Cryptography. In Communication Networks and
Services Research Conference, Session B

Rodríguez Priego,E., García Izquierdo,F.J., 2007. Securing
Code in Services Oriented Architecture, ICWE07.
LNCS 4607, pp. 450-555. Springer-Verlag 2007.

Rubin, A.D., Geer Jr., D.E., 1998. Mobile Code Security,
IEEE Internet Computing, vol. 02, no. 6, pp. 30-34,
Nov/Dec, 1998

Sekar, R., Ramakrishnan, C. R., Ramakrishnan, I. V.,
Smolka, S. A., 2001. Model-Carrying Code (MCC): a
new paradigm for mobile-code security. In
Proceedings of the 2001 workshop on New security
paradigms, September 2001

Seshadri, A., Luk, M., Perrig, A., van Doorn, L., Khosla,
P., 2006. Externally verifiable code execution. In
Communications of the ACM, september 2006.

Shamir, A., 1979. How to share a secret. Commun. ACM
22, 11 (Nov. 1979), 612-613

Whitman, M.E., 2003. Enemy At The Gate: Threats To
Information Security. In Communications of the
ACM, August 2003

OASIS, 2006. Reference Model for SOA v1.0
OASIS, 2008. Reference Architecture for SOA v1.0
Vogels, W., 2003. Web services are not distributed

objects. In Internet Computing, Dec. 2003
W3C, 2004. Web Services Architecture

